Deeply Virtual Meson Production with CLAS

Valery Kubarovsky Jefferson Lab

May 18-21, 2010 Thomas Jefferson National Accelerator Facility Newport News, Virginia USA

Outline

- Introduction
- DVMP theoretical models
- π^0/η electroproduction
 - Cross sections
 - Structure functions
 - Beam spin asymmetry
 - Cross sections ratio
- Summary

How are the proton's charge densities related to its quark momentum distribution?

D. Mueller, X. Ji, A. Radyushkin, ...1994 -1997 M. Burkardt, A. Belitsky... Interpretation in impact parameter space

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & spin distributions

Basic Process – Handbag Mechanism

Deeply Virtual Compton Scattering (DVCS) Deeply Virtual Meson Production (DVMP)

GPDs depend on 3 variables, e.g. $H(x, \xi, t)$. They probe the quark structure at the amplitude level.

Generalized Parton Distributions

There are 4 GPDs where partons do not transfer helicity H, H, E, E
 H and E are "unpolarized" and H and E are "polarized" GPD. This refers to the parton spins.

4 GPDs flip the parton helicity H_T, H_T, E_T, E_T

Basic GPD properties

Forward limit

$$H^{q}(x, 0, 0) = q(x)$$

 $\tilde{H}^{q}(x, 0, 0) = \Delta q(x)$
 $H^{q}_{T}(x, 0, 0) = h^{q}_{1}(x)$

Form factors

$$\int_{-1}^{1} dx H^{q}(x,\xi,t) = F_{1}^{q}(t), \quad \int_{-1}^{1} dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$
$$\int_{-1}^{1} dx \tilde{H}^{q}(x,\xi,t) = g_{A}^{q}(t), \quad \int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t) = g_{P}^{q}(t),$$

Angular Momentum $J^{q}(t) = \frac{1}{2} \int_{-1}^{1} dx \, x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right]$ (Ji's sum rule)

High Q², Low t Region

Collins, Frankfurt, Strikman -1997

• Factorization theorem states that in the limit $Q^2 \rightarrow \infty$ exclusive electroproduction of mesons is described by hard rescattering amplitude, generalized parton distributions (GPDs), and the distribution amplitude Φ (z) of the outgoing meson.

• The prove applies only to the case when the virtual photon has longitudinal polarization

• Q² $\rightarrow \infty \sigma_L \sim 1/Q^6$, $\sigma_T / \sigma_L \sim 1/Q^2$

• The full realization of this program is one of the major objectives of the 12 GeV upgrade

t.c.

Flavor Separation and Helicity-Dependent GPDs

- DVCS is the cleanest way of accessing GPDs. However, it is difficult to perform a flavor separation.
- Vector and pseudoscalar meson production allows one to separate flavor and isolate the helicity-dependent GPDs.

Meson	GPD flavor	
	composition	
π^+	$\Delta u - \Delta d$	
π^0	$2\Delta u + \Delta d$	
$\mid \eta$	$2\Delta u - \Delta d$	
ρ^0	2u+d	
ρ^+	u-d	
ω	2u-d	

$$\widetilde{H}, \widetilde{E}$$

GPD predictions (only σ_L)

Vanderhaeghen, Guichon, Guidal, 1999

$$\frac{d\sigma_L}{dt}(t = t_{\min})$$

- d\u03c3_L/dt(t=t_min) for vector mesons (left panel)
- Pseudoscalar mesons (right panel)
- Note the pion pole contributionton to the π^+ electroproduction (shown separately)

Cross Section Ratios as a function of X_B Eides,Frankfurt,Strikman -1997

Transversity in DVMP

Kroll, Goloskokov Goldstein, Luiti

•The data clearly show that a leading-twist calculation of DVMP within the handbag is insufficient. They demand higher-twist and/or power corrections. •There is a large contribution from the helicity amplitude M_{0-++} . Such contribution is generated by the the helicity-flip

or transversity GPDs in combination with a twist-3 pion wave function. •This explanation established an interesting connection to transversity parton distributions. The forward limit of H_T is the transversity distribution.

 $M_{0-,++} \sim H_{T}$

 $H_{T}(x,0,0)=h_{1}(x)$

$π^{0}$ electroproduction $γ^{*}p → pπ^{0}$ Handbag predictions

Kroll, Goloskokov, 2009.

Predictions for the cross section (left) and A_{UT} (right) for the π^0 electroproduction versus –t. The unseparated(σ_L, σ_T) cross section was calculated as well as σ_T and σ_{LT} . At W=2.2 GeV the cross section will be a factor of 10 larger. We can check it at Jlab.

Nucleon Tensor Charge from Exclusive π⁰ **Elecrtroproduction**

Ahmad, Goldstein, Luiti, 2009

• π^0 electrroproduction proceeds through C-parity odd and chiral odd combination of t-channel exchage quantum numbers. This differs from DVCS and both vector and charge $\pi^{+/-}$ electroproduction, where the axial charge can enter the amplitudes.

• Contrary the tensor charge enters the π^0 process.

σ_{LT} for different values of the u quark tensor charge

Ahmad, Goldstein, Luiti, 2009

Transition from "hadronic" to the partonic degrees of freedom

$$\gamma^* p \rightarrow p \pi^0$$

Regge Model

J.M. Laget 2010

(a) Regge poles (vector and axial vector mesons)(b) and (c) pion cuts

Vector meson cuts

 $\gamma^* p \rightarrow p \pi^0$

Regge predictions

-t, GeV²

Combined Regge + DIS model

Kaskulov, Gallmeister, Mosel (2008-2010)

• σ_L is dominated by improved treatment of gauge Invariant Regge model.

• σ_T is described by direct hard interaction of virtual photons with partons followed by the hadronization process into πN channel.

• This explains the large transverse response at moderate and high photon virtualities.

• This process is sensitive to the intrinsic transverse momentum distribution of partons.

JLab Site: The 6 GeV Electron Accelerator

CEBAF Large Acceptance Spectrometer CLAS

CLAS Lead Tungstate Electromagnetic Calorimeter

424 crystals,

18 RL,

pointing

geometry,

APD readout

Møller electron shielding

Møller background without B field

Møller background with B field

Huge amounts of electrons drowning the tracking chambers in background.

Background electrons hitting the tracking chambers are eliminated.

DVMP: Kinematic Coverage

4 dimensional grid in Q^2 , x_B , t, and ϕ

$$ep \rightarrow ep\pi^0, \ \pi^0 \rightarrow \gamma\gamma$$

 $ep \rightarrow ep\eta, \ \eta \rightarrow \gamma\gamma$

- Polarized Electron Beam
- $E_0 = 5.776 \text{ GeV}$
- 75-80% polarization
- 2.5 cm Liquid Hydrogen target
- IC calorimeter
- Instant luminosity 2*10³⁴ cm²/s
- Integrated luminosity: 3.27*10⁷ nb⁻¹

4 Dimensional Grid

Rectangular bins are used. Q^{2} - 7 bins(1.-4.5GeV²) x_{B} - 7 bins(0.1-0.58) t - 8 bins(0.09-2.0GeV ϕ - 20 bins(0-360°) π^{0} data ~2000 points

• η data ~1000 points

 Q^2

 $ep\pi$ ${\cal T}$

$ep \rightarrow ep\eta, \eta \rightarrow \gamma\gamma$

 $M_{mis \sin g}(e \gamma \gamma)$

* $\gamma p \rightarrow p\pi^0$

Structure Functions

 $d\sigma$

 $d\sigma_{TT}$

Monte Carlo

- Empirical model for the structure cross sections was used for the MC simulation and radiative corrections
- This model is based on CLAS data
- MC simulation included the radiative effects and used empirical model for the Born term.
- 100 M events were simulated with GSIM program.

Cross section model

The package includes independent functions for the calculations of all structure functions: $\sigma_T, \sigma_L, \sigma_{TT}, \sigma_{LT}, \sigma_{LT}$. The model is as follows:

$$\begin{split} \sigma_{T} &= \sigma^{T} e^{B_{T}(x_{B})t} / (Q^{2} + M^{2})^{n}, B_{T}(x_{B}) = \alpha^{T} * 2 * 1.1 * ln(x_{B})} \\ \sigma_{L} &= \sigma^{L} Q^{2} e^{B_{L}(x_{B})t} / (Q^{2} + M^{2})^{n}, B_{L}(x_{B}) = \alpha^{L} * 2 * 1.1 * ln(x_{B})} \\ \sigma_{TT} &= \sigma^{TT} (t - t_{min}) e^{B_{TT}(x_{B})t} / (Q^{2} + M^{2})^{n}, B_{TT}(x_{B}) = \alpha^{TT} * 2 * 1.1 * ln(x_{B})} \\ \sigma_{LT} &= \sigma^{LT} \sqrt{t - t_{min}} e^{B_{LT}(x_{B})t} / (Q^{2} + M^{2})^{n}, B_{LT}(x_{B}) = \alpha^{LT} * 2 * 1.1 * ln(x_{B})} \\ \sigma_{LT} &= \sigma^{LT} \sqrt{t - t_{min}} e^{B_{LT}(x_{B})t} / (Q^{2} + M^{2})^{n}, B_{LT}(x_{B}) = \alpha^{LT} * 2 * 1.1 * ln(x_{B})} \\ \sigma_{LT} &= 0 \end{split}$$

where $\sigma^T, \sigma^L, \sigma^{TT}, \sigma^{LT}, \alpha^T, \alpha^L, \alpha^{TT}, \alpha^{LT}, M^2$, *n* are free parameters. Note the different t-dependence for

$$\sigma^{TT} \sim (t - t_{min}) \\ \sigma^{LT} \sim \sqrt{t - t_{min}}$$

Radiative Corrections

Radiative Corrections were calculated using Exclurad package adapted by Kyungseon with structure cross sections described by our empirical cross section.

$$RadCor = \frac{\sigma_{Rad}}{\sigma_{Born}}$$

 $Q^2 = 1.15 \text{ GeV}^2 x_B = 0.13 \text{ -t} = 0.1 \text{ GeV}^2$

$(\sigma_T + \epsilon \sigma_L) \sigma_{TT} \sigma_{LT}$ as a function of t

$$\frac{d\sigma}{dtd\phi}(Q^2, x, t, \phi) = (\sigma_T + \varepsilon \sigma_L) + \varepsilon \sigma_{TT} \cos 2\phi + \sqrt{2\varepsilon(\varepsilon + 1)\sigma_{LT}} \cos \phi$$

Non-zero σ_{TT} and σ_{LT} imply that both transverse and longitudinal amplitudes participate in the process

 $Q^2 = 2.3$ $x_B = 0.4$

t GeV²

Structure Functions $(\sigma_T + \epsilon \sigma_L) \sigma_{TT} \sigma_{LT}$

 $\gamma p \rightarrow p\pi^0$

$(\sigma_T + \epsilon \sigma_L) \sigma_{TT} \sigma_{LT}$ in Regge Model (J-M Laget)

• The dashed lines correspond to the $\omega/\rho/b1$ Regge poles and elastic rescattering

• The full lines include also charge pion nucleon and Delta intermediate states.

• Regge model qualitatively describes the experimental data

Comparison with J.M. Laget Regge model

 Extracted reduced cross sections were compared with predictions of J.M. Laget Regge Model

 $Q^2 = 1.15 \text{ GeV}^2$ $x_B = 0.13$

 $Q^2 = 1.38 \text{ GeV}^2$ $x_B = 0.17$

 $Q^2 = 1.61 \text{ GeV}^2$ $x_B = 0.19$

 $Q^2 = 1.74 \text{ GeV}^2$ $x_B = 0.22$

 $Q^2 = 1.88 \text{ GeV}^2$ $x_B = 0.27$

 $Q^2 = 2.25 \text{ GeV}^2$ $x_B = 0.34$

 $Q^2 = 2.73 \text{ GeV}^2$ $x_B = 0.41$

 $Q^2 = 3.22 \text{ GeV}^2$ $x_B = 0.41$

 $\gamma^* p \rightarrow p \pi^0$

t - distribution

 $\frac{d\sigma}{dt} \propto e^{B(x_B,Q^2)t}$

t-Slope Parameter as $\gamma^* p \rightarrow p \pi^0$ Function of x_B and Q²

η/π^0 Ratio

Preliminary data on the ratio η/π^0 as a function of x_B for different bins in t.

The dependence on the x_B and Q^2 is very week.

Probably we have small positive slope. The ratio in the photoproduction is near 0.2-0.3 (very close to what we have at our smallest Q²).

$$\frac{\sigma(ep \to ep\eta)}{\sigma(ep \to ep\pi^0)}$$

$π^{0}$ and η Beam Spin Asymmetry

$$\frac{d\sigma}{dtd\phi}(Q^2, x, t, \phi) = \frac{1}{2\pi} \left(\frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos \phi + h\sqrt{2\varepsilon(\varepsilon-1)} \sin \phi \frac{d\sigma_{LT}}{dt}\right)$$

h is the beam helicity

$$A = \frac{d^4 \vec{\sigma} - d^4 \vec{\sigma}}{d^4 \vec{\sigma} + d^4 \vec{\sigma}} \approx \alpha \sin \varphi$$

Any observation of a non-zero BSA would be indicative of an L'T interference. If σ_L dominates, σ_{LT} , σ_{TT} , and $\sigma_{L'T}$ go to zero

 $\rightarrow p\pi$ γp

Beam Spin Asymmetry

- The red curves correspond to the Regge model (JML)
- BSA are systematically of the order of 0.03-0.09 over wide kinematical range in x_B and Q²

$$\gamma^* p \rightarrow p \pi^0$$

Beam Spin Asymmetry

Ahmad, Goldstein, Luiti, 2009

- Data CLAS
- Blue Regge model
- Red GPD predictions
- tensor charges $\delta u = 0.48$, $\delta d = -0.62$
- transverse anomalous magnetic moments $\kappa^{u}_{T} = 0.6,$ $\kappa^{d}_{T} = 0.3.$

η Beam Spin Asymmetry

Summary

- Deeply Virtual Meson Production has the potential to probe the nucleon structure at the parton level, as described by Generalized Parton distributions (GPDs).
- The most extensive set of π^0 and η electroproduction data to date has been obtained with the CLAS spectrometer.
- Structure functions, the π^0/η ratio of the cross sections and beamspin asymmetries were extracted in the valence quark region.
- Sizable interference terms σ_{TT} and σ_{LT} and non-zero asymmetries imply that both transverse and longitudinal amplitudes participate in the process.
- The detailed comparison with the Regge model predictions was done. The model describes the data reasonably well.
- We are working with theorists who are doing the calculation of the DVMP cross sections within the handbag GPD based models. The comparison results are coming.
- CLAS12 will continue the GPD study with broader kinematics at 12 GeV machine.

