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• Transverse spin Effects in TSSAs

• Gauge links-Color Gauge Inv.-“T-odd” TMDs

• Transverse Distortion and TSSAs  

• Unifying structure GTMDs/Wigner Functions
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• EIC in conjunction w/ Drell Yan can test  
fundamental factorization theorem of QCD: 
predicted sign change of Sivers function 

• Crucial to have Q2 range to pin down TMDs in 
particular Sivers function

• Transverse Distortion/Structure and TSSAs and 
unintegrated PDFs --- “Wigner functions” are there 
exclusive processes where they come in?  

• Unifying structure GTMDs/Wigner Functions

• Pheno-Transverse Structure TMDs and TSSAs b and 
k asymm. An improved dynamical approach for FSI 
& model building

     “QCD calc “  FSIs Gauge Links-Color Gauge Inv. “T-odd” TMDs

      

Conclusions 



                                         MORE  .....

• Jet SIDIS 

• Extracting weighted TSSAs

• Connection bwtn. gluonic and fermionic poles--
twist 3 ETQS approach to TSSAs and the TMD 
description

• Opportunities to further explore angular 
momentum sum rule(s)

      



Transverse SPIN Observables SSA (TSSA) p↑ p → πX
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• Single Spin Asymmetry AN = σ↑(xF ,p⊥)−σ↑(xF ,−p⊥)
σ↑(xF ,p⊥)+σ↑(xF ,−p⊥)

≡ ∆σ

• Rotational invariance σ↓(xF , p⊥) = σ↑(xF ,−p⊥)
⇒ Left-Right Asymmetry

# Parity Conserving interactions: SSAs “Transverse” Scattering plane
=⇒ ∆σ ∼ iST · (P × P π

T )

• Correlation in Transverse Momentum PT & Transverse SPIN ST
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Parity Conserving interactions: SSAs Transverse Scattering plane
∆σ ∼ iST · (P× Pπ
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Transverse SPIN Observables SSA  (TSSA) P ↑P → π X



Reaction Mechanisms: Co-linear QCD

! TSSA requires relative phase btwn different helicity amps

• | ↑ / ↓〉 = (|+〉 ± i|−〉) ⇒ ÂN = σ̂↑−σ̂↓

σ̂↑+σ̂↓ ∼ 2 Im f∗+f−

|f+|2+|f−|2

! Co-linear factorized QCD-parton dynamics

∆σpp↑→πX ∼ fa ⊗ fb ⊗ ∆σ̂ ⊗ Dq→π

requires helicity flip in hard part ∆σ̂ ≡ σ̂↑ − σ̂↓

• QCD interactions conserve helicity
mq → 0 and Born amplitudes real

+ x +m
−−+ +

+
! AN ∼ mqαs

PT
Kane, Repko, PRL:1978
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Reaction Mechanism

âN =
σ̂↑ − σ̂↓

σ̂↑ + σ̂↓
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Im
(
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• QCD interactions conserve helicity
mq → 0 and Born amplitudes real

+−+

+

+ −−x
m

Factorization Theorem in QCD Helicity limit....triviality.....

! AN ∼ mqαs
E Kane, Repko, PRL:1978 Twist three and trival?!

Not the full story....Twist 3 approach ETQS approach

Q ∼ PT >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH and
! αs → correlation function

• ∆σ ∼ fa ⊗ TF ⊗ HETQS ⊗ Dq→π Factorized co-linear QCD
Qiu & Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007, Ji,Qiu,Vogelsang,Yuan:PR

2006,2007. . .

⊗

1
xs±iε = P



 1
xs



 ∓ iπδ(xs)
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PT ∼ Q >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH

• ∆σ ∼ fa ⊗ TF ⊗ HETQS ⊗ Dq→π

Qiu-Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007,
Ji,Qiu,Vogelsang,Yuan:PR 2006,2007. . .
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Early Measurement of Single Spin

Asymmetries

Supposed to be

ZERO or at least

very very small!
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Argonne ZGS, pbeam = 12 GeV/c

Non-zero charged and neutral

pion asymmetries seen at the

ZGS, AGS and FNL for beam

energy from 12 - 200 GeV.

Asymmetries increase with xF

Large Transverse Polarization in Inclusive ReactionsP ↑P → π X



PRD 89

QCD test-Λ Production pp → Λ↑ X

• Need strange quark to polarize a Λ

PΛ =
σpp→Λ↑X − σpp→Λ↓X

σpp→Λ↑X + σpp→Λ↓X
(1)

Dharmartna & Goldstein PRD 1990
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FIG. 1: Schematic diagram of inclusive Λ production and
decay. The angle θp of the decay proton with respect to the
normal n̂ to the production plane is defined in the Λ rest
frame.

Here, k̂p is the proton momentum unit vector in the

Λ rest frame, !PΛ is the polarization of the Λ, and
α = 0.642 ± 0.013 is the analyzing power of the parity-
violating weak decay [20]. Assuming CP -invariance of
the decay, the analyzing power for the Λ̄ is of opposite
sign (αΛ̄ = −0.642) [20]. The quantity dN0/dΩp denotes
the decay distribution of unpolarized Λ particles. As de-
scribed above, only the normal component PΛ

n of the Λ
polarization may be non-zero in the present analysis, and
so Eq. 2 may be rewritten as

dN

dΩp
=

dN0

dΩp
(1 + αPΛ

n cos θp). (3)

For unpolarized Λ particles the distribution of the de-
cay particles is isotropic and dN0/dΩp is simply a nor-
malization factor, independent of angle. In the case of
limited spectrometer acceptance, however, it acquires a
dependence on cos θp.

To extract the polarization of a sample of Λ hyper-
ons from the angular distribution of their decay prod-
ucts in the acceptance, one may determine the following
moments:

〈cosm θp〉 ≡

∫
cosm θp

dN
dΩp

dΩp
∫

dN
dΩp

dΩp

≡

∫
cosm θp

dN
dΩp

dΩp

NΛ
acc

,

(4)
and

〈cosm θp〉0 ≡

∫
cosm θp

dN0

dΩp
dΩp

∫
dN0

dΩp
dΩp

≡

∫
cosm θp

dN0

dΩp
dΩp

NΛ
0,acc

,

(5)
where m = 1, 2, .. . The symbol 〈...〉 represents an aver-
age over an actual data sample, while 〈...〉0 denotes an
average over a hypothetical purely-unpolarized sample of
Λ particles with an isotropic decay distribution. NΛ

acc and
NΛ

0,acc are equal to the total number of Λ events for the
same luminosity accepted by the spectrometer. They are
related by

NΛ
acc = NΛ

0,acc(1 + αPΛ
n 〈cos θp〉0). (6)

Combining Eqs. 3 - 6 one obtains

〈cosm θp〉 =
〈cosm θp〉0 + αPΛ

n 〈cosm+1 θp〉0
1 + αPΛ

n 〈cos θp〉0
. (7)

The extraction of the Λ polarization PΛ
n from the ex-

perimental data is based on Eq. 7. The ‘polarized’ mo-
ments 〈cosm θp〉 can be determined by taking an average
over the experimental data set:

〈cosm θp〉 =
1

NΛ
acc

NΛ
acc∑

i=1

cosm θp,i. (8)

The ‘unpolarized’ moments 〈cosm θp〉0 cannot be ex-
tracted directly from the data as no sample of unpo-
larized Λ hyperons is available. Fortuitously, however,
the extraction of the transverse Λ polarization from the
HERMES data is greatly simplified by the up/down mir-
ror symmetry of the HERMES spectrometer, even in the
case of limited acceptance. It can be readily shown that
this geometric symmetry leads to the relation

〈cosm θp〉
top
0 = (−1)m〈cosm θp〉

bot
0 , (9)

where top and bot specify events in which the hyperon’s
momentum was directed above or below the midplane of
the spectrometer. Consequently all ‘unpolarized’ uneven
moments of the full acceptance function (top plus bot)
are zero, and all even ‘polarized’ moments are equal to
the ‘unpolarized’ ones:

〈cosm θp〉 = 〈cosm θp〉0 m = 2, 4, ... . (10)

The first moment of cos θp may be calculated sepa-
rately for the top and bot data samples to account for a
possible difference in the overall efficiency of each detec-
tor half. Using the symmetry relations (Eqs. 9 and 10),
one obtains from Eq. 7 a system of two coupled equations
for αPΛ

n and 〈cos θp〉
top
0 :

αPΛ
n =

c+/〈cos2 θp〉

1 − 〈cos θp〉
top
0 c−/〈cos2 θp〉

, (11)

〈cos θp〉
top
0 =

c−
1 − c+αPΛ

n

, (12)

where 2c+ (2c−) is the sum (difference) of 〈cos θp〉top

and 〈cos θp〉bot. This system of coupled equations can be
solved iteratively. The iteration converges quickly. If one
takes αPΛ

n = c+/〈cos2 θp〉 and 〈cos θp〉
top
0 = c− for the

first iteration, then the solution of the second iteration
for PΛ

n and 〈cos θp〉
top
0 reads:

αPΛ
n =

c+/〈cos2 θp〉

1 − c2
−/〈cos2 θp〉

, (13)

〈cos θp〉
top
0 =

c−
1 − c2

+/〈cos2 θp〉
. (14)



Transverse SSA’s at √s = 62.4 & 200 GeV at RHIC

PRL101, 042001 (2008)
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patterns of polarization signs. The unfilled 9 bunches are
sequential and correspond to the abort gap needed to eject
the stored beams. Pb was measured every 3 h during RHIC
stores by a polarimeter that detected recoil carbon ions
produced in elastic scattering of protons from carbon rib-
bon targets inserted into the beams. The effective AN of this
polarimeter was determined from p" þ p" elastic scattering
from a polarized gas jet target [24] thereby determining
Pb ¼ 55:0# 2:6% (56:0# 2:6%) for the Blue (Yellow)
beam in the 2006 run [25].

The FPD comprises four modules, each containing a
matrix of lead glass (PbGl) cells of dimension 3:8 cm$
3:8 cm$ 18 radiation lengths. Pairs of modules were
positioned symmetrically left (L) and right (R) of the
beam line in both directions, at a distance of %750 cm
from the interaction point [21]. The modules facing the
Yellow (Blue) beam are square matrices of 7$ 7 (6$ 6)
PbGl cells. Data from all FPD cells were encoded for each
bunch crossing, but only recorded when the summed en-
ergy from any module crossed a preset threshold.

Neutral pions are reconstructed via the decay !0 ! "".
The offline event analysis included conversion of the data
to energy for each cell, formation of clusters and recon-
struction of photons using a fit with the function that
parametrizes the average transverse profile of electromag-
netic showers. Collision events were identified by requiring
a coincidence between the east and west STAR beam-beam
counters, as used for cross section measurements [26].
Events were selected when two reconstructed photons
were contained in a fiducial volume, whose boundary
excludes a region of width 1=2 cell at the module edges.
Detector calibration was determined from the !0 peak
position in diphoton invariant mass (M"") distributions.

The estimated calibration accuracy is 2%. The analysis was
validated by checking against full PYTHIA/GEANT simula-
tions [27]. The reconstructed !0 energy resolution is given
by #E!=E! & 0:16=

ffiffiffiffiffiffiffi
E!

p
.

Because of the limited acceptance there is a strong
correlation between xF and pT for reconstructed !0

(Fig. 1). Spin effects in the xF-pT plane are studied by
positioning the calorimeters at different transverse dis-
tances from the beam, maintaining L=R symmetry for pairs
of modules. Figure 1 shows loci from h$i ¼ 3:3, 3.7, and
4.0. There is overlap between the loci, providing cross-
checks between the measurements. Because the measure-
ments were made at a colliding beam facility, both xF > 0
and xF < 0 results are obtained concurrently.
Events with 0:08<M"" < 0:19 GeV=c2 were counted

separately by spin state from one or the other beam, with
no condition on the spin state of the second beam, in the xF
bins shown in Fig. 1. For each run i, AN;i for each bin was
then determined by forming a cross ratio

AN;i ¼
1

Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p ' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";iNR#;i

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL#;iNR";i

p ; (1)

whereNLðRÞ"ð#Þ;i is the number of events in the L (R) module
when the beam polarization was up (down). Equation (1)
cancels spin dependent luminosity differences through
second order. Statistical errors were approximated by
!AN;i ¼ ½Pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NL";i þ NL#;i þ NR";i þ NR#;i

p +'1, valid for
small asymmetries. All measurements of Pb for a store
were averaged and applied to get AN;i for each bin. The
run-averaged AN #!AN values are shown in Fig. 2.

FIG. 1 (color online). Correlation between pion longitudinal
momentum scaled by

ffiffiffi
s

p
=2 (xF) and transverse momentum (pT)

for all events. Bins in xF used in Figs. 2 and 4 are indicated by
the vertical lines. There is a strong correlation between xF and
pT at a single pseudorapidity (h$i).

FIG. 2 (color online). Analyzing powers in xF bins (see Fig. 1)
at two different h$i. Statistical errors are indicated for each
point. Systematic errors are given by the shaded band, excluding
normalization uncertainty. The calculations are described in the
text. The inset shows examples of the spin-sorted invariant mass
distributions. The vertical lines mark the !0 mass.
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flight walls.
With no spin rotator magnets outside the BRAHMS interaction region,

all proton-proton collisions at BRAHMS are transversely polarized in the
vertical direction.

4. Results

A number of results are now available from transversely polarized data
taken by the BRAHMS and PHENIX experiments at center-of-mass ener-
gies of 200 and 62.4 GeV. The transverse single-spin asymmetries discussed
below are all left-right asymmetries, which can be calculated by

ALeft
N =

1

P

N↑ − RN↓

N↑ + RN↓

where ALeft
N

indicates the asymmetry calculated to the left of the polar-
ized beam, P is the beam polarization, N↑ (N↓) is the particle yield from
bunches polarized up (down), and R = L

↑

L↓ is the relative luminosity be-
tween up- and down-polarized bunches. Both beams at RHIC are polarized;
in the calculation of single-spin asymmetries, the polarization of one beam
is considered while averaging over the polarization states of the other.

Fx
0 0.1 0.2 0.3 0.4 0.5 0.6

)!(
N

A

-0.2

-0.1

0

0.1

0.2

)<0.8 GeV/c!(
T

0.5<p

200 GeV

62.4 GeV

BRAHMS Preliminary

 E704+!

 E704-!

Fig. 2. Charged pion asymmetries measured at 200 and 62.4 GeV by the BRAHMS
experiment and at 19.4 GeV by the E704 experiment, shown for overlapping kinematic
ranges (see text).

In the early 1990’s large transverse single-spin asymmetries in forward
pion production were observed by the E704 experiment at Fermilab at a

See talk of Les Bland



Source of T-Odd Contributions to TSSA and AA in SIDIS

• “T-odd” distribution-fragmentation functions enter transverse
momentum dependent correlators at leading twist Boer, Mulders: PRD 1998

Φ(x, pT )=
1

2

n
f1(x, pT) /P + ih⊥

1 (x, pT)
[ /pT , /P ]

2M
− f⊥

1T (x, pT )
εij

T pTiSTj

M
/P · · ·

o

∆(z, kT )=
1

4

n
zD1(z, kT) /Ph + izH⊥

1 (z, kT )
[kT , /Ph]

2Mh
− zD⊥

1T(z, kT)
εij

T kTiSTj

Mh
/Ph + · · ·

o

dσ"N→"πX
{λ,Λ} ∝ f1 ⊗ dσ̂"q→"q ⊗ D1

+ h⊥
1 ⊗ dσ̂"q→"q ⊗ H⊥

1 · cos 2φ

+ |ST | · h1 ⊗ dσ̂"q→"q ⊗ H⊥
1 · sin(φ + φS) Collins

+ |ST | · f⊥
1T ⊗ dσ̂"q→"q ⊗ D1 · sin(φ − φS) Sivers

15

Hermes PRL 2009
!p→ !′ πX



Collins Asymmetry
Compass-proton data 2007 comparison w/ HERMES-Collins 

D. Hasch INT-12 GeV



Sensitivity to pT ∼ k⊥ << Q2 TSSAs thru “T -Odd”TMD

• Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and
momenta in initial state hadron

∆σpp↑→πX ∼ D ⊗ f⊗∆f⊥⊗σ̂Born ⇒ iST · (P × k⊥) → f⊥
1T (x, k⊥)

• Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting
quark and transverse momentum of final state hadron

∆σep↑→eπX ∼ ∆D⊥ ⊗ δf ⊗ σ̂Born ⇒ isT · (P × p⊥) → H⊥
1 (x, p⊥)
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Fig. 1. Kinematics of semi-inclusive deeply inelastic scattering.

The deep inelastic region is where Q is made large, with XBj and z held fixed

and not close to their endpoints 0 and 1. We will always assume in this paper that

the scattering is taken to lowest order in QED, with a single photon being

exchanged between the lepton and the hadronic system, fig. 1.

The reason for defining the variables XBJ, z and q
1 is that they have a simple

interpretation in the parton model. There, it is assumed that the dominant

contributions to the cross section have the form of fig. 2. The virtual photon

interacts in Born approximation with a single quark, which is close to its mass shell

and which has low transverse momentum on the scale Q. Then when hadron B is

part of the “current quark jet” produced in the hard scattering, z has the

interpretation of the fraction of the jet’s momentum that is carried by the hadron.

As usual, ~ has the interpretation of the fraction of the momentum of the

incoming hadron A that is carried by the parton that enters the hard scattering.

To treat intrinsic transverse momentum for the initial state and for the fragmen-

tation, we need a suitable frame in which to define them. First we define what we

will call the “parton model jet axis”:

p~
2_qP+x~~p~. (10)

This would be the jet momentum if there were no intrinsic transverse momentum.

Even in the presence of transverse momentum, the definition (10) gives a conve-

Fig. 2. Parton model for semi-inclusive deeply inelastic scattering.
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The picture that goes with these results is fig. 2. All that we have done is to take

account of the transverse momentum of the quarks relative to the measured initial-

and final-state hadrons. This intrinsic transverse momentum has the effect of

smearing out the delta function of q
1 that we remarked on earlier. The only

generalization needed compared with the parton model is that the hard scattering

can contain higher-order virtual corrections. In the absence of gauge bosons in the

strong interactions, this formula in the exact form given in eq. (13) is a theorem,

that can be proved as in the Drell—Yan case [191.

The spin-i gluons of QCD modify the theorem, by causing Sudakov form-factor

effects. We expect that a proof can be given just as in the Drell—Yan case [17]. The

effect is to broaden the transverse momentum distribution as Q increases, but in a

spin-independent way: the broadening is due to recoil against the transverse

momentum of soft gluon emission. This will have the effect of diluting the spin

asymmetry we will discuss next.

3.4. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM AND POLARIZATION

We now explain factorization for the semi-inclusive deep inelastic cross section

when the incoming hadron A is transversely polarized but the lepton remains

unpolarized. (It is left as an exercise to treat the most general case.) The

factorization theorems, eq. (12) and eq. (14), continue to apply when we include

polarization for the incoming hadron, but with the insertion of helicity density

matrices for in and out quarks; this is a simple generalization of the results in refs.

[10,231.

The cross section will be linear in the transversity s~of the hadron (and also

linear in its helicity A). Because transverse spin for a spin- ~ particle corresponds to

off-diagonal terms in the helicity density matrix, the other primary constraint

comes from quark helicity conservation in the hard scattering, and this simplifies

the factorization theorem.

First, it is well known that at large transverse momentum, the transverse spin

asymmetry is higher twist, as I now review. In that region, we use distribution and

fragmentation functions integrated over intrinsic transverse momentum. Now, in

the absence of a measurement of the polarization of the outgoing hadron, the

single-particle fragmentation is spin independent. On the other hand, the trans-

verse-spin dependence of the distribution functions is only in the off-diagonal

elements of quark density matrices [8]. Therefore we need the part of the hard

scattering that is off-diagonal in the helicity of the initial-state quark but diagonal

in the (summed) final-state helicities. Helicity conservation at the vertices for the

gluon, photon and Z prohibits such a term, at leading twist.

But, at low transverse momentum, the fragmentation function has dependence

on transverse spin — see eq. (4). The corresponding hard scattering is just elastic

electron—quark scattering, and we need terms that are off-diagonal in the final-state
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1. Introduction

An important challenge to QCD theorists is to devise methods of measuring the

polarization state of a parton coming out of a hard scattering. In the case of

longitudinal polarization for the parton, Nachtmann [1] showed how a certain

three-particle correlation within a jet could be used. He suggested several pro-

cesses where it could be measured, in particular deep inelastic neutrino scattering.

Later, Dalitz, Goldstein and Marshall [21 and Einhorn [31showed how to probe

the helicity of a heavy quark.

Recently Efremov et al. [4] rediscovered the Nachtmann idea, which they called

the “handedness” of a jet, and they showed how to measure it in e~e annihila-

tion. They also considered the possibility of probing the transverse polarization of

quarks. This idea was independently discovered in ref. [5].
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polarization of a quark. One measures the sing/e-particle distribution as a function
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outgoing hadron about the jet axis.
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scattering the approximation that the transverse momentum of the incoming

parton can be neglected with respect to the transverse momentum generated in the

scattering, and one also neglects the transverse momentum generated in the

fragmentation. (Note that to the extent that these transverse momenta are not

negligible, but are of order Q, the errors in the approximations are compensated

by a correct treatment of higher-order corrections to the hard scattering.)

3.3. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM BUT NO POLARIZA-
TION

To gain information on the q
1 dependence at small q1 , we must derive a more

powerful theorem that involves “intrinsic transverse momentum” in both the

distribution and the fragmentation functions. Such a theorem was derived for the

Drell—Yan process and for the two-particle-inclusive cross section in e~e annihi-

lation [17,28].A similar theorem should apply here. An obvious ansatz is

E’EBd3I,d3 = Efd~f~fd2ka± fd2kbl fa/A(~’ k~1)

d6~
xE’Ekh d

31’ d~kb~”~’ khl) + Y(xB~,Q, z, q
1/Q). (13)

In this formula ó~ represents the short-distance part of elastic lepton—quark

scattering. It contains a delta function for momentum conservation. The sum over

a is over all flavors of quark and antiquark.

The first term on the right of eq. (13) dominates when q1 ~ Q. The second

term, Y, is a correction term that enables eq. (13) to reproduce the ordinary

factorization theorem eq. (12) at large transverse momentum, just as in the

Drell—Yan case [17]. The Y-term has the general form of the basic factorization

theorem eq. (12), except that the low-q1 asymptote is subtracted from the hard

scattering function.

The function fa/A defined earlier gives the intrinsic transverse-momentum

dependence of partons in the initial-state hadron. Similarly, DB/a gives the

distribution of hadrons in a parton, with kbl being the transverse momentum of

the parton relative to the hadron.

Just as in ref. [17,28], the hard-scattering factor in the first term in eq. (13) can

only be a 2 —‘ 2 process. Hence the fractional momenta of the incoming quark

from hadron A and of hadron B in the outgoing quark are forced to be Xn~and Z.

After integrating out the delta-function in d~we obtain

E’EBd3I,d3 = ~ Efd ka± fa/A(XBj, kaI)~DB/a(Z, ka±+q1)

+ Y(xBJ, Q, z, q1/Q). (14)
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Ralston Spoper NPB 1979, Collins NPB 1993

 Collins Soper NPB 1981,  & Sterman NPB 1985



(P, Λ) (P, Λ′)

(p, λ) (p, λ′)

(k, µ) (k, µ′)
(γ∗, ε)

Ph

q

PX

PX ′ ∆

Φ

Factorization parton model,  PT of the hadron is small!

Small transverse 
momentum

Integration support for integrals is where 
transverse momentum is small-”cov parton model”

e.g.  Landshoff Polkinghorne NPB28, 1971 

Wµν(q, P, S, Ph) ≈
∑

a

e2

∫
d2pT dp−dp+

(2π)4

∫
d2kT dk−dk+

(2π)4
δ(p+ − xBP+)δ(k− −

P−h
z

)δ2(pT + qT − kT )

×Tr [Φ(p, P, S)γµ∆(k, Ph)γν ]

Wµν(q, P, S, Ph) =
∫

d2pT

(2π)4

∫
d2kT

(2π)4
δ2(pT −

Ph⊥
z

− kT )Tr
[(∫

dp−Φ
)

γµ

(∫
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)
γν

]

Φ(x,pT , S) ≡
∫

dp−Φ(p, P, S)
∣∣∣
p+=xBP+

, ∆(z,kT ) ≡
∫

dk+∆(k, Ph)
∣∣∣
k−= P−

zh

integrate out small momenta components
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H †µHρν;a

p

Hρ,ν = γν

Extend Parton Model result-Gauge Links

•What are the “leading order” gluons 
that implement color gauge invariance?  
•How is the correlator modified?



∫
d4pd4kδ4(p + q − k)Tr

[
Φ[UC

[∞;ξ](p)H†
µ(p, k)∆(k)Hν(p, k)

]

T-Odd Effects From Color Gauge Inv. Factorized QCD-Wilson Line

• Leading twist Gauge Invariant Distribution and Fragmentation Functions

Boer, Mulders: NPB 2000, Ji et al PLB: 2002, NPB 2003, Boer et al NPB 2003

. . .

. . .

k

p

P

K

Φ

∆

. . .

Φ

∆

etc . . .

• Sub-class of interactions of colinear & transverse gluons re-summed to render
physical process color gauge invariant

• Wilson line emerges from resummation of gluon ISI and FSI btw. active quark and
hadron remnants → U [C]

[ξ,∞]
= Pexp(−ig

R ∞
ξ dη · A)

• The path [C] is fixed by hard subprocess within hadronic process.
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Gauge link for TMDs

ξ−

ξT

Φij(x, pT ) =
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dξ−d2ξT

8π3
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Gauge link determined re-summing gluon interactions btwn soft and hard 
Efremov,Radyushkin Theor. Math. Phys. 1981

Belitsky, Ji, Yuan NPB 2003,
Boer, Bomhof, Mulders Pijlman, et al.  2003 - 2008- NPB, PLB, PRD 
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“T-Odd” Effects From Color Gauge Inv. Via Gauge links

Summing gauge link with color
LG, M. Schlegel PLB 2010



Wilson Line = Gauge links

Us
[z1,z2]

=W[z1; z2] = [z1; z2] = Pe−ig
R z2

z1
ds·A(s)

!zT

z−

z1 = (0−, −z−
2 , −!zT

2 )

z2 = (0−, z−
2 , !zT

2 )
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2 )



kT factorization

Collins, Soper, NPB 193 (81)

Ji, Ma, Yuan, PRD 71 (05)

FUU,T (x, z, P 2
h⊥, Q2) = C

[
f1D1

]

=
∫

d2pT d2kT d2lT δ(2)
(
pT − kT + lT − P h⊥/z

)

x
∑

a

e2
a fa

1 (x, p2
T , µ2)Da

1(z, k2
T , µ2) U(l2T , µ2)H(Q2, µ2)

TMD PDF TMD FF Soft factor Hard part

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81



“Generalized Universality” Fund. Prediction of  QCD Factorization
T-Odd Effects From Color Gauge Inv. via Wilson Line

• Leading twist Gauge Invariant Distribution Functions

Boer, Mulders: NPB 2000, & Pijlman (BPM) NPB 2003, Belitsky Ji Yuan NPB 2003
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Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02

P&T

Process Dependence Collins PLB 02, Brodsky, Hwang, Schmidt NPB 02
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22 2. Distribution functions and transversity

To get more insight into the information contained in the correlation function, which is a Dirac

matrix, we can decompose it in a general way on a basis of Dirac structures. Each term of the

decomposition can be a combination of the Lorentz vectors p and P, the Lorentz pseudovector S

(in case of spin-half hadrons) and the Dirac structures

111 !5 !! !!!5 i"
!#!5

The spin vector can only appear linearly in the decomposition (cf. Eq. (2.43)). Moreover, each

term of the full expression has to satisfy the conditions of Hermiticity and parity invariance

Hermiticity: $ p P S !0$† p P S !0 (2.30a)

parity: $ p P S !0$ p̃ P̃ S̃ !0 (2.30b)

where p̃# %#! p! and so forth for the other vectors. The most general decomposition of the

correlation function $ imposing Hermiticity and parity invariance is [151, 141]

$ p P S MA1 111 A2P A3 p
A4
M
"!#P

! p# iA5 p S!5

MA6 S!5 A7
p S

M
P!5 A8

p S

M
p!5 iA9"!#!5S

!P#

iA10"!#!5S
! p# iA11

p S

M2
"!#!5P

! p# A12
&!#'"!

!P# p'S"

M

(2.31)

where the amplitudes Ai are dimensionless real scalar functions Ai Ai p P p2 .

The correlation function can be separated in a T-even part and a T-odd part, according to the

definition

$T-even p P S i!1!3$T-even p̃ P̃ S̃ i!1!3 (2.32a)

$T-odd p P S i!1!3$T-odd p̃ P̃ S̃ i!1!3 (2.32b)

Thus, the terms containing the amplitudes A4, A5 and A12 can be classified as T-odd.

At leading twist, we are interested in the projection $ xB S ! . After inserting the general

decomposition of Eq. (2.31) into Eq. (2.19), we can project out the leading-twist components and

obtain the general expression [32]

$ x S ! f1 x SL g1 x !5 h1 x !5 ST (2.33)

where we introduced the parton distribution functions

f1 x d2pppT dp
2 d 2p P % ppp2T x2M2 p2 2xp P A2 xA3 (2.34a)

g1 x d2pppT dp
2 d 2p P % ppp2T x2M2 p2 2xp P A6

p P

M2
x A7 xA8

(2.34b)

h1 x d2pppT dp
2 d 2p P % ppp2T x2M2 p2 2xp P A9 xA10

ppp2T
2M2

A11 (2.34c)

Correlator is Matrix in Dirac space

Decompose into basis of Dirac matricies

2

The correlation functions

2.1 The correlation function Φ for an unpolarized target

To get more insight into the information contained in the correlation function, which is a Dirac
matrix, we can decompose it in a general way on a basis of Dirac structures. Each term of the
decomposition can be a combination of the Lorentz vectors p and P, the Lorentz pseudovector S
(in case of spin-half hadrons) and the Dirac structures

1, γ5, γ
µ, γµγ5, iσµνγ5.

The spin vector can only appear linearly in the decomposition (cf. Eq. (2.27)). Moreover, each
term of the full expression has to satisfy the conditions of Hermiticity and parity invariance

Hermiticity: Φ(p, P, S ) = γ0Φ†(p, P, S ) γ0, (2.1a)
parity: Φ(p, P, S ) = γ0Φ(p̃, P̃,−S̃ ) γ0 (2.1b)

where p̃ν = δνµpµ and so forth for the other vectors.
For an unpolarized target, the most general decomposition is

Φ(p, P) = M A1 1 + A2 /P + A3 /p +
A4

M
σµνP

µpν (2.2)

where the amplitudes Ai are real scalar functions Ai = Ai(p · P, p2) with dimension 1/[m]4.
If we keep only the leading terms in 1/P+ (which means also leading in 1/Q, i.e. leading twist)

Φ(p, P) ≈ P+ (A2 + xA3) /n+ + P+
i
2M
[

/n+, /pT
]

A4, (2.3)

Φji(p;P, S) =
∫

d4ξ

(2π)4
eip·ξ〈PS|ψ̄i(0)ψj(ξ)|PS〉

Φji(x,pT ) =
∫

dp−

2
Φji(p, P, S)|p+=xP+

Φji(x,pT ) =
∫

dξ−d2ξ

2(2π)3
eip·ξ〈PS|ψ̄i(0)ψj(ξ)|PS〉|x+=0
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The projections leading in 1/Q areleading

PDFs(x,pT )

Φ[γ
+](x,pT ) ≡ f1(x,p

2
T ) +

εijT pT iSTj
M

f⊥1T (x,p
2
T )

=
∫
[dσdτ δ( )]

{

[A2 + xA3] +
εijT pT iSTj
M

[−A12]
}

, (3.38)

Φ[γ
+γ5](x,pT ) ≡ λ g1L(x,p

2
T ) +

pT ·ST
M

g1T (x,p
2
T )

=
∫
[dσdτ δ( )]

{

λ

[

−A6 −
(
σ − 2xM2
2M2

)

(A7 + xA8)

]

+
pT ·ST
M

(A7 + xA8)

}

, (3.39)

Φ[iσ
i+γ5](x,pT ) ≡ SiT h1T (x,p

2
T ) +

piT
M

(

λ h⊥1L(x,p
2
T ) +

pT ·ST
M

h⊥1T (x,p
2
T )

)

+
εijT p

j
T

M
h⊥1 (x,p

2
T )

=
∫
[dσdτ δ( )]

{

−SiT (A9 + xA10) +
εijT p

j
T

M
[−A4] (3.40)

+
λ piT
M

[

A10 −
(
σ − 2xM2
2M2

)

A11

]

+
piT
M

pT ·ST
M

A11

}

.

The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p
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T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
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d2pT
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.

Leading Twist TMDs from Correlator

“ Avakian Mulders-tableau”
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verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
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2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.
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i+γ5](x,pT ) ≡ SiT h1T (x,p

2
T ) +

piT
M

(

λ h⊥1L(x,p
2
T ) +

pT ·ST
M

h⊥1T (x,p
2
T )

)

+
εijT p

j
T

M
h⊥1 (x,p

2
T )

=
∫
[dσdτ δ( )]

{

−SiT (A9 + xA10) +
εijT p

j
T

M
[−A4] (3.40)

+
λ piT
M

[

A10 −
(
σ − 2xM2
2M2

)

A11

]

+
piT
M

pT ·ST
M

A11

}

.

The probabilistic interpretation of the leading transverse momentum depen-
dent PDFs is schematically shown in Fig. 3.10. There are two groups of additional
PDFs possible because of the presence of a non-vanishing transverse quark mo-
mentum. The functions g1T (x,p2T ), h

⊥
1L(x,p

2
T ), and h

⊥
1T (x,p

2
T ) are non-vanishing,

if there is a correlation between longitudinal quark polarisation (helicity) and
transverse hadron polarisation, or vice versa. This possibilities, surprising at
first glance, do exist because of the extra distinction of a direction by the trans-
verse quark momentum components; otherwise they would be forbidden simply
by rotational invariance. Note that the existence of two transverse directions x
and y is reflected in the number of independent chiral-odd functions. The sec-
ond group of additional functions consists of the (naive) time-reversal odd PDFs
f⊥1T (x,p

2
T ) (the so-called Sivers function [19]) and h

⊥
1 (x,p

2
T ) correlating transverse

quark momentum to transverse hadron spin, or transverse quark momentum to
transverse quark spin, respectively. 2

A symmetric integration over pT relates the transverse momentum dependent
PDFs with their integrated counterparts

f(x) =
∫
d2pT f(x,p

2
T ) (3.41)

for a generic PDF f(x,p2T ). Note that a symmetric integration of Φ
[iσi+γ5](x,pT )

over pT receives two non-vanishing contributions resulting in the identification

h1(x) =
∫
d2pT

(

h1T (x,p
2
T ) +

p2T
2M2

h⊥1T (x,p
2
T )

)

. (3.42)

2A discussion on the possible existence of non-vanishing time-reversal odd PDFs is given in
comparison with time-reversal odd PFFs in the next subsection 3.2.3.

Integrated pdfs
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Correlation functions in SIDIS
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T ) Da(z, k2
T )
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a
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M2
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P 2
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FUU,T = C
[
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]

C
[
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]
=

∑

a
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a

∫
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)
w(pT ,kT ) fa(x, p2

T ) Da(z, k2
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d6σ = σ̂hard C[wfD]

FAB = C[w f D]
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Correlators in SIDIS
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• “T-odd” distribution-fragmentation functions enter transverse momentum
dependent correlators at leading twist Boer, Mulders: PRD 1998
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Fig. 3. The results obtained from our simultaneous fit of the
SIDIS Asin (φh−φS)

UT Sivers asymmetries (solid lines) are com-
pared with HERMES experimental data [10] for pion and kaon
production (upper and lower panel, respectively). The shaded
area corresponds to the statistical uncertainty of the param-
eters, see appendix A for further details. For completeness,
we also show the K0

S asymmetry, not measured at HERMES,
which is the result of a computation based on our extracted
Sivers function and the assumed fragmentation functions of
eq. (16).

according to the procedure outlined in appendix A. The fit
performed under the “broken sea” ansatz shows a remark-
able improvement, especially concerning the description
of kaon data. We now obtain χ2 = 1.20 per data point
for K+ production at HERMES [10], while for pions we
have χ2 = 0.94 per data point, and a total χ2

dof = 1.00.

In table 2 we show the χ2 per data point for pion and
kaon production at HERMES and COMPASS, both for
the “unbroken sea” and “broken sea” ansätze and adopt-
ing the Kretzer and DSS FF sets. Notice that these values
refer to the asymmetries as a function of x.

The quality of our results is shown in figs. 3 and 4
where our best fit to the SSA is compared with the exper-
imental data from refs. [10] and [11]: the SSAs are plotted
as a function of one variable at a time, either x or z or PT ,
while an integration over the other variables has been per-
formed consistently with the cuts of the corresponding ex-
periment.
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Fig. 4. The results obtained from our fit (solid lines) are com-

pared with the COMPASS measurements of Asin (φh−φS)
UT for

pion (upper panel) and kaon (lower panel) production [11] off
a deuteron target. The shaded area corresponds to the statisti-
cal uncertainty of the parameters, as explained in appendix A.
The π0 asymmetry, not measured at COMPASS, is the result
of a computation based on our extracted Sivers functions. Also
the K0

S asymmetry, although compared with data [12], is not a
best fit, but the result of our computation, using the assumed
fragmentation functions of eq. (16).

In order to check the dependence on the set of unpo-
larized PDFs adopted, we have also performed the fit by
using the CTEQ6L [27] and the MRST01LO [28] sets; in
both cases, the quality of the fit and the central-value re-
sults for the asymmetries are so similar to those obtained
with the GRV98LO set that they would be hardly distin-
guishable in figs. 3 and 4.

The shaded areas in figs. 3 and 4 (and in all subse-
quent figures where they are shown) represent statistical
uncertainties and correspond to a 95.45% confidence level
(CL): they are determined according to the procedure de-
scribed in appendix A. Notice that further uncertainties
of theoretical nature, intrinsic to our phenomenological
approach, are present and might widen the size of the sta-
tistical bands. However, these are very difficult to assess: it
suffices to recall that our analysis is performed assuming a
simple factorized k⊥-dependence in eqs. (6), (10) and (11),
that the actual Q2 evolution of the Sivers function is un-
known and that uncertainties in the fragmentation func-

Anselmino et al. PRD 05,  EPJA 08 Simultaneous fit of pion and 
kaon data from HERMES and 

COMPASS
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),
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3

FIG. 3: Pion mass dependence of the generalized form factors
BT (n=1,2)0(t=0) for up-quarks. The shaded error bands show
extrapolations to the physical pion mass based on an ansatz
linear in m2

π. The symbols are as in Fig. 2.

mp = 1.233(27) GeV (all for p = 2.5). We have checked
that the final p-pole parametrizations only show a mild
dependence on the value of p chosen prior to the fit. In
order to see to what extent our calculation is affected
by discretization errors, we plot as an example in Fig. 2
the tensor charge AT10(t=0) = gT (t=0) versus the lat-
tice spacing squared, for a fixed mπ ≈ 600 MeV. The
discretization errors seem to be smaller than the statis-
tical errors, and we will neglect any dependence of the
GFFs on a in the following. Taking our investigations of
the volume dependence of the nucleon mass and the axial
vector form factor gA [13, 23] as a guide, we estimate that
the finite volume effects for the lattices and observables
studied in this work are small and may be neglected.

As an example of the pion mass dependence of our
results, we show in Fig. 3 the GFFs B

u
T (n=1,2)0(t=0) ver-

sus m2
π. Unfortunately we cannot expect chiral pertur-

bation theory predictions [24] to be applicable to most
of our lattice data points, for which the pion mass is
still rather large. To get an estimate of the GFFs
at the physical point, we extrapolate the forward mo-
ments and the p-pole masses using an ansatz linear in
m2

π. The results of the corresponding fits are shown as
shaded error bands in Fig. 3. At mphys

π = 140 MeV,

we find B
u
T10(t=0) = 2.93(13), B

d
T10(t=0) = 1.90(9) and

B
u
T20(t=0) = 0.420(31), B

d
T20(t=0) = 0.260(23). These

comparatively large values already indicate a significant
impact of this tensor GFF on the transverse spin struc-
ture of the nucleon, as will be discussed below. Since the
(tensor) GPD ET can be seen as the analogue of the (vec-
tor) GPD E, we may define an anomalous tensor mag-
netic moment [7], κT ≡

∫
dxET (x, ξ, t=0) = BT10(t=0),

similar to the standard anomalous magnetic moment
κ =

∫
dxE(x, ξ, t=0) = B10(t=0) = F2(t=0). While the

u- and d-quark contributions to the anomalous magnetic
moment are both large and of opposite sign, κup

exp ≈ 1.67
and κdown

exp ≈ −2.03, we find large positive values for
the anomalous tensor magnetic moment for both flavors,

FIG. 4: Lowest moment (n = 1) of the densities of un-
polarized quarks in a transversely polarized nucleon (left)
and transversely polarized quarks in an unpolarized nucleon
(right) for up (upper plots) and down (lower plots) quarks.
The quark spins (inner arrows) and nucleon spins (outer ar-
rows) are oriented in the transverse plane as indicated.

κup
T,latt ≈ 3.0 and κdown

T,latt ≈ 1.9. Similarly large positive
values have been obtained in a recent model calculation
[25]. Large Nc considerations predict κup

T ≈ κdown
T [26].

Let us now discuss our results for ρn(b⊥, s⊥, S⊥) in
Eq. (1). For the numerical evaluation we Fourier trans-
form the p-pole parametrization to impact parameter
(b⊥) space. The parametrizations of the impact param-
eter dependent GFFs then depend only on the p-pole
masses mp and the forward values F0. Before showing
our final results, we would like to note that the mo-
ments of the transverse spin density can be written as
sum/difference of the corresponding moments for quarks
and antiquarks, ρn = ρn

q + (−1)nρn
q , because vector and

tensor operators transform identically under charge con-
jugation. Although we expect contributions from anti-
quarks to be small in general, only the n-even moments
must be strictly positive. In Fig. 4, we show the lowest
moment n = 1 of spin densities for up and down quarks
in the nucleon. Due to the large anomalous magnetic
moments κu,d, we find strong distortions for unpolarized
quarks in transversely polarized nucleons (left part of the
figure). This has already been discussed in [6], and can
serve as a dynamical explanation of the experimentally
observed Sivers-effect. Remarkably, we find even stronger
distortions for transversely polarized quarks s⊥ = (sx, 0)
in an unpolarized nucleon, as can be seen on the right
hand side of Fig. 4. The densities for up and for down
quarks in this case are both deformed in positive by direc-
tion due to the large positive values for the tensor GFFs

B
u
T10(t=0) and B

d
T10(t=0), in strong contrast to the dis-

tortions one finds for unpolarized quarks in a transversely
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Intuitive picture of Sivers asymmetry:
Spatial distortion in transverse plane due to polarization

+ FSI leads to observable effect
non-zero Left Right (Sivers) momentum asymmetry
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“Impact Parameter PDFs” 
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Remind ourselves of Some simple 
relations for FFs and forward PDFs

Relations between TMDs and GPDs

Trivial Relations are well-known:

model-independent, integrated relations

also for twist-3 PDFs e(x), g
T
(x), ...

Marc Schlegel, Hall C summer meeting, JLab, Aug 4
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Explore connection FSIs-Links & Transv. Distortion
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Relativistic Eikonal models (II)Relativistic Eikonal models (II)

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

• Generalized Ladder approximation:

• Eikonal Propagator:
  Idea: highly energetic particle looses spin information !! ! "!
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ken and the impact parameter dependent PDFs no longer
need to be axially symmetric. The direction of the distortion
is perpendicular to both the spin and the momentum of the
nucleon.3 Although the distortion is mathematically de-
scribed by Eq. !2.4" in a model-independent way, it is in-
structive to consider a semi-classical picture for the effect
where the physical origin of this distortion results from a
superposition of translatory and orbital motion of the partons
when the nucleon is polarized perpendicular to its direction
of motion. If the spin of the nucleon is ‘‘up’’ !looking into
the direction of motion of the nucleon" and the orbital angu-
lar momentum of the quarks is parallel to the nucleon spin
then the orbital motion adds to the momentum on the right
side of the nucleon and subtracts on the left side, i.e. partons
on the right side get boosted to larger momentum fractions x
and on the left they get decelerated to smaller x !compared to
longitudinally polarized nucleons". Since parton distributions
decrease with x !at large momenta they drop like a power of
x and at small x they grow like an inverse power of x),
boosting all partons on one side of the nucleon results in an
increase of the number of partons at a fixed value of x on that
side, while the opposite effect occurs on the other side.
Therefore, the acceleration/deceleration due to the superpo-
sition of the orbital with the translatory motion results in an
increase of partons on the right and a decrease on the left, i.e.
the net result is that the parton distribution in the transverse
plane has been shifted or distorted to the right. Of course, for
quarks with orbital angular momentum antiparallel to the
nucleon spin the direction of the distortion is reversed !to the
left". In Ref. #8$ it has been shown that the helicity flip GPD
E is related to the angular momentum carried by the quark.
This result, together with the above semiclassical description
about the physical origin of the distortion, provides an intui-
tive explanation for the fact that this distortion is described
by E.
It should be emphasized that transverse asymmetries in

impact parameter dependent PDFs are consistent with time-

reversal invariance since b! •(p! !S! ) is invariant under T. In
contrast, k!•(p! !S! ) is not invariant under T, and therefore
transverse asymmetries in unintegrated parton densities
q(x ,k!) are only permitted if final state interaction effects
are incorporated into the definition of unintegrated parton
densities #9$.
Unfortunately, little is known about generalized parton

distributions and it is therefore in general difficult to make

predictions without making model assumptions. However, it

is possible to make a model independent statement about the

resulting transverse flavor dipole moment

dq
y%! dx! d2b!qX!x ,b!"by

"#
1

2M
! dx! d2b!by

&

&by
Eq!x ,b!"

"
1

2M
! dx! d2b!Eq!x ,b!"

"
1

2M
! dxEq!x ,0,0 ""

F2,q!0 "

2M
, !2.6"

where we used that the integral of Eq yields the Pauli form

factor F2,q for flavor q #8$. For u and d quarks, F2,q(0)

%'q/p in the proton is of the order of "'q/p"(1#2 !for a
more detailed estimate see Appendix A", i.e. the resulting
transverse flavor dipole moments are on the order of

dq
y(0.1#0.2 fm. !2.7"

In fact, using only isospin symmetry, one finds for a trans-

versely polarized proton !A4"

du
y#dd

y"
'u/p#'d/p

2M
)0.4 fm, !2.8"

i.e. the flavor center for u and d quarks gets separated in

opposite directions to the point where the separation is of the

same order as the expected size of the valence quark

distribution.4

In order to illustrate the magnitude of the distortion

graphically, we make a simple model for the !! dependence

of GPDs #4$

Hq!x ,0,#!!
2 ""q!x "e#a!!

2
(1#x)ln(1/x). !2.9"

This ansatz incorporates both the expected large x behavior

(Hq should become x-independent as x→1) and the small x

behavior !Regge behavior". Furthermore, in the forward limit
(!!"0), Hq reduces to the unpolarized PDF q(x). In im-

pact parameter space this ansatz implies

q!x ,b!
2 ""q!x "

1

4*a!1#x "ln
1

x

exp# #
b!
2

4a!1#x "ln
1

x
$ .

!2.10"

For the helicity flip distributions Eq we assume that the !!

dependence is the same as for Hq and we fix the overall

normalization by demanding that the integral of Eq(x ,0,0)

yields the anomalous magnetic moments

Eu!x ,0,t ""
1

2
'uHu!x ,0,t "

Ed!x ,0,t ""'dHd!x ,0,t ". !2.11"

We should emphasize that this is not intended to be a realis-

tic model and we only use it to illustrate the typical size of

effects that one might anticipate.

The resulting parton distributions in impact parameter

space for u and d quarks are shown in Figs. 1 and 2 respec-

tively. Note that PDFs as well as GPDs decrease significantly

3Note that S! !p! transforms like a position space vector r! under P
and T transformations.

4It should be emphasized that the transverse center of momentum

of the whole nucleon does not shift since + i"q ,g,dxxEi(x ,0,0)

"0 if one sums over the contributions from all flavors as well as

from the glue #10$.
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κp = 1.79 , κn = −1.91
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FIG. 3: Pion mass dependence of the generalized form factors
BT (n=1,2)0(t=0) for up-quarks. The shaded error bands show
extrapolations to the physical pion mass based on an ansatz
linear in m2

π. The symbols are as in Fig. 2.

mp = 1.233(27) GeV (all for p = 2.5). We have checked
that the final p-pole parametrizations only show a mild
dependence on the value of p chosen prior to the fit. In
order to see to what extent our calculation is affected
by discretization errors, we plot as an example in Fig. 2
the tensor charge AT10(t=0) = gT (t=0) versus the lat-
tice spacing squared, for a fixed mπ ≈ 600 MeV. The
discretization errors seem to be smaller than the statis-
tical errors, and we will neglect any dependence of the
GFFs on a in the following. Taking our investigations of
the volume dependence of the nucleon mass and the axial
vector form factor gA [13, 23] as a guide, we estimate that
the finite volume effects for the lattices and observables
studied in this work are small and may be neglected.

As an example of the pion mass dependence of our
results, we show in Fig. 3 the GFFs B

u
T (n=1,2)0(t=0) ver-

sus m2
π. Unfortunately we cannot expect chiral pertur-

bation theory predictions [24] to be applicable to most
of our lattice data points, for which the pion mass is
still rather large. To get an estimate of the GFFs
at the physical point, we extrapolate the forward mo-
ments and the p-pole masses using an ansatz linear in
m2

π. The results of the corresponding fits are shown as
shaded error bands in Fig. 3. At mphys

π = 140 MeV,

we find B
u
T10(t=0) = 2.93(13), B

d
T10(t=0) = 1.90(9) and

B
u
T20(t=0) = 0.420(31), B

d
T20(t=0) = 0.260(23). These

comparatively large values already indicate a significant
impact of this tensor GFF on the transverse spin struc-
ture of the nucleon, as will be discussed below. Since the
(tensor) GPD ET can be seen as the analogue of the (vec-
tor) GPD E, we may define an anomalous tensor mag-
netic moment [7], κT ≡

∫
dxET (x, ξ, t=0) = BT10(t=0),

similar to the standard anomalous magnetic moment
κ =

∫
dxE(x, ξ, t=0) = B10(t=0) = F2(t=0). While the

u- and d-quark contributions to the anomalous magnetic
moment are both large and of opposite sign, κup

exp ≈ 1.67
and κdown

exp ≈ −2.03, we find large positive values for
the anomalous tensor magnetic moment for both flavors,

FIG. 4: Lowest moment (n = 1) of the densities of un-
polarized quarks in a transversely polarized nucleon (left)
and transversely polarized quarks in an unpolarized nucleon
(right) for up (upper plots) and down (lower plots) quarks.
The quark spins (inner arrows) and nucleon spins (outer ar-
rows) are oriented in the transverse plane as indicated.

κup
T,latt ≈ 3.0 and κdown

T,latt ≈ 1.9. Similarly large positive
values have been obtained in a recent model calculation
[25]. Large Nc considerations predict κup

T ≈ κdown
T [26].

Let us now discuss our results for ρn(b⊥, s⊥, S⊥) in
Eq. (1). For the numerical evaluation we Fourier trans-
form the p-pole parametrization to impact parameter
(b⊥) space. The parametrizations of the impact param-
eter dependent GFFs then depend only on the p-pole
masses mp and the forward values F0. Before showing
our final results, we would like to note that the mo-
ments of the transverse spin density can be written as
sum/difference of the corresponding moments for quarks
and antiquarks, ρn = ρn

q + (−1)nρn
q , because vector and

tensor operators transform identically under charge con-
jugation. Although we expect contributions from anti-
quarks to be small in general, only the n-even moments
must be strictly positive. In Fig. 4, we show the lowest
moment n = 1 of spin densities for up and down quarks
in the nucleon. Due to the large anomalous magnetic
moments κu,d, we find strong distortions for unpolarized
quarks in transversely polarized nucleons (left part of the
figure). This has already been discussed in [6], and can
serve as a dynamical explanation of the experimentally
observed Sivers-effect. Remarkably, we find even stronger
distortions for transversely polarized quarks s⊥ = (sx, 0)
in an unpolarized nucleon, as can be seen on the right
hand side of Fig. 4. The densities for up and for down
quarks in this case are both deformed in positive by direc-
tion due to the large positive values for the tensor GFFs

B
u
T10(t=0) and B

d
T10(t=0), in strong contrast to the dis-

tortions one finds for unpolarized quarks in a transversely

−→ κu/p = 1.67 , κd/p = −2.03 w/ attractive interactions  

paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming
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tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
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Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),

f⊥(u)
1T = neg & f⊥(d)

1T = pos

Used to predicting sign of TSSA-Sivers Burkardt 02,04 NPA PRD



f⊥
1T represents the so-called Sivers function [9, 10], which appears for a transversely polarized

target and is supposed to be at the origin of various observed single spin phenomena in hard
semi-inclusive reactions.

There exist some trivial relations between GPDs and TMDs because of the connection
between GPDs (for ξ = t = 0) and TMDs (integrated upon "kT ) on the one hand and
ordinary parton distributions on the other. An example is given by

Hq(x, 0, 0) = f q
1 (x) =

∫

d2"kT f q
1 (x,"k2

T ) . (4)

Two additional trivial relations hold on the quark sector (involving the quark helicity and
transversity distribution) and also two for gluon distributions. In this note, however, we are
mainly interested in non-trivial relations between GPDs and TMDs.

2 Impact parameter representation of GPDs

In Ref. [1], a non-trivial relation was proposed for the first time — a connection between
the GPD E and the Sivers function f⊥

1T . In that work an important role is played by the
impact parameter representation of GPDs. For ξ = 0, GPDs in impact parameter space
have a density interpretation, and are generically given by

X (x,"b 2
T ) =

∫

d2"∆T

(2π)2
e−i!∆T ·!bT X(x, 0,−"∆2

T ) . (5)

Using this definition, the Fourier transform of the correlator in (1) (for ξ = 0) has the form

Fq(x,"bT ; S) =

∫

d2"∆T

(2π)2
e−i!∆T ·!bT F q(x, ∆T ; S) = Hq(x,"b 2

T ) +
εij
T bi

T Sj
T

M

(

Eq(x,"b 2
T )

)′

, (6)

where the derivative of Eq with respect to "b 2
T enters. The correlator Fq has the following

interpretation: it describes the distribution of unpolarized quarks carrying the longitudinal
momentum fraction x at a transverse position "bT inside a transversely polarized target.

If the second term on the r.h.s. in (6) is non-zero, Fq is not axially symmetric in b-space.
In other words, the correlator is distorted. In fact, one can show in a model-independent way
that for a nucleon target the correlator has a large distortion, where the effect for a quark
flavor q is proportional to the contribution of the corresponding flavor to the anomalous
magnetic moment of the nucleon [1]. One may now speculate that this large distortion
should have an observable effect. Indeed in [1] it was argued that it may be related to the
Sivers function. An explicit form of the relation was obtained in Ref. [3] by considering
the average transverse momentum of an unpolarized quark inside a transversely polarized
target,

〈

kq,i
T (x)

〉

UT
= −

∫

d2"kT ki
T

εjk
T kj

T Sk
T

M
f⊥q
1T (x,"k 2

T )

=

∫

d2"bT Iq,i(x,"bT )
εjk
T bj

T Sk
T

M

(

Eq(x,"b 2
T )

)′

. (7)

The result in (7) represents the first quantitative non-trivial relation between a GPD and a
TMD. It also provides an intuitive explanation of the Sivers effect. (In this context we refer

DIS 2007

To derive these relations, it is convenient to work with the GPDs in impact parameter
instead of momentum space. This representation of the GPDs can be obtained by Fourier
transforming the correlator in Eq. (1) for ξ = 0,

F q(x,"bT ; S) =
∫

d2"∆T

(2π)2
e−i!∆T ·!bT F q(x, 0, "∆T ; S) = Hq(x,"b 2

T ) +
εij
T bi

T Sj
T

M

(

Eq(x,"b 2
T )

)′

, (3)

where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to "b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position "bT inside a transversely
polarized nucleon.

The second set of parton distributions we are interested in are the TMDs. The leading
twist TMDs of a nucleon for unpolarized quarks are defined through

Φq(x,"kT ; S) =
1

2

∫ dz−

2π

d2"zT

(2π)2
eik·z 〈P ; S| ψ̄(− 1

2z) γ+ WTMD ψ(1
2z) |P ; S〉

∣

∣

∣

z+=0+

= f q
1 (x,"k 2

T ) −
εij
T ki

T Sj
T

M
f⊥q

1T (x,"k 2
T ) , (4)

where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum "kT inside a transversely polarized target.

2 Relations between GPDs and TMDs

Comparing the respective structures of the correlators in Eqs. (3) and (4) one finds that
they are identical after exchanging the impact parameter "bT and the transverse parton
momentum "kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
objects.

Performing such a comparison for all leading twist parton distributions for quarks [3]
as well as for gluons [6], one finds the following set of possible relations, which can be
grouped into four different types according to the number of derivatives on the GPD side:

Hq/g ↔ f
q/g
1 , H̃q/g ↔ g

q/g
1L ,

(

Hq
T −

!b 2
T

M2 ∆bH̃
q
T

)

, ↔
(

hq
1T +

!k 2
T

2M2 h⊥q
1T

)

(5)

(

Eq/g
)′

↔ −f
⊥q/g
1T ,

(

Eq
T + 2H̃q

T

)′

↔ −h⊥q
1 ,

(

Hg
T −

!b 2
T

M2 ∆bH̃
g
T

)′

↔ −1
2

(

hg
1T +

!k 2
T

2M2 h⊥g
1T

)

, (6)

(

H̃q
T

)′′

↔ 1
2h

⊥q
1T ,

(

Eg
T + 2H̃g

T

)′′

↔ 1
2h

⊥g
1 , (7)

(

H̃g
T

)′′′

↔ −1
4h

⊥g
1T . (8)
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where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to "b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position "bT inside a transversely
polarized nucleon.

The second set of parton distributions we are interested in are the TMDs. The leading
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where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum "kT inside a transversely polarized target.

2 Relations between GPDs and TMDs

Comparing the respective structures of the correlators in Eqs. (3) and (4) one finds that
they are identical after exchanging the impact parameter "bT and the transverse parton
momentum "kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
objects.

Performing such a comparison for all leading twist parton distributions for quarks [3]
as well as for gluons [6], one finds the following set of possible relations, which can be
grouped into four different types according to the number of derivatives on the GPD side:
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Analysis of correlators for 
TMDs and IP-GPDs similar forms

To derive these relations, it is convenient to work with the GPDs in impact parameter
instead of momentum space. This representation of the GPDs can be obtained by Fourier
transforming the correlator in Eq. (1) for ξ = 0,
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where S parametrizes all possible combinations of the helicities λ and λ′ as described
in Refs. [3, 6]. The GPDs Hq and Eq are the Fourier transformed GPDs Hq and Eq,
respectively, and the prime denotes the first derivative with respect to "b 2

T . The correlator
in Eq. (3) can be interpreted as the probability density of finding an unpolarized quark
with longitudinal momentum fraction x at transverse position "bT inside a transversely
polarized nucleon.
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twist TMDs of a nucleon for unpolarized quarks are defined through

Φq(x,"kT ; S) =
1

2

∫ dz−

2π

d2"zT

(2π)2
eik·z 〈P ; S| ψ̄(− 1

2z) γ+ WTMD ψ(1
2z) |P ; S〉

∣

∣

∣

z+=0+

= f q
1 (x,"k 2

T ) −
εij
T ki

T Sj
T

M
f⊥q

1T (x,"k 2
T ) , (4)

where again we disregard any dependence on a renormalization scale µ. Similar to the
GPDs in impact parameter space the TMDs have a probability interpretation, too. The
correlator in Eq. (4) gives the probability of finding an unpolarized quark with longitudinal
momentum fraction x and transverse momentum "kT inside a transversely polarized target.

2 Relations between GPDs and TMDs

Comparing the respective structures of the correlators in Eqs. (3) and (4) one finds that
they are identical after exchanging the impact parameter "bT and the transverse parton
momentum "kT . This, together with the similar probability interpretations of the corre-
lators, leads to the assumption that there might exist some relations between these two
objects.

Performing such a comparison for all leading twist parton distributions for quarks [3]
as well as for gluons [6], one finds the following set of possible relations, which can be
grouped into four different types according to the number of derivatives on the GPD side:
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DVCS  Factorizes into hard and soft        GPDs
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In the so-called chiral-odd sector in Eq. (12) one may equally well work with # # $j% # '&jkT i$
k%"5.

Notice that the GPDs for antiquarks are defined analogously to the quark GPDs. One merely has to replace in (8) the
quark fields by the corresponding charge-conjugated fields. Unless stated otherwise all results in the following apply also
to the case of distributions for antiquarks.

As mentioned in the introduction we also want to consider possible relations for gluon distributions. The relevant
correlation function for leading twist gluon GPDs reads [2]
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where the Wilson line is given in the adjoint representation of the color SU!3",
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The gluon field strength tensor in (13) has the standard form

 F%(
a !x" # @%A(

a!x" ' @(A%
a !x" % gfabcA

%
b !x"A(

c!x"; (15)

with fabc being the structure constants of the SU!3". For the definition of the chiral-odd gluon GPDs we will need the
symmetry operator Ŝ defined through

 ŜOij # 1
2!Oij %Oji ' )ij

TO
mm" (16)

for a generic tensor Oij. One readily observes that the symmetrized tensor ŜOij has only two independent components. The
twist-2 gluon GPDs are given through the correlator in Eq. (13) according to
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~Hg!x;#; t" % !%"5

2M
~Eg!x;#; t"

"
u!p;!"; (18)

 Fg;ij
T !x;!;!;!0" # 'ŜFg$ij&!x;!;!;!0"

# Ŝ

2P%
P%!i

T '!%Pi
T

2MP% "u!p0;!0"
!
i$%jHg

T!x;#; t" %
"%!j

T '!%"j
T

2M
Eg
T!x;#; t"

% P%!j
T ' !%Pj

T

M2
~Hg
T!x;#; t" %

"%Pj
T ' P%"j

T

M
~Eg
T!x;#; t"

"
u!p;!": (19)

Note that the definitions of the chiral-even quark and gluon GPDs directly correspond to each other [compare the right-
hand side (RHS) of (10) and (17), as well as the RHS of (11) and (18)]. On the other hand, in the chiral-odd sector the
definitions of the quark and gluon GPDs are (symbolically) connected by
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Eight GPDs  H unpol & E-helicity flip
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k+ = xP+ ,

P = p+p′

2 ∆ = p′ − p
k − ∆

2

P − ∆
2

P ′ = P + ∆
2

k + ∆
2

F [Γ](x, ξ, "∆)

xP+

P

γ∗
γ

P ′

F [Γ](x, ξ, t;λ, λ′) =
∫

dz−

(4π)
eixP+z−〈P ′;λ′|q̄

(
−z

2

)
ΓW(−z

2
,
z

2
)q

(z

2

)
|P ;λ〉|z+=z⊥=0



Fourier transform of GPD                    @  ξ = 0

F(x,!b) =
∫

d2∆T

(2π)2
ei!∆T ·!b F (x, 0, !∆T )

= H(x,!b) +
εij
T bi

T Sj
T

M

(
E(x,!b)

)′

F (x, 0, !∆T )

z1/2 = ±z−

2
n− +

!bT

2

!b↔ !∆T

F.T.

prob. density of partons in transv. plane

F(x,!b) =
∫

dz−

(2π)2
eixP+z−〈P+;!0T |q̄ (z1)W(z1, z2)q (z2) |P+;!0T 〉

Burkardt PRD 00, 02, 04...
Basics Properties Impact parameter Spin Processes Summary

Localizing partons: impact parameter

! states with definite light-cone momentum p+

and transverse position (impact parameter):

|p+, b〉 =
∫

d2p e−ibp |p+,p〉

formal: eigenstates of 2 dim. position operator D. Soper ’77

! can exactly localize proton in 2 dimensions
no limitation by Compton wavelength

! and stay in frame where proton moves fast
! parton interpretation

! different from localization in 3 spatial dimensions
well-known for form factors; also for GPDs Belitsky, Ji, Yuan ’03

M. Diehl Measuring generalized parton distributions: why and how? 17

Prob. of finding unpol. quark w/ long momentum x  at position bT in trans. polarized 
ST nucleon: spin independent        and spin flip part H E ′

bT

P+

PT = 0 Soper PRD1977



What observable to test this possible  connection btnw TMD and Impact par. picture?    
Gluonic Pole ME

spinpol

b

∆α
G ij (x, x − x1) =

∑

X

∫
d(ξ·P )

2π

d(η·P )
2π

ei x1(η·P )ei (x−x1)(ξ·P )

× 〈0|Un
[0,η] gGnα(η)Un

[η,ξ]ψi(ξ)|P,X〉

×〈P,X |ψj(0)|0〉

∣∣∣∣∣
LC

.

. . .

Q ∼ PT >> Λqcd Co-linear Twist Three Mechanism

Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982

! Get helicity flips and phases mq →∼ MH and
! αs → correlation function

• ∆σ ∼ fa ⊗ TF ⊗ HETQS ⊗ Dq→π Factorized co-linear QCD
Qiu & Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007, Ji,Qiu,Vogelsang,Yuan:PR

2006,2007. . .

⊗

1
xs±iε = P



 1
xs



 ∓ iπδ(xs)

12

z1/2 = ∓ z−

2 n− + bT

Ii(z−) =
∫

dy−[z−; y−]gF+i(y−)[y−; z−]

Impact parameter rep for GPD E

Soft gluonic pole op

〈ki
T 〉(x) =

∫
d2bT

∫
dz−

2(2π)e
ixP+z−〈P+;!0T ;ST |ψ̄(z1)γ+[z1; z2]Ii(z2)ψ(z2)|P+;!0T ;ST 〉
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Chiral-odd RelationChiral-odd Relation
• Av. transv. momentum of transv. pol. partons in an unpol. hadron:

• Spatial distortion in transv. plane of transv. pol. quarks quantified by

• Lattice QCD, const. quark model: and

Boer-Mulders function negative for u- and d-quarks!
[in agreement with large-N

c
, models.]

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

!!!" "
#!"" #

!
#!!" !

!
"
"
!

"
$#!$

!!%"$!$" % $#!$
!!%"$!#$"

#

#&%! &
!&%"&
" !"" $

$
#!'" ('" % (&!")('" "

'
'(#

"

"
'" % & '("

#
!")('!" "

*" #
!
#"
"
+" % & ',"

#
!") () ("

*)" - ( **" - (

Diehl & Hagler EJPC (05), Burkardt PRD (04)

Conjecture: factorization of FSI and spatial distortion:

Ii(x,!b2
T )

〈ki
T 〉(x) = Mεij

T Si
T f⊥(1)

1T ≈
∫

d2bTIi(x,"b2
T )!bT×!ST

M
∂

∂b2T
E(x,"b2

T )

Lensing Function

Boer Mulders as well ...



Relativistic Eikonal models (II)Relativistic Eikonal models (II)

Marc Schlegel, Theory Group Seminar, BNL, Dec 19

• Generalized Ladder approximation:

• Eikonal Propagator:
  Idea: highly energetic particle looses spin information !! ! "!

"!!!#$ %# "&# $

!
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'( %!"##$!!""$)#%$!#$ % $ ("#%"%!
!
"

!
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Quark: Eikonalization comes “for free” "! $ *!
!
$ *'

!
$ &

Diquark: similar Eikonalization, here an assumption "! $ *!&$ *
'
& $ &$ *! % *& $ '

• Eikonal Amplitude and Coulomb Phase:
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T-odd TMDsT-odd TMDs

Time-reversal forbids
Sivers function

Boer-Mulders function

•  Neglect gauge link operator:

•  If T-odd TMDs ! 0: Gauge Link not neglegible, physical effect:

Initial / Final state interactions
Time reversal switches sign:

Marc Schlegel, Theory Group Seminar, BNL, Dec 19
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Sivers Function in this approach

For Details see extra slides and
L.G. & Marc Schlegel 

Phys.Lett.B685:95-103,2010  & in prep for Sivers...
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Keeping the imaginary part of (19) in order to pursue the relation (9), the integral (20) reduces to

Wi(P, k, S) = −i(1− x)gN (k2)
[(/k + mq)u(P, S)]i

!k2
T + m̃2

− i

4P+

∫
d2qT

(2π)2
gN

(
(P − q)2

)
[(/P − q/ + mq)u(P, S)]i M(q; P − k)

[!q2
T + m̃2]

+ b.t.. (20)

Here the light cone components of the diquark momentum are determined by q+ = (1 − x)P+, and q− = !q2
T +m2

s
2(1−x)P+ ,

and m̃2 = xm2
s −x(1−x)M2 +(1−x)m2

q . Again b.t. represents the breaking terms which invalidate relations between
T-odd TMDs and GPDs.

We now use (20) to calculate the Sivers function via (2). Expressed through the amplitude W , the definition of the
Sivers function translates to (with W̄ ≡ W †γ0)

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = − M

8(2π)3(1 − x)P+

(
W̄γ+W

∣∣∣
ST

− W̄γ+W
∣∣∣
−ST

)
. (21)

Furthermore, we specify the form factor that we attach to the nucleon-quark-diquark vertex where we choose a dipole
and Gaussian form,

gDipole
N (k2) = gΛ2 k2 − m2

q

[k2 − Λ2]2
, (22)

gGauss
N (k2) = g exp

[
− |k2|

λ2

]
. (23)

Inserting (20) into (20) and a bit of algebra yields the following expressions for the Sivers function,

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

[!q2
T + m̃2] [!p2

T + m̃2]
×

$[M](x,!kT , !qT )
4(1 − x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., no form factor, (24)

εij
T ki

T Sj
T f⊥,Dipole

1T (x,!k2
T ) = −g2(1 − x)3Λ4M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T[
!q2
T + Λ̃2

]2 [
!p2

T + Λ̃2
]2 ×

$[M](x,!kT , !qT )
4(1− x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., Dipole, (25)

εij
T ki

T Sj
T f⊥,Gauss

1T (x,!k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

[!q2
T + m̃2] [!p2

T + m̃2]
×

exp
[
− !q2

T +!p2
T +2m̃2−2(1−x)m2

q

λ2(1−x)

] $[M](x,!kT , !qT )
4(1− x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., Gauss. (26)

In the following sections we calculate the scattering amplitude M(x,!kT , !qT ) in a relativistic eikonal model. One
result of the calculation is the functional dependence on the transverse momenta, M(x,!kT , !qT ) → Meik(x, |!qT +!kT |).
Already at this point we will use this property to simplify the expressions and to show a relation to the GPD E. Since
final-state interactions are believed to be irrelevant for matrix elements of light-cone operators, one can consistently
model GPDs already from tree-level diagrams in the spectator model where the effects of gluon dressings are effectively
hidden in the masses and form factors. A calculation for the GPD E in this fashion for a scalar spectator can be
found in [? ]. It is easy to generalize it for a Dipole and Gaussian form factor. We obtain

E(x, 0,−!∆2
T ) =

g2(1 − x)2

(2π)3
M(xM + mq)

∫
d2kT






1h
(!kT −1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , no f.f.

(1−x)2Λ4
h
(!kT − 1

2 (1−x)!∆T )2+Λ̃2
i2h

(!kT +
1
2 (1−x)!∆T )2+Λ̃2

i2 , Dipole

exp

2

4−
2(!k2

T +
1
4 (1−x)2!∆2

T +m̃2−(1−x)m2
q)

λ2(1−x)

3

5

h
(!kT − 1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , Gauss

. (27)

We calc “W” again....

W
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4. The Lensing Function in Relativistic Eikonal Model

In order to calculate the 2 → 2 scattering amplitude M

(needed for (15)) we use functional methods to incorporate the

color degrees of freedom in the eikonal limit when soft gauge

bosons couple to highly energetic matter particles on the light

cone. It is non-trivial to extend the functional methods estab-

lished in an Abelian to non-Abelian gauge theory such as QCD.

Attempts in this direction were made in Refs. [71, 77], and only

recently a fully Lorentz and gauge invariant treatment was pre-

sented in Ref. [78]. Here we outline the details of the functional

approach as it pertains to implementing color structure to the

scattering amplitude M and thereby the lensing function. We

leave the details to a forthcoming publication [79].

Starting from the generating functional Z for QCD in a co-

variant gauge, a quark antiquark 4-point function T can then be

defined by functional derivatives with respect to quark sources

which yields,

T2→2 ∝
∫

DA e−
i
4

∫

(F2+2λ(∂·A)2) eTr lnG
−1[A]+Tr lnH−1[A]G[A] Ḡ[A].

(18)

The first exponential describes the gluonic part of the theory in-

cluding self-interactions and the second exponential describes

internal closed quark and ghost loops. G, Ḡ are the non-

perturbative quark- and antiquark-propagator determining the

external legs of the 4-point function T . One imposes eikonal

approximations on these propagators [70, 71] that simplify

the computation of the path-integral. In an Abelian theory

the eikonal approximation as discussed in the previous section

leads to a well-known eikonal representation [70], which was

argued in [71, 77] to generalize to QCD in the following way,

e.g. for a massless fermion,

Geikαβ (x, y|A) = −i
∫ ∞

0

dsδ(4)(x − y − sn)
(

e−ig
∫ s

0
dβ n·Aa(y+βn)ta

)+

αβ
,

(19)

where color is implemented by a path-ordered exponential in-

dicated by the brackets (...)+ and the color matrix ta in the ex-
ponential.

Inserting the eikonal representation for the quark- and anti-

quark propagator into Eq. (18) and implementing the general-

ized ladder approximation one finds the color gauge invariant

result corresponding to the picture of FSIs discussed in the pre-

vious section,

(

Meik
)αδ

δβ
(x, |&qT + &kT |) =

(1 − x)P+

ms

∫

d2zT e
−i&zT ·(&qT+&kT ) (20)

×














∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
− δαβ















.

In this expression, the (N2c − 1) dimensional integrals result
from auxiliary fields αa(s) and ua(s) that were introduced in
the functional formalism (see Ref. [71]) to separate the phys-

ical gluon fields from the color matrices. The eikonal phase

χ(|&zT |) in Eq. (20) represents the arbitrary amount of soft gluon

exchanges that are summed up into an exponential form and is

expressed in terms of the gluon propagator in a covariant gauge,

χ(|&zT |) = g2
∫ ∞

−∞
dα

∫ ∞

−∞
dβ nµn̄νDµν(z + αn − βn̄), (21)

whereD denotes the gluon propagator, and g is the strong cou-
pling. In this form the 4-velocity vector vµ is expressed in terms

of the complementary light cone vector n̄ where v = − (1−x)P
+

ms
n̄,

with n · n̄ = 1 and n̄2 = 0. One may choose n̄ = (0, 1,&0T ).
In Eq. (20) we evaluate the color integral,

fαβ(χ) ≡
∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
−δαβ

(22)

by deriving a power series representation for arbitrary Nc. We

expand the exponential exp[iχt · α] and rewrite the resulting
factors as derivatives with respect to u. Then we perform in-

tegrations by parts which reduces the α integral to a simple δ-
function. This simplifies the u-integral where u is set to zero

after differentiation We obtain

fαβ(χ) =
∞
∑

n=1

(iχ)n

n!
(−i)n(ta1 ...tan)αδ

∂n(eit·u)δβ

∂ua1 ...∂uan

∣

∣

∣

∣

u=0
. (23)

Now we expand the remaining exponential in Eq. (23) and note

that one can write the set of partial derivatives with respect to

uai as a sum over all permutations Pn of the set {1, ..., n}, which
results in the power series representation for f ,

fαβ(χ) =
∞
∑

n=1

(iχ)n

(n!)2

N2c−1
∑

a1=1

...

N2c−1
∑

an=1

∑

Pn

(ta1 ...tan taPn (1) ...taPn (n) )αβ . (24)

This color factor matrix nicely illustrates the generalized ladder

approximation. If only direct ladder gluons were considered

the sum over permutations would become trivial in Eq. (24) and

only terms (ta1 ...tan tan ...ta1 )αβ = Cn
F
δαβ with CF =

N2c−1
2Nc

would

contribute. This constitutes the leading order in a large-Nc ex-

pansion while non-planar diagrams, i.e. crossed gluon graphs,

are suppressed. For the leading contribution one may simply

replace α → CFαs and work in an Abelian theory. In particu-
lar, this replacement was suggested in perturbative model cal-

culations [32, 80]. Since we take into account crossed gluons

we have to sum over all permutations in (24), and such a re-

placement is not possible. In an Abelian theory, the generating

matrices t reduce to unity, t = 1, and since we have n! permu-

tations of the set {1, ..., n}, we recover the well-known result for
the Coulomb phase,

f U(1)(χ) =
∞
∑

n=1

(iχ)n

n!
= eiχ − 1. (25)

For the non-Abelian Nc = 2 theory the generators are given by

the Pauli matrices σa = 2ta. Instead of using the power series
representation we can calculate the integral (22) analytically by

means of the relation
(

eiu·
σ
2

)

αβ
= δαβ cos

(

|u|
2

)

+
i&σαβ·&u
|u| sin

(

|u|
2

)

.
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(needed for (15)) we use functional methods to incorporate the

color degrees of freedom in the eikonal limit when soft gauge
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∫
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(
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∫ s

0
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)+
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,

(19)

where color is implemented by a path-ordered exponential in-

dicated by the brackets (...)+ and the color matrix ta in the ex-
ponential.

Inserting the eikonal representation for the quark- and anti-

quark propagator into Eq. (18) and implementing the general-

ized ladder approximation one finds the color gauge invariant

result corresponding to the picture of FSIs discussed in the pre-

vious section,

(

Meik
)αδ
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(x, |&qT + &kT |) =

(1 − x)P+

ms

∫

d2zT e
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×
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










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(
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)
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(
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




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
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ical gluon fields from the color matrices. The eikonal phase

χ(|&zT |) in Eq. (20) represents the arbitrary amount of soft gluon

exchanges that are summed up into an exponential form and is

expressed in terms of the gluon propagator in a covariant gauge,

χ(|&zT |) = g2
∫ ∞
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dα

∫ ∞
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dβ nµn̄νDµν(z + αn − βn̄), (21)

whereD denotes the gluon propagator, and g is the strong cou-
pling. In this form the 4-velocity vector vµ is expressed in terms
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+

ms
n̄,

with n · n̄ = 1 and n̄2 = 0. One may choose n̄ = (0, 1,&0T ).
In Eq. (20) we evaluate the color integral,

fαβ(χ) ≡
∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)
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(22)

by deriving a power series representation for arbitrary Nc. We

expand the exponential exp[iχt · α] and rewrite the resulting
factors as derivatives with respect to u. Then we perform in-

tegrations by parts which reduces the α integral to a simple δ-
function. This simplifies the u-integral where u is set to zero

after differentiation We obtain

fαβ(χ) =
∞
∑

n=1

(iχ)n

n!
(−i)n(ta1 ...tan)αδ

∂n(eit·u)δβ

∂ua1 ...∂uan

∣

∣

∣

∣

u=0
. (23)

Now we expand the remaining exponential in Eq. (23) and note

that one can write the set of partial derivatives with respect to

uai as a sum over all permutations Pn of the set {1, ..., n}, which
results in the power series representation for f ,

fαβ(χ) =
∞
∑

n=1

(iχ)n

(n!)2

N2c−1
∑

a1=1

...

N2c−1
∑

an=1

∑

Pn

(ta1 ...tan taPn (1) ...taPn (n) )αβ . (24)

This color factor matrix nicely illustrates the generalized ladder

approximation. If only direct ladder gluons were considered

the sum over permutations would become trivial in Eq. (24) and

only terms (ta1 ...tan tan ...ta1 )αβ = Cn
F
δαβ with CF =

N2c−1
2Nc

would

contribute. This constitutes the leading order in a large-Nc ex-

pansion while non-planar diagrams, i.e. crossed gluon graphs,

are suppressed. For the leading contribution one may simply

replace α → CFαs and work in an Abelian theory. In particu-
lar, this replacement was suggested in perturbative model cal-

culations [32, 80]. Since we take into account crossed gluons

we have to sum over all permutations in (24), and such a re-

placement is not possible. In an Abelian theory, the generating

matrices t reduce to unity, t = 1, and since we have n! permu-

tations of the set {1, ..., n}, we recover the well-known result for
the Coulomb phase,

f U(1)(χ) =
∞
∑

n=1

(iχ)n

n!
= eiχ − 1. (25)

For the non-Abelian Nc = 2 theory the generators are given by

the Pauli matrices σa = 2ta. Instead of using the power series
representation we can calculate the integral (22) analytically by

means of the relation
(

eiu·
σ
2

)

αβ
= δαβ cos

(

|u|
2

)

+
i&σαβ·&u
|u| sin

(

|u|
2

)

.
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4. The Lensing Function in Relativistic Eikonal Model

In order to calculate the 2 → 2 scattering amplitude M

(needed for (15)) we use functional methods to incorporate the

color degrees of freedom in the eikonal limit when soft gauge

bosons couple to highly energetic matter particles on the light

cone. It is non-trivial to extend the functional methods estab-

lished in an Abelian to non-Abelian gauge theory such as QCD.

Attempts in this direction were made in Refs. [71, 77], and only

recently a fully Lorentz and gauge invariant treatment was pre-

sented in Ref. [78]. Here we outline the details of the functional

approach as it pertains to implementing color structure to the

scattering amplitude M and thereby the lensing function. We

leave the details to a forthcoming publication [79].

Starting from the generating functional Z for QCD in a co-

variant gauge, a quark antiquark 4-point function T can then be

defined by functional derivatives with respect to quark sources

which yields,

T2→2 ∝
∫

DA e−
i
4

∫

(F2+2λ(∂·A)2) eTr lnG
−1[A]+Tr lnH−1[A]G[A] Ḡ[A].

(18)

The first exponential describes the gluonic part of the theory in-

cluding self-interactions and the second exponential describes

internal closed quark and ghost loops. G, Ḡ are the non-

perturbative quark- and antiquark-propagator determining the

external legs of the 4-point function T . One imposes eikonal

approximations on these propagators [70, 71] that simplify

the computation of the path-integral. In an Abelian theory

the eikonal approximation as discussed in the previous section

leads to a well-known eikonal representation [70], which was

argued in [71, 77] to generalize to QCD in the following way,

e.g. for a massless fermion,

Geikαβ (x, y|A) = −i
∫ ∞

0

dsδ(4)(x − y − sn)
(

e−ig
∫ s

0
dβ n·Aa(y+βn)ta

)+

αβ
,

(19)

where color is implemented by a path-ordered exponential in-

dicated by the brackets (...)+ and the color matrix ta in the ex-
ponential.

Inserting the eikonal representation for the quark- and anti-

quark propagator into Eq. (18) and implementing the general-

ized ladder approximation one finds the color gauge invariant

result corresponding to the picture of FSIs discussed in the pre-

vious section,

(

Meik
)αδ

δβ
(x, |&qT + &kT |) =

(1 − x)P+

ms

∫

d2zT e
−i&zT ·(&qT+&kT ) (20)

×














∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
− δαβ















.

In this expression, the (N2c − 1) dimensional integrals result
from auxiliary fields αa(s) and ua(s) that were introduced in
the functional formalism (see Ref. [71]) to separate the phys-

ical gluon fields from the color matrices. The eikonal phase

χ(|&zT |) in Eq. (20) represents the arbitrary amount of soft gluon

exchanges that are summed up into an exponential form and is

expressed in terms of the gluon propagator in a covariant gauge,

χ(|&zT |) = g2
∫ ∞

−∞
dα

∫ ∞

−∞
dβ nµn̄νDµν(z + αn − βn̄), (21)

whereD denotes the gluon propagator, and g is the strong cou-
pling. In this form the 4-velocity vector vµ is expressed in terms

of the complementary light cone vector n̄ where v = − (1−x)P
+

ms
n̄,

with n · n̄ = 1 and n̄2 = 0. One may choose n̄ = (0, 1,&0T ).
In Eq. (20) we evaluate the color integral,

fαβ(χ) ≡
∫

dN
2
c−1α

∫

dN
2
c−1u

(2π)N
2
c−1

e−iα·u
(

eiχ(|&zT |)t·α
)

αδ

(

eit·u
)

δβ
−δαβ

(22)

by deriving a power series representation for arbitrary Nc. We

expand the exponential exp[iχt · α] and rewrite the resulting
factors as derivatives with respect to u. Then we perform in-

tegrations by parts which reduces the α integral to a simple δ-
function. This simplifies the u-integral where u is set to zero

after differentiation We obtain

fαβ(χ) =
∞
∑

n=1

(iχ)n

n!
(−i)n(ta1 ...tan)αδ

∂n(eit·u)δβ

∂ua1 ...∂uan

∣

∣

∣

∣

u=0
. (23)

Now we expand the remaining exponential in Eq. (23) and note

that one can write the set of partial derivatives with respect to

uai as a sum over all permutations Pn of the set {1, ..., n}, which
results in the power series representation for f ,

fαβ(χ) =
∞
∑

n=1

(iχ)n

(n!)2

N2c−1
∑

a1=1

...

N2c−1
∑

an=1

∑

Pn

(ta1 ...tan taPn (1) ...taPn (n) )αβ . (24)

This color factor matrix nicely illustrates the generalized ladder

approximation. If only direct ladder gluons were considered

the sum over permutations would become trivial in Eq. (24) and

only terms (ta1 ...tan tan ...ta1 )αβ = Cn
F
δαβ with CF =

N2c−1
2Nc

would

contribute. This constitutes the leading order in a large-Nc ex-

pansion while non-planar diagrams, i.e. crossed gluon graphs,

are suppressed. For the leading contribution one may simply

replace α → CFαs and work in an Abelian theory. In particu-
lar, this replacement was suggested in perturbative model cal-

culations [32, 80]. Since we take into account crossed gluons

we have to sum over all permutations in (24), and such a re-

placement is not possible. In an Abelian theory, the generating

matrices t reduce to unity, t = 1, and since we have n! permu-

tations of the set {1, ..., n}, we recover the well-known result for
the Coulomb phase,

f U(1)(χ) =
∞
∑

n=1

(iχ)n

n!
= eiχ − 1. (25)

For the non-Abelian Nc = 2 theory the generators are given by

the Pauli matrices σa = 2ta. Instead of using the power series
representation we can calculate the integral (22) analytically by

means of the relation
(

eiu·
σ
2

)

αβ
= δαβ cos

(

|u|
2

)

+
i&σαβ·&u
|u| sin

(

|u|
2

)

.
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exchange approximation. As shown in Refs. [42, 76], q− poles

appearing in M are related to light-cone divergences that may

be regulated by choosing a slightly off-light like vector n. Those

poles are incompatible with a separation of the form (5). Per-

forming the contour integration on q− under these assumptions

fixes the momentum q− of the antiquark in the loop in (9) to

q− = (!q2
T
+ m2s)/2q

+.

The eikonal propagator can be split into a real and imaginary

part using 1/(x+i0) = P(1/x)−iπδ(x). It has been argued in [46]
that only the imaginary part contributes to the relation (5) as

it forces the antiquark momentum q to be on the mass shell.

Thus, the imaginary part of the eikonal propagator corresponds

to a cut of the first diagram in Fig. 1. From the point of view

of FSIs, the kinematical point q+ = (1 − x)P+ is the ’natural’
choice for the plus component of the spectator. In the picture

where one imagines the scattered quark and antiquark to move

quasi-collinearly with respect to the target pion – backwards

and forwards respectively – the quark and antiquark exchange

soft gluons. Under these kinematic condition one would expect

the FSIs to be dominated by the “small” transverse momenta

of quark and antiquark rather than the “large” plus momenta.

An integration over q+ in (10) where contributions other than

the pole term contribute include configurationswhere largemo-

mentum is also transferred from quark to antiquark in the plus

direction. Nevertheless the principle value does contribute to

the integral (10) which allows for such momentum configura-

tions. While this effect is beyond the picture of FSIs from soft

gluon exchange, we will consider this in a future publication.

Proceeding with the picture of soft gluon exchange there is a

clean separation of FSIs and spatial distortion of the parton dis-

tribution in the transverse plane in the sense of (5). Using only

the imaginary part of the eikonal propagator Eq. (9) reduces to

W
αβ
i,σ(P, k) =

iτ
√
Nc
(1 − x)















δαβgπ(k
2)

[

( /k + mq)γ5v(Ps,σ)
]

i

!k2
T
+ m̃2

+

∫

d2qT

(2π)2

gπ
(

(P−q)2
) [

( /P− /q + mq)γ5v(Ps,σ)
]

i

(

M̄
)αδ

δβ
(q; Ps)

[

!q2
T
+ m̃2
]















.

(10)

We have introduced the notation M̄ = msM/(2(1 − x)P+).
We now use (10) to calculate the pion Boer-Mulders function

via (6). Specifying the pion-quark-antiquark vertex function

gπ(k
2) = gπ

(−Λ2)n−1

(n − 1)!
∂n−1
Λ2

(k2 − m2q) f (k2)
k2 − Λ2 + i0

(11)

where f is a homogeneous function of the quark virtuality

we choose it to be a Gaussian exp[−λ2|k2|], in accordance to
Ref. [42]. Inserting (10) into (6) and a bit of algebra yields the

following expression for the Boer-Mulders function,

εi j
T
k
j

T
h⊥1 (x,

!k2T ) =
2g2πmπ

(2π)3Λ2
(xms + (1 − x)mq)

(

(1 − x)Λ2
)2n−1

×
∫

d2qT

(2π)2
d2pT

(2π)2
ε ji
T
(q

j

T
− p j

T
)
e−

2λ2

1−x (xm
2
s−x(1−x)m2π)e−

λ2

1−x (!q
2
T
+!p2

T
)

[

!q2
T
+ Λ̃2(x)

]n [

!p2
T
+ Λ̃2(x)

]n

×
(

%[M̄eik]
)αδ

δβ
(!kT + !qT )

(

(2π)2δαβδ(2)(!pT + !kT )

+
(

&[M̄eik]
)βγ

γα
(!kT + !pT )

)

, (12)

with Λ̃2(x) = xm2s − x(1 − x)M2 + (1 − x)Λ2. Anticipating
an eikonal form for the scattering amplitude M̄(x,!kT , !qT ) →
M̄eik(|!qT + !kT |) that will be discussed in the next section we
exploit this property to simplify the expression and show a re-

lation to the chirally-odd GPD Hπ
1
. Since GPDs are defined

from collinear light-cone correlations functions gauge link con-

tributions to GPDs don’t lead to an observable effect. In fact,

in light-cone gauge the corresponding contributions from the

gauge link are re-shuffled into the gluon propagators [35] and

they appear as gluon dressings of the tree-level contribution to

GPDs. Thus one can consistently describe GPDs from tree-

level diagrams in the spectator model where the effects of gluon

dressings are effectively hidden in the model parameters. A cal-

culation for the GPD Hπ
1
for an antiquark spectator can be found

in [48]. It is easy to generalize it with a phenomenological ver-

tex function (11). We obtain the following representation after

some elementary manipulations,

Hπ1 (x, 0,−!∆
2
T ) =

−g2πmπ
2(2π)3Λ2

(xms+ (1−x) mq)















(1−x)Λ2

!D2
T
+Λ̃2(x)















2n−1

×
∫ 2π

0

dϕ

∫ 1

0

dz
z2n−2e2λ

2Λ2e−
2λ2( !D2

T
+Λ̃2 (x))

(1−x)z

[

1 − 4z(1 − z)
!D2
T

!D2
T
+Λ̃2(x)

cos2 ϕ
]n , (13)

with !D2
T
= 1

4
(1 − x)2!∆2

T
. Performing a translation of the in-

tegration variables in (12) according to qT → qT + kT and

pT → pT+kT , a rotation of the form q′
T
= qT−pT , p′T = qT+pT ,

weighting with a transverse quark vector ki
T
and integrating

both sides over kT we find the relation

m2πh
⊥(1)
1
(x) =

∫

d2qT

2(2π)2
!qT · !I(x, !qT )Hπ1















x, 0,−
(

!qT
1 − x

)2














. (14)

The function Ii can be expressed in terms of the real and imag-

inary part of the scattering amplitude M̄,

Ii(x, !qT ) =
1

Nc

∫

d2pT

(2π)2
(2pT − qT )i

(

%[M̄eik]
)αδ

δβ
(|!pT |)

(

(2π)2δαβδ(2)(!pT − !qT ) +
(

&[M̄eik]

)βγ

γα
(|!pT − !qT |)

)

. (15)

In order to derive the relation (5) one transforms Eq. (14) into

the impact parameter space via a Fourier transforms of the fol-

lowing form,

Hπ1 (x,!b
2
T ) =

∫

d2∆T

(2π)2
e−i
!∆T ·!bT Hπ1 (x, 0,−!∆

2
T ). (16)

The lensing function in the impact parameter space then reads,

Ii(x,!bT ) = i(1 − x)
∫

d2qT

(2π)2
ei
!qT ·!bT
1−x Ii(x, !qT ). (17)

In the following section we will use a quark-antiquark scatter-

ing amplitude computed in relativistic eikonal models as input

for the lensing function (15).
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on the transverse structure of the pion in terms of the impact

parameter GPD, Hπ
1
and the Boer Mulders function for which

there are very few studies. Recent lattice calculations indicate

that the spatial asymmetry of transversely polarized quarks in

the pion is quite similar in magnitude to that of quarks in the

nucleon [49] which lends supports the findings in [50]. Further

understanding of the Boer-Mulders function for the pion may

provide insight into the explanation of large cos 2φ ∼ h⊥ π
1
⊗ h⊥

1

azimuthal asymmetry (AA) observed in unpolarized π p Drell-
Yan scattering [51, 52, 53]. This work also has direct im-

pact on studies of AAs and TSSAs in unpolarized and polar-

ized measurements πN Drell-Yan experiments proposed by the
COMPASS collaboration. In the latter case the TSSA is sensi-

tive to the the nucleon’s transversity through the convolution of

h⊥ π
1
⊗ h1.

2. T-odd PDFs, Gluonic Poles and The Lensing Function

The field-theoretical definition of transverse-momentum de-

pendent (TMD) parton distributions in terms of hadronic matrix

elements of quark operators serves as the starting point of our

analysis. A classification of TMDs for a spin-1/2 hadron with

momentum P and spin S was presented in Refs. [24, 29, 54].

The TMDs for a spin-0 are obtained by setting S T =. One en-

counters two leading twist TMDs for a pion, the distribution

for unpolarized quarks f1, and the distribution of transversely

polarized quarks h⊥
1
, the Boer-Mulders function. Adopting the

infinite-momentum frame where the hadron moves relativisti-

cally along the positive z-axis such that the target momentum P

has a large plus component P+ and no transverse component we

use the light cone components of a 4-vector a± = 1/
√
2(a0±a3),

aµ = (a−, a+, a⊥). The Boer-Mulders function, defined for

SIDIS reads

2εi j
T
k
j

T
h⊥1 (x,$k

2
T ) = mπ

∫

dz−d2zT

2(2π)3
eixP

+z−−i$kT ·$z

×〈P| q̄ j(0) [0 ; ∞n] iσi+γ5[∞n + zT ; z] qi(z) |P〉, (1)

where [x ; y] denotes a gauge link operator connecting the two

locations x and y and the light-like vector nµ = (1, 0, 0). Pos-
sible complications with slightly off-light cone vectors as sug-

gested in TMD factorization theorems [30, 55] are discussed

below. Throughout this analysis we work in a covariant gauge

where the transverse gauge link at light-cone infinity is negligi-

ble. The gauge link in (1) is interpreted physically as FSIs of

the active quark with the target remnants [32, 33] and is neces-

sary for “naive” time-reversal odd (T-odd) TMDs [22, 25, 31]

to exist [33]. The Boer-Mulders function appears in the fac-

torized description of semi-inclusive processes such as SIDIS

or Drell-Yan [24, 25, 26, 30, 56, 57, 58, 59, 60, 61] in terms

of the first kT -moment, 2m
2
πh
⊥(1)
1
(x) =

∫

d2kT $k2T h
⊥
1
(x,$k2

T
). It

was shown in Ref. [26] that the first kT -moment of the Boer-

Mulders function can be written in terms of a gluonic pole ma-

trix element. Transforming the two pion states in Eq. (1) into a

mixed coordinate-momentum representation [46, 62] results in

an impact parameter representation for the gluonic pole matrix

element,

〈kT 〉(x) = mπh⊥(1)1
(x) =

∫

d2bT
dz−

4(2π)
eixP

+z−

×〈P+, $0T | q̄(z1) [z1 ; z2] Ii(z2)σi+ q(z2) |P+, $0T 〉. (2)

where, the impact parameter bT is hidden in the arguments

of the quark fields, z
µ
1/2 = ∓

z−

2
nµ + b

µ
T
. The 4-vector b

µ
T
is

b
µ
T
= (0, 0, b1

T
, b2

T
). The operator Ii originates from the time-

reversal behavior of the ISIs/FSIs implemented by the gauge

link operator in (1) and is given in terms of the gluonic field

strength tensor Fµν,

2Ii(z2) =

∫

dy− [z2 ; y] gF
+i(y) [y ; z2], (3)

with yµ = y−nµ + b
µ
T
.

Turning our attention to GPDs of a pion, they are represented

by an off-diagonal matrix element of a quark-quark operator

defined on the light-cone [63, 64, 65], where "in"- and "out"-

pion states are labeled by different incoming and outgoing pion

momenta p and p′. One encounters two leading twist GPDs

for a pion, a chirally-even GPD Fπ
1
and the chiral odd GPDs

Hπ
1
[48]. We use the symmetric conventions for the kinematics

for GPDs [63], P = 1
2
(p + p′) and ∆ = p′ − p. The skewness

parameter ξ is defined by ∆+ = −2ξP+, and t = ∆2. The impact
parameter GPDs are obtained from the ordinary GPDs via a

Fourier-transform of the transverse momentum transfer $∆T at
zero skewness ξ = 0. The chirally-odd impact parameter GPD
Hπ
1
is expressed as

∫

dz−

2(2π)
eixP

+z−〈P+,$0T | q̄(z1)[z1; z2]σ+iq(z2) |P+,$0T 〉

=
2bi

T

mπ

∂

∂$b2
T

Hπ1 (x,$b
2
T ). (4)

Hπ
1
describes how transversely polarized quarks are distributed

in a plane transverse to the direction of motion. This distri-

bution functions represents a transverse space distortion due

to spin-orbit correlations [49, 66, 67]. A comparison of the

first moment of the Boer Mulders function (2) and the im-

pact parameter GPD Hπ
1
reveals that they differ by the oper-

ator Ii which represents the FSIs. In various model calculations

[45, 46, 62, 68] the FSIs are treated such that the two effects of

a distortion of the transverse space parton distribution and the

FSIs factorize resulting in the relation

2m2πh
⊥(1)
1
(x) ,

∫

d2bT $bT · $I(x,$bT )
∂

∂$b2
T

Hπ1 (x,$b
2
T ), (5)

where I is called the “quantum chromodynamic lensing func-
tion” [62]. This factorization (5) doesn’t hold in general [48,

69]. On the other hand it is unknown how well Eq. (5) works as

a quantitative and possibly phenomenological approximation.

A phenomenological test of Eq. (5) requires information on the

parton distributions h
⊥(1)
1

and Hπ
1
(in principle measurable) and

quantitative knowledge of the lensing function. In the follow-

ing sections we estimate the size of the lensing function using

2

FLOW CHART for calculation of Boer Mulders
L.G. & Marc Schlegel 

Phys.Lett.B685:95-103,2010  & Mod.Phys.Lett.A24:2960-2972,2009.

COLOR Integral



COLOR FACTOR!

ARTICLE IN PRESS

U
N

C
O

R
R

EC
TE

D
PR

O
O

F

Please cite this article in press as: L. Gamberg, M. Schlegel, Final state interactions and the transverse structure of the pion using non-perturbative eikonal methods,
Physics Letters B (2010), doi:10.1016/j.physletb.2009.12.067

JID:PLB AID:26468 /SCO Doctopic: Theory [m5Gv1.3; v 1.33; Prn:19/01/2010; 10:37] P.6 (1-9)

6 L. Gamberg, M. Schlegel / Physics Letters B ••• (••••) •••–•••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Fig. 2. Left: C[ χ
4 ] of Eq. (30) as a function of the eikonal amplitude χ

4 . We compare the numerical result computed by means of Eq. (24) up to the order n = 8 with the
analytical result in Eq. (32) for the SU(2) color case. The numerical and analytical result agree up to χ

4 ∼ 2. For SU(3), we compare the numerical results for the orders
n = 7,8. The results are reliable for χ

4 ∼ 1.5. Center: The eikonal phase χDS(|"zT |) vs. |"zT | with input from Dyson–Schwinger equations at scales ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Right: The lensing function I i(x, "bT ) from Eq. (30) for U (1), SU(2) and SU(3) for x = 0.2 at a scale ΛQCD = 0.2 GeV. For comparison we also plot the
perturbative result of Ref. [48] including the eikonalized antiquark spectator with an arbitrary value for the coupling, α = 0.3.

I i(x, "bT ) = (1− x)
2Nc

biT
|"bT |
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4
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[
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4

]
,

C
[
χ

4

]
≡
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Tr&[ f ]

)′
(

χ

4

)
+ 1

2
Tr

[(
&[ f ]

)′
(

χ

4

)(
'[ f ]

)(χ

4

)]

− 1
2
Tr

[(
&[ f ]

)(χ

4

)(
'[ f ]

)′
(

χ

4

)]]
, (30)

where χ ′ denotes the first derivative with respect to |"zT |, and
(&[ f ])′ and ('[ f ])′ are the first derivatives of the real and imag-
inary parts of the color function f . Also, the eikonal phase is
understood to be a function of |"bT |/(1− x). Inserting (25) into (30)
results into the following expression for the lensing function in an
Abelian U (1)-theory

I i
U (1)(x, "bT ) = (1 − x)

biT
4|"bT |

χ ′
( |"bT |
1− x

)(
1+ cosχ

( |"bT |
1− x

))
.

(31)

Similarly from (26) we calculate the lensing function in an SU(2)-
theory

I i
SU(2)(x, "bT ) = (1− x)biT

16|"bT |
χ ′

( |"bT |
1− x

)(
3
(
1+ cos

χ

4

)

+
(

χ

4

)2

− sin
χ

4

(
χ

4
− sin

χ

4

))∣∣∣∣
χ=χ(

|"bT |
1−x )

. (32)

For the SU(3)-QCD case we use Eq. (27). In Fig. 2 the function C[χ
4 ]

is plotted versus χ
4 . While the convergence of the power series is

slightly better for SU(2) where the numerical result, calculated to
eighth order, agrees with the analytical result up to χ

4 ∼ 2, we can
trust the numerical result computed with eight coefficients up to
χ
4 ∼ 1.5 for SU(3).

At this point we discuss the eikonal phase χ as defined in
(21) which is determined by two quantities, the strong coupling
g and the gluon propagator D. One can write a general form for
the gluon propagator in momentum space

Dab
µν(z) = δab

∫
d4k

(2π)4
D̃µν(k)e−ik·z

≡ δab
∫

d4k
(2π)4

[
gµν D̃1

(
k2

)
+ kµkν D̃2

(
k2

)]
e−ik·z, (33)

where the gauge dependent part is in D̃2. However, the gauge
dependent part does not appear in the eikonal phase when in-
serting Eq. (33) into Eq. (21) because the eikonal vectors n and

v ( − (1−x)P+
ms

n̄ are light-like. Performing the integral yields the fol-
lowing expression for the eikonal phase

χ
(
|"zT |

)
= g2

2π

∞∫

0

dkT kT J0
(
|"zT |kT

)
D̃1

(
−k2T

)
, (34)

where J0 is a Bessel function of the first kind. The gluon propa-
gator represents all exponentiated gluons exchanged between the
two eikonal lines in the generalized ladder approximation in Fig. 1.
The couplings represent the strength of the quark (antiquark)–
gluon interaction in Fig. 1.

As a check of the calculation we investigated the perturbative
limit of our calculation. Assuming that the quark–gluon interac-
tion g2 is small and using perturbative gluon propagator in Feyn-
man gauge for D̃1 one can expand our non-perturbative result in
Eq. (30) to g2. The leading order corresponds to the result of the
one-loop calculation of the Boer–Mulders function of Ref. [48] after
additional eikonalization of the antiquark.

5. Non-perturbative quantities from the Dyson–Schwinger
approach

In order to obtain a numerical estimate for the eikonal phase,
it is important to have a realistic estimate of the size of the QCD
coupling g or αs = g2

4π . Since all the gluons exchanges between the
eikonal lines are soft, the interactions take place at a soft scale.
Thus we need to know the running of the strong coupling in the
infrared limit. Inserting a perturbative gluon propagator might not
describe the gluon exchange realistically. One would expect that
a non-perturbative gluon propagator would be a better choice. The
infrared behavior of both quantities, the running of the strong cou-
pling and the non-perturbative gluon propagator, have been stud-
ied in the framework of the Dyson–Schwinger equations [82–85]
and also in lattice (see e.g. [86]). One learns from such studies that
the strong coupling has a value of about αs(0) ( 2.972 in the in-
frared limit. In particular in Ref. [82] fits were presented for the
running coupling. Since we are merely interested in a numerical
estimate of the lensing function we will apply the simplest form
of the running coupling presented in [82],

αs
(
µ2) = αs(0)

ln[e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2 ] . (35)

The values for the fit parameters are Λ = 0.71 GeV, a1 = 1.106,
a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations were
performed in Euclidean space where Landau gauge was applied,
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Fig. 2. Left: C[ χ
4 ] of Eq. (30) as a function of the eikonal amplitude χ

4 . We compare the numerical result computed by means of Eq. (24) up to the order n = 8 with the
analytical result in Eq. (32) for the SU(2) color case. The numerical and analytical result agree up to χ

4 ∼ 2. For SU(3), we compare the numerical results for the orders
n = 7,8. The results are reliable for χ

4 ∼ 1.5. Center: The eikonal phase χDS(|"zT |) vs. |"zT | with input from Dyson–Schwinger equations at scales ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Right: The lensing function I i(x, "bT ) from Eq. (30) for U (1), SU(2) and SU(3) for x = 0.2 at a scale ΛQCD = 0.2 GeV. For comparison we also plot the
perturbative result of Ref. [48] including the eikonalized antiquark spectator with an arbitrary value for the coupling, α = 0.3.

I i(x, "bT ) = (1− x)
2Nc

biT
|"bT |

χ ′

4
C
[
χ

4

]
,
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4
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where χ ′ denotes the first derivative with respect to |"zT |, and
(&[ f ])′ and ('[ f ])′ are the first derivatives of the real and imag-
inary parts of the color function f . Also, the eikonal phase is
understood to be a function of |"bT |/(1− x). Inserting (25) into (30)
results into the following expression for the lensing function in an
Abelian U (1)-theory

I i
U (1)(x, "bT ) = (1 − x)

biT
4|"bT |

χ ′
( |"bT |
1− x

)(
1+ cosχ

( |"bT |
1− x

))
.

(31)

Similarly from (26) we calculate the lensing function in an SU(2)-
theory

I i
SU(2)(x, "bT ) = (1− x)biT

16|"bT |
χ ′

( |"bT |
1− x

)(
3
(
1+ cos
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4
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+
(

χ

4
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− sin
χ

4

(
χ

4
− sin

χ

4

))∣∣∣∣
χ=χ(

|"bT |
1−x )

. (32)

For the SU(3)-QCD case we use Eq. (27). In Fig. 2 the function C[χ
4 ]

is plotted versus χ
4 . While the convergence of the power series is

slightly better for SU(2) where the numerical result, calculated to
eighth order, agrees with the analytical result up to χ

4 ∼ 2, we can
trust the numerical result computed with eight coefficients up to
χ
4 ∼ 1.5 for SU(3).

At this point we discuss the eikonal phase χ as defined in
(21) which is determined by two quantities, the strong coupling
g and the gluon propagator D. One can write a general form for
the gluon propagator in momentum space

Dab
µν(z) = δab

∫
d4k

(2π)4
D̃µν(k)e−ik·z

≡ δab
∫

d4k
(2π)4

[
gµν D̃1

(
k2

)
+ kµkν D̃2

(
k2

)]
e−ik·z, (33)

where the gauge dependent part is in D̃2. However, the gauge
dependent part does not appear in the eikonal phase when in-
serting Eq. (33) into Eq. (21) because the eikonal vectors n and

v ( − (1−x)P+
ms

n̄ are light-like. Performing the integral yields the fol-
lowing expression for the eikonal phase

χ
(
|"zT |

)
= g2

2π

∞∫

0

dkT kT J0
(
|"zT |kT

)
D̃1

(
−k2T

)
, (34)

where J0 is a Bessel function of the first kind. The gluon propa-
gator represents all exponentiated gluons exchanged between the
two eikonal lines in the generalized ladder approximation in Fig. 1.
The couplings represent the strength of the quark (antiquark)–
gluon interaction in Fig. 1.

As a check of the calculation we investigated the perturbative
limit of our calculation. Assuming that the quark–gluon interac-
tion g2 is small and using perturbative gluon propagator in Feyn-
man gauge for D̃1 one can expand our non-perturbative result in
Eq. (30) to g2. The leading order corresponds to the result of the
one-loop calculation of the Boer–Mulders function of Ref. [48] after
additional eikonalization of the antiquark.

5. Non-perturbative quantities from the Dyson–Schwinger
approach

In order to obtain a numerical estimate for the eikonal phase,
it is important to have a realistic estimate of the size of the QCD
coupling g or αs = g2

4π . Since all the gluons exchanges between the
eikonal lines are soft, the interactions take place at a soft scale.
Thus we need to know the running of the strong coupling in the
infrared limit. Inserting a perturbative gluon propagator might not
describe the gluon exchange realistically. One would expect that
a non-perturbative gluon propagator would be a better choice. The
infrared behavior of both quantities, the running of the strong cou-
pling and the non-perturbative gluon propagator, have been stud-
ied in the framework of the Dyson–Schwinger equations [82–85]
and also in lattice (see e.g. [86]). One learns from such studies that
the strong coupling has a value of about αs(0) ( 2.972 in the in-
frared limit. In particular in Ref. [82] fits were presented for the
running coupling. Since we are merely interested in a numerical
estimate of the lensing function we will apply the simplest form
of the running coupling presented in [82],

αs
(
µ2) = αs(0)

ln[e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2 ] . (35)

The values for the fit parameters are Λ = 0.71 GeV, a1 = 1.106,
a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations were
performed in Euclidean space where Landau gauge was applied,
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Figure 2: Left: The function C[
χ
4
] of Eq. (30) as a function of

the eikonal amplitude
χ
4
. We compare the numerical result com-

puted by means of Eq. (24) up to the order n = 8 with the analyt-

ical result in Eq. (33) for the SU(2) color case. The numerical

and analytical result agree up to
χ
4
∼ 2. For SU(3), we com-

pare the numerical results for the orders n = 7, 8. The results

are reliable for
χ
4
∼ 1.5. Right: The eikonal phase χDS (|"zT |)

vs. |"zT | with input from Dyson-Schwinger equations at scales

ΛQCD = 0 GeV, 0.2 GeV, 0.5 GeV, 0.7 GeV.

We obtain a slightly different result compared to Ref. [71] for

SU(2),

f
SU(2)

αβ (
χ

4
) = δαβ

(

cos
χ

4
−
χ

4
sin
χ

4
−1 + i

(

2 sin
χ

4
+
χ

4
cos
χ

4

))

.

(26)

As a check on our numerical and analytical approaches we nu-

merically calculate the lowest coefficients in the power series

(24), and they agree with the coefficients in an expansion in

χ of the analytical result (26). The disadvantage of using the

power series representation (24) is apparent for numerical cal-

culations since the number of operations grows with n!. That

said, for SU(2) we calculated the first eight coefficients. For

QCD, Nc = 3, the generators t are given by the Gell-Mann ma-

trices λa = 2ta. Due to the difficulty of integrating over the Haar

measure in Eq. (22) we put off the analytical treatment [79]. Us-

ing the power series (24) we derive the following approximative

color function for a = χ/4

#[ f
SU(3)

αβ ](a) = δαβ(−c2a
2 + c4a

4 − c6a
6 − c8a

8 + ...),

$[ f
SU(3)

αβ ](a) = δαβ(c1a − c3a
3 + c5a

5 − c7a
7 + ...), (27)

with the numerical values c1 = 5.333, c2 = 6.222, c3 = 3.951,

c4 = 1.934, c5 = 0.680, c6 = 0.198, c7 = 0.047, c8 = 0.00967.

Working in coordinate space we express the lensing function di-

rectly in terms of the eikonal phase χ defined in Eq. (21). Defin-

ing the eikonal amplitude as in section 3 with the x dependence

scaled out of M̄("p) ≡ ms M
eik(x, "p)/(2(1− x)P+), where the real

and imaginary part are

#[M̄αβ]( "p) =
1

2

∫

d2z ei"p·"z#[ fαβ(χ(|"zT |))], (28)

$[M̄αβ]("p) =
1

2

∫

d2z ei"p·"z$[ fαβ(χ(|"zT |))], (29)

we insert (28) and (29) into the lensing function (15) then trans-

form it via (17) into the impact parameter space. This yields a

lensing function of the form,

Ii(x,"bT ) =
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2Nc

bi
T

|"bT |
χ′

4
C[
χ

4
],

C[
χ

4
] ≡















(

Tr$[ f ]
)′

(
χ

4
) +

1

2
Tr

[

(

$[ f ]
)′

(
χ

4
)
(

#[ f ]
)

(
χ

4
)

]

−
1

2
Tr

[

(

$[ f ]
)

(
χ

4
)
(

#[ f ]
)′

(
χ

4
)

]















, (30)

where χ′ denotes the first derivative with respect to |"zT |, and
(

$[ f ]
)′

and
(

#[ f ]
)′

are the first derivatives of the real and

imaginary parts of the color function f . Also, the eikonal phase

is understood to be a function of |"bT |/(1 − x). Inserting (25)

into (30) results into the following expression for the lensing

function in an Abelian U(1)-theory

IiU(1)(x,
"bT ) = (1 − x)

bi
T
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χ′(
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1 − x
)
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1 − x
)
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



. (31)

Similarly from (26) we calculate the lensing function in an

SU(2)-theory

IiSU(2)(x,
"bT ) =

(1 − x)bi
T

16|"bT |
χ′(
|"bT |

1 − x
) (32)
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(
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).

For the SU(3)-QCD case we use Eq. (27). In Fig. 2 the function

C[
χ
4
] is plotted versus

χ
4
. While the convergence of the power

series is slightly better for SU(2) where the numerical result,

calculated to eighth order, agrees with the analytical result up

to
χ
4
∼ 2, we can trust the numerical result computed with eight

coefficients up to
χ
4
∼ 1.5 for SU(3).

At this point we discuss the eikonal phase χ as defined in

(21) which is determined by two quantities, the strong coupling

g and the gluon propagatorD. One can write a general form for

the gluon propagator in momentum space,

Dab
µν(z) = δ

ab

∫

d4k

(2π)4
D̃µν(k)e−ik·z

≡ δab
∫

d4k

(2π)4

[

gµνD̃1(k2) + kµkνD̃2(k2)
]

e−ik·z, (33)

where the gauge dependent part is in D̃2. However, the gauge

dependent part does not appear in the eikonal phase when in-

serting Eq. (33) into Eq. (21) because the eikonal vectors n and

v ( − (1−x)P+
ms

n̄ are light-like. Performing the integral yields the

following expression for the eikonal phase with J0 being the

Bessel function of zeroth kind,

χ(|"zT |) =
g2

2π

∫ ∞

0

dkT kT J0(|"zT |kT )D̃1(−k2
T ). (34)

The gluon propagator represents all exponentiated gluons ex-

changed between the two eikonal lines in the generalized ladder

approximation in Fig. 1. The couplings represent the strength

of the quark (antiquark) - gluon interaction in Fig. 1.
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Figure 3: Left: The lensing functionIi(x,!bT ) from Eq. (30) for

U(1), SU(2) and SU(3) for x = 0.2 at a scale ΛQCD = 0.2 GeV.

For comparison we also plot the perturbative result of Ref. [48]

including the eikonalized antiquark spectator with an arbitrary

value for the coupling, α = 0.3. Right: Plot of the quantity

xm2
πh
⊥,(1)

1
(x) vs. x calculated by means of the relation to the

chirally-odd GPDHπ
1

for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],

αs(µ
2) =

αs(0)

ln
[

e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2
] . (35)

The values for the fit parameters areΛ = 0.71 GeV, a1 = 1.106,

a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to

the results for the non-perturbative gluon propagator has been

given in Ref. [81, 86, 87],

Z(p2, µ2) = p2D−1(p2, µ2)

=
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
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2

, (36)

with the parameters c = 1.269, d = 2.105, and δ = − 9
44

.

These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form

factor that additional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson-Schwinger

quantities then reads,

χDS (|!zT |) = 2

∫ ∞

0

dkT kTαs(k
2
T )J0(|!zT |kT )Z(k2

T ,Λ
2
QCD)/k2

T . (37)

The numerical result for this ansatz is shown in Fig. 3. We

plot this function for various scale ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Although the choice of this scale is rather

arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.
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Figure 3: Left: The lensing functionIi(x,!bT ) from Eq. (30) for

U(1), SU(2) and SU(3) for x = 0.2 at a scale ΛQCD = 0.2 GeV.

For comparison we also plot the perturbative result of Ref. [48]

including the eikonalized antiquark spectator with an arbitrary

value for the coupling, α = 0.3. Right: Plot of the quantity

xm2
πh
⊥,(1)

1
(x) vs. x calculated by means of the relation to the

chirally-odd GPDHπ
1

for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],

αs(µ
2) =

αs(0)

ln
[

e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2
] . (35)

The values for the fit parameters areΛ = 0.71 GeV, a1 = 1.106,

a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to

the results for the non-perturbative gluon propagator has been

given in Ref. [81, 86, 87],
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with the parameters c = 1.269, d = 2.105, and δ = − 9
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These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form

factor that additional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson-Schwinger

quantities then reads,
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The numerical result for this ansatz is shown in Fig. 3. We

plot this function for various scale ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Although the choice of this scale is rather

arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.
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for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],

αs(µ
2) =

αs(0)

ln
[

e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2
] . (35)

The values for the fit parameters areΛ = 0.71 GeV, a1 = 1.106,

a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to

the results for the non-perturbative gluon propagator has been

given in Ref. [81, 86, 87],
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with the parameters c = 1.269, d = 2.105, and δ = − 9
44

.

These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form

factor that additional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson-Schwinger

quantities then reads,

χDS (|!zT |) = 2

∫ ∞

0

dkT kTαs(k
2
T )J0(|!zT |kT )Z(k2

T ,Λ
2
QCD)/k2

T . (37)

The numerical result for this ansatz is shown in Fig. 3. We

plot this function for various scale ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Although the choice of this scale is rather

arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.
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FSIs are negative and “grow”  with Color! 

order terms. We take, however, the result of Ref. [12] as a
guide to estimate the L dependence of our lattice data,
fitting B!;u

T10ðt ¼ 0Þ=m! to the form c0 þ c1m
2
! þ

c2m
2
! expð%m!LÞ. This fit, represented by shaded bands

in Fig. 3, gives B!;u
T10ðt ¼ 0Þ ¼ 1:47ð18Þ GeV%1 at L ¼ 1

and m! & 440 MeV, compared to B!;u
T10ðt ¼ 0Þ ¼

1:95ð27Þ GeV%1 at L& 1:65 fm as represented by the
diamond in the lowest panel of Fig. 3. The typical correc-
tions for B!;u

T20ðt ¼ 0Þ=m! are similar. Within present sta-
tistics, we do not see a clear volume dependence of the
corresponding p-pole masses for n ¼ 1; 2.

The pion mass dependence of B!;u
Tn0ðt ¼ 0Þ=m! is shown

in Fig. 4. The darker shaded bands show fits based on the
ansatz we just described. Data points and error bands have
been shifted to L ¼ 1. For m! ¼ 140 MeV, we obtain
B!;u
T10ðt ¼ 0Þ=m! ¼ 1:54ð24Þ GeV%1 with mp ¼

0:756ð95Þ GeV and B!;u
T20ðt ¼ 0Þ=m! ¼ 0:277ð71Þ GeV%1

with mp ¼ 1:130ð265Þ GeV, where in both cases we have
set p ¼ 1:6. The errors of the forward values include the
uncertainties from finite volume effects. The light shaded
bands in Fig. 4 show fits restricted tom! < 650 MeV using
1-loop ChPT [5] plus the volume-dependent term
c2m

2
! expð%m!LÞ. We note that the ChPT extrapolation

gives larger values for B!;u
T10ðt ¼ 0Þ at the physical point

than the linear extrapolation in m2
!.

To compute the lowest two moments of the density in
Eq. (1), we further need the GFFs A!

n0ðtÞ with n ¼ 1; 2. For
A!;u
10 ðtÞ ¼ F!ðtÞ, we refer to our results in Ref. [6]. A

detailed analysis of A!;u
20 ðtÞ will be presented in Ref. [11],

and first results are given in Ref. [4]. We fit A!;u
n0 ðtÞ to a

p-pole parametrization with p ¼ 1, which provides an
excellent description of the lattice data and is consistent
with power counting for t ! %1. Fourier transforming the
parametrizations of the momentum-space GFFs, we obtain
the densities "nðb?; s?Þ. In Fig. 5, we show "n¼1ðb?; s?Þ
for up quarks in a !þ together with corresponding profile
plots for fixed bx. Compared to the unpolarized case on the
left, the right-hand side of Fig. 5 shows strong distortions
for transversely polarized quarks and thus a pronounced
spin structure. The difference between p ¼ 1:6 and p ¼ 2
for B!;u

Tn0 is negligible within errors. The negative values of
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FIG. 5 (color online). The lowest moment of the densities of
unpolarized (left) and transversely polarized (right) up quarks in
a !þ together with corresponding profile plots. The quark spin is
oriented in the transverse plane as indicated by the arrow. The
error bands in the profile plots show the uncertainties in B!;u

T10ðt ¼
0Þ=m! and the p-pole masses at mphys

! from a linear extrapola-
tion. The dashed-dotted lines show the uncertainty from a ChPT
extrapolation (light shaded band).
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D. Brömmel,1,2 M. Diehl,1 M. Göckeler,2 Ph. Hägler,3,* R. Horsley,4 Y. Nakamura,5 D. Pleiter,5 P. E. L. Rakow,6
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We present the first calculation of the transverse spin structure of the pion in lattice QCD. Our

simulations are based on two flavors of nonperturbatively improved Wilson fermions, with pion masses as

low as 400 MeV in volumes up to ð2:1 fmÞ3 and lattice spacings below 0.1 fm. We find a characteristic

asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in

magnitude to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results

support the hypothesis that all Boer-Mulders functions are alike.
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Introduction.—Since their discovery in the late 1940s,
pions have played a central role in nuclear and particle
physics. As pseudo-Goldstone bosons of spontaneously
broken chiral symmetry, they are at the core of the low-
energy sector of quantum chromodynamics (QCD). Since
the pion has spin zero, its longitudinal spin structure in
terms of quark and gluon degrees of freedom is trivial. Pion
matrix elements of quark and gluon helicity operators
vanish due to parity invariance: h!ðP0Þj!3j!ðPÞi ¼ 0,
where, e.g., for quarks!3 ¼ "q"3"5q. An instructive quan-
tity describing the spin structure of hadrons is the proba-
bility density #ðx; b?Þ of quarks in impact parameter space
[1]. Here x is the longitudinal momentum fraction carried
by the quark, and the impact parameter b? gives the
distance between the quark and the center of momentum
of the hadron in the plane transverse to its motion. Because
of parity invariance, the density #ðx; b?;$Þ of quarks with
helicity $ in a pion is determined by the unpolarized
density 2#ðx; b?;$Þ ¼ #ðx; b?Þ. The latter is given by
#ðx; b?Þ ¼ H!ðx;% ¼ 0; b2?Þ in terms of a b?-dependent
generalized parton distribution (GPD) at zero skewness %.
The lattice QCD calculations discussed below give access
to x moments of quark spin densities, which we have
investigated in Ref. [2] for quarks with transverse spin
s? in a nucleon with transverse spin S?. The correspond-
ing expression #ðx; b?; s?Þ for polarized quarks in the pion
is obtained by setting S? ¼ 0 in the nucleon densities of
Refs. [2,3]. The result is much simpler but still contains a
dipole term / si?&

ijbj?, which leads to a dependence on the
direction of b? for fixed s?,

#nðb?; s?Þ ¼
Z 1

$1
dx xn$1#ðx; b?; s?Þ

¼ 1

2

!
A!
n0ðb2?Þ $

si?&
ijbj?

m!
B!0
Tn0ðb2?Þ

"
; (1)

where B!0
Tn0 ¼ @b2?B

!
Tn0. The b?-dependent vector and ten-

sor generalized form factors (GFFs) of the pion A!
n0 and

B!
Tn0, respectively, are moments of the GPDs:

Z 1

$1
dx xn$1H!ðx;% ¼ 0; b2?Þ ¼ A!

n0ðb2?Þ;
Z 1

$1
dx xn$1E!

T ðx;% ¼ 0; b2?Þ ¼ B!
Tn0ðb2?Þ:

(2)

To this day, next to nothing is known about the signs and
sizes of the B!

Tn0. Since these GFFs determine the dipole-
like distortion of the quark density in the transverse plane,
nonvanishing B!

Tn0 would imply a surprising nontrivial
transverse spin structure of the pion. A computation of
the B!

Tn0 from first principles in lattice QCD therefore
provides crucial insight into the pion structure.
Lattice QCD calculations give access to GFFs FðtÞ ¼

A!
n0ðtÞ; B!

Tn0ðtÞ in momentum space, which are related to
the impact parameter-dependent GFFs Fðb2?Þ ¼
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Tn0ðb2?Þ by a Fourier transformation
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?Þ; (3)

where #? is the transverse momentum transfer. The
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We present the first calculation of the transverse spin structure of the pion in lattice QCD. Our

simulations are based on two flavors of nonperturbatively improved Wilson fermions, with pion masses as

low as 400 MeV in volumes up to ð2:1 fmÞ3 and lattice spacings below 0.1 fm. We find a characteristic

asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in

magnitude to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results

support the hypothesis that all Boer-Mulders functions are alike.
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#ðx; b?Þ ¼ H!ðx;% ¼ 0; b2?Þ in terms of a b?-dependent
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#nðb?; s?Þ ¼
Z 1

$1
dx xn$1#ðx; b?; s?Þ
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2

!
A!
n0ðb2?Þ $

si?&
ijbj?

m!
B!0
Tn0ðb2?Þ

"
; (1)

where B!0
Tn0 ¼ @b2?B

!
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sor generalized form factors (GFFs) of the pion A!
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B!
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Z 1

$1
dx xn$1H!ðx;% ¼ 0; b2?Þ ¼ A!
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Z 1

$1
dx xn$1E!

T ðx;% ¼ 0; b2?Þ ¼ B!
Tn0ðb2?Þ:

(2)

To this day, next to nothing is known about the signs and
sizes of the B!

Tn0. Since these GFFs determine the dipole-
like distortion of the quark density in the transverse plane,
nonvanishing B!

Tn0 would imply a surprising nontrivial
transverse spin structure of the pion. A computation of
the B!

Tn0 from first principles in lattice QCD therefore
provides crucial insight into the pion structure.
Lattice QCD calculations give access to GFFs FðtÞ ¼
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n0ðtÞ; B!

Tn0ðtÞ in momentum space, which are related to
the impact parameter-dependent GFFs Fðb2?Þ ¼
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Figure 3: Left: The lensing functionIi(x,!bT ) from Eq. (30) for

U(1), SU(2) and SU(3) for x = 0.2 at a scale ΛQCD = 0.2 GeV.

For comparison we also plot the perturbative result of Ref. [48]

including the eikonalized antiquark spectator with an arbitrary

value for the coupling, α = 0.3. Right: Plot of the quantity

xm2
πh
⊥,(1)

1
(x) vs. x calculated by means of the relation to the

chirally-odd GPDHπ
1

for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],

αs(µ
2) =

αs(0)

ln
[

e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2
] . (35)

The values for the fit parameters areΛ = 0.71 GeV, a1 = 1.106,

a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to

the results for the non-perturbative gluon propagator has been

given in Ref. [81, 86, 87],

Z(p2, µ2) = p2D−1(p2, µ2)

=

(
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)1+2δ
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

2

, (36)

with the parameters c = 1.269, d = 2.105, and δ = − 9
44

.

These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form

factor that additional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson-Schwinger

quantities then reads,

χDS (|!zT |) = 2

∫ ∞

0

dkT kTαs(k
2
T )J0(|!zT |kT )Z(k2

T ,Λ
2
QCD)/k2

T . (37)

The numerical result for this ansatz is shown in Fig. 3. We

plot this function for various scale ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Although the choice of this scale is rather

arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.
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For comparison we also plot the perturbative result of Ref. [48]

including the eikonalized antiquark spectator with an arbitrary

value for the coupling, α = 0.3. Right: Plot of the quantity

xm2
πh
⊥,(1)

1
(x) vs. x calculated by means of the relation to the

chirally-odd GPDHπ
1

for a SU(3), SU(2), U(1) gauge theory.

As a check of the calculation we investigated the perturba-

tive limit of our calculation. Assuming that the quark - gluon

interaction g2 is small and using perturbative gluon propagator

in Feynman gauge for D̃1 one can expand our non-perturbative

result in Eq. (30) to g2. The leading order corresponds to the

result of the one-loop calculation of the Boer-Mulders function

of Ref. [48] after additional eikonalization of the antiquark.

5. Non-perturbative Quantities from the Dyson-Schwinger

approach

In order to obtain a numerical estimate for the eikonal phase,

it is important to have a realistic estimate of the size of the QCD

coupling g or αs =
g2

4π is. Since all the gluons exchanges be-

tween the eikonal lines are soft, the interactions take place at a

soft scale. Thus we need to know the running of the strong cou-

pling in the infrared limit. Inserting a perturbative gluon prop-

agator might not describe the gluon exchange realistically. One

would expect that a non-perturbative gluon propagator would

be a better choice. The infrared behavior of both quantities, the

running of the strong coupling and the non-perturbative gluon

propagator, have been studied in the framework of the Dyson-

Schwinger equations [81, 82, 83, 84] and also in lattice(see

e.g. [85]). One learns from such studies that the strong coupling

has a value of about αs(0) " 2.972 in the infrared limit. In par-

ticular in Ref. [81] fits were presented for the running coupling.

Since we are merely interested in a numerical estimate of the

lensing function we will apply the simplest form of the running

coupling presented in [81],

αs(µ
2) =

αs(0)

ln
[

e + a1(µ2/Λ2)a2 + b1(µ2/Λ2)b2
] . (35)

The values for the fit parameters areΛ = 0.71 GeV, a1 = 1.106,

a2 = 2.324, b1 = 0.004 and b2 = 3.169. These calculations

were performed in Euclidean space where Landau gauge was

applied, and agree reasonably well with each other. Because the

light cone components in Eq. (34) are already integrated out and

the remaining integration range is over a 2-dimensional trans-

verse Euclidean space, and because the gauge dependent part of

the gluon propagator does not contribute, it is natural to apply

the Euclidean results in Landau gauge of the Dyson-Schwinger

framework. One unique feature of Dyson-Schwinger studies of

the gluon propagator is that it rises like (k2)2κ−1 in the infra-red

limit with a universal coefficient κ " 0.595. This makes it in-

frared finite in contrast to the perturbative propagator. A fit to

the results for the non-perturbative gluon propagator has been

given in Ref. [81, 86, 87],

Z(p2, µ2) = p2D−1(p2, µ2)

=

(
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with the parameters c = 1.269, d = 2.105, and δ = − 9
44

.

These fits for the running coupling and the gluon propaga-

tor merge with the spirit of the eikonal methods described

above since closed fermion loops (quenched approximation)

were neglected. By using the non-perturbative propagator (36),

we partly reintroduce gluon self-interactions that were origi-

nally neglected in the generalized ladder approximation. Ac-

cording to Ref. [87] the fitting functions Eqs. (35) and (36)

were adjusted to Dyson-Schwinger results obtained at a very

large renormalization scale, the mass of the top quark, µ2 =

170 GeV2, which defines the normalization in (36). Since the

lensing function deals with soft physics, intuitively we pre-

fer a much lower hadronic scale which sets the normalization,

µ = ΛQCD ≈ 0.2 GeV. In the spirit of Sudakov form factors we

also assume that the scale at which the gluons are exchanged

are given by the transverse gluon momenta that we integrate

over. In this way the running coupling serves as a vertex form

factor that additional cuts off large gluon transverse momenta.

Our ansatz for the eikonal phase given by Dyson-Schwinger

quantities then reads,

χDS (|!zT |) = 2

∫ ∞

0

dkT kTαs(k
2
T )J0(|!zT |kT )Z(k2

T ,Λ
2
QCD)/k2

T . (37)

The numerical result for this ansatz is shown in Fig. 3. We

plot this function for various scale ΛQCD = 0 GeV, 0.2 GeV,

0.5 GeV, 0.7 GeV. Although the choice of this scale is rather

arbitrary we observe only a very mild dependence in Fig. 3 on

this scale as long as it remains soft. We further observe that

the phase doesn’t exceed a value of 4 - 4.5 → χmax/4 ≈ 1.15.

Thus this feature makes the application of the power series of

the color function in SU(3) reliable since χ/4 never exceeds 1.5
in the lensing function, Eq. (30) and in turn in the calculation

of the Boer-Mulders function in Eq. (5).

Finally, we insert our ansatz for the eikonal phase into the

lensing functions (30) for a U(1), SU(2) and SU(3) color func-

tion. We plot the results in Fig. 3 for a color function for U(1),

SU(2), SU(3). While we observe that all lensing functions fall

off at large transverse distances, they are quite different in size

at small distances.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),
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W [Γ]
λ,λ′(P, x,kT ,∆, n) =

∫
dk−W [Γ]

λ,λ′(P, k, ∆, n)

W [Γ]
λ,λ′(P, k, ∆; n)⇐⇒W [Γ]

λ,λ′(P, k,!b;n)

Wigner functions--Belitsky Ji Yuan, 04

GTMD--Meissner Metz Schlegel  07, 08

FT : ∆⇐⇒ !b

Reduce to TMDs, GPDs, Impact GPDs
Relations among them?

Unifying Transverse Structure of Nucleon GTMDs

Integ. small component !!!



W [Γ]
λ,λ′(P, x,kT ,∆, n) =

∫
dk−W [Γ]

λ,λ′(P, k, ∆, n)

∆ =0

∫
d2kT

W [Γ]
λ,λ′(P, x,kT , 0, n) = Φ(x,kT ) Fλ,λ′(x,!b) =

∫
d2∆T

(2π)2
ei"∆T ·"b Fλ,λ′(x, 0, !∆T )

ξ = 0

TMD Impact-GPD

Integ. small component,
GTMD--Meissner Metz Schlegel, 07

EIC??

FT : ∆T ⇐⇒ !bT

F [Γ]
λ,λ′(x, ξ, t) =

∫
d2kT W [Γ]

λ,λ′(P, x,kT ,∆, n)

TMDs & Impact GPDs Project from GTMDs



Exclusive Inclusive Relations

Relations between TMDs and GPDs

Trivial Relations are well-known:

model-independent, integrated relations

also for twist-3 PDFs e(x), g
T
(x), ...

Marc Schlegel, Hall C summer meeting, JLab, Aug 4



Parm. of GTMD correlator hermiticity parity time-reversal
from Andreas Metz INT talk
GTMD analysis

• GTMD-correlator (e.g., Belitsky, Ji, Radyushkin, Yuan, 2003, 2005)

W q =
1

2

Z

dz−

2π

d2"zT

(2π)2
eik·z ˙

p′; λ′
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“

−
z

2

”

γ+
WGTMD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=0

• Projection onto GPDs and TMDs

F q =
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2
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¸
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˛
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=
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˛
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¸
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z+=0

= W q
˛

˛

˛

∆=0

→ GPDs and TMDs appear as certain limits of GTMDs (mother distributions)

→ Which GPDs and TMDs have the same mother distributions ?

Reality Check

(x, ξ,"kT , "∆T )GTMD analysis

• GTMD-correlator (e.g., Belitsky, Ji, Radyushkin, Yuan, 2003, 2005)

W q =
1

2

Z

dz−

2π

d2"zT

(2π)2
eik·z ˙

p′; λ′
˛

˛ ψ̄
“

−
z

2

”

γ+
WGTMD ψ

“z

2

”

˛

˛p; λ
¸

˛

˛

˛

z+=0

• Projection onto GPDs and TMDs
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→ GPDs and TMDs appear as certain limits of GTMDs (mother distributions)

→ Which GPDs and TMDs have the same mother distributions ?



• Parameterization of GTMD-correlator

Example:

W q [γ+] =
1

2M
ū(p′, λ′)

»

F1,1+
iσi+ki

T

P +
F1,2+

iσi+∆i
T

P +
F1,3+

iσijki
T∆j

T

M2
F1,4

–

u(p, λ)

→ GTMDs are complex functions: F1,n = F e
1,n + iF o

1,n

• Implications for potential nontrivial relations

– Relations of second type

E(x, 0, $∆2
T ) =

Z

d2$kT

»

− F e
1,1 + 2

„$kT · $∆T

$∆2
T

F e
1,2 + F e

1,3

«–

f⊥
1T (x,$k2

T) = −F o
1,2(x, 0,$k2

T , 0, 0)

→ No model-independent nontrivial relation between E and f⊥
1T possible

→ Relation in spectator model due to simplicity of the model

→ No information on numerical violation of relation

→ Likewise for nontrivial relation involving h⊥
1

GTMD-Wigner Function Correlator
Miessner Metz & Schlegel JHEP 2008 & 2009



These Have Different Mothers

with F1,n = F1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η). In addition, the hermiticity constraint implies

F ∗

1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η) = ±F1,n(x,−ξ,"k2
T ,−"kT · "∆T , "∆2

T ; η) , (10)

where the plus sign holds for n = 1, 3, 4 and the minus sign for n = 2. Finally, the time-
reversal constraint allows one to split each GTMD into two real valued functions,

F1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ; η) =F e
1,n(x, ξ,"k2

T ,"kT · "∆T , "∆2
T )

+ i F o
1,n(x, ξ,"k2

T ,"kT · "∆T , "∆2
T ; η) , (11)

the so-called T-even and T-odd part of the GTMD, which can be distinguished by a different
dependence on η. While the T-even part F e

1,n is independent of η the T-odd part F o
1,n changes

its sign under η → −η.
As the correlator of GTMDs (5) contains the correlators of GPDs (1) and TMDs (3) in

the limits (6) and (7), GTMDs can be considered as the mother distributions of GPDs and
TMDs. Therefore, one should be able to obtain the parameterization of GPDs in Eq. (2)
and of TMDs in Eq. (4) directly from the parameterization of the GTMDs in Eq. (9). This
is indeed possible and one finds for the GPDs

H(x, ξ, t) =

∫

d2"kT

[

F e
1,1 + 2ξ2

("kT · "∆T

"∆2
T

F e
1,2 + F e

1,3

)]

, (12)

E(x, ξ, t) =

∫

d2"kT

[

− F e
1,1 + 2(1 − ξ2)

("kT · "∆T

"∆2
T

F e
1,2 + F e

1,3

)]

, (13)

with F e
1,n = F e

1,n(x, ξ,"k2
T ,"kT · "∆T , "∆2

T ) and for the TMDs

f1(x,"k2
T ) = F e

1,1(x, 0,"k2
T , 0, 0) , (14)

f⊥

1T (x,"k2
T ; η) = −F o

1,2(x, 0,"k2
T , 0, 0; η) . (15)

Consequently, a complete parameterization of all GTMDs immediately yields a complete
parameterization of all GPDs and TMDs. We have performed such a parameterization of
the correlator (5) to all twists and found a total of 64 complex valued GTMDs for the
nucleon, which can be split into 64 real valued T-even and 64 real valued T-odd parts. In
addition we also studied the limits of GPDs and TMDs and found that in both cases 32
real valued functions survive (see Tab. 1 for an overview). To our knowledge, this result is

GTMDs GPDs TMDs
twist: Γ T-even T-odd T-even T-odd T-even T-odd

2: γ+ / γ+γ5 / iσi+ 4 / 4 / 8 4 / 4 / 8 2 / 2 / 4 0 / 0 / 0 1 / 2 / 3 1 / 0 / 1

3: 1 / γ5 / γi 4 / 4 / 8 4 / 4 / 8 2 / 2 / 4 0 / 0 / 0 1 / 0 / 1 1 / 2 / 3
γiγ5 / iσij / iσ+− 8 / 4 / 4 8 / 4 / 4 4 / 2 / 2 0 / 0 / 0 3 / 2 / 1 1 / 0 / 1

4: γ− / γ−γ5 / iσi− 4 / 4 / 8 4 / 4 / 8 2 / 2 / 4 0 / 0 / 0 1 / 2 / 3 1 / 0 / 1

Table 1: Number of independent GTMDs, GPDs, and TMDs to all twists.
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• Parameterization of GTMD-correlator
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→ GTMDs are complex functions: F1,n = F e
1,n + iF o

1,n

• Implications for potential nontrivial relations

– Relations of second type

E(x, 0, $∆2
T ) =

Z

d2$kT

»

− F e
1,1 + 2

„$kT · $∆T

$∆2
T

F e
1,2 + F e

1,3

«–

f⊥
1T (x,$k2

T) = −F o
1,2(x, 0,$k2

T , 0, 0)

→ No model-independent nontrivial relation between E and f⊥
1T possible

→ Relation in spectator model due to simplicity of the model

→ No information on numerical violation of relation

→ Likewise for nontrivial relation involving h⊥
1

!k2
T , !k · !∆, and !∆2

T . The four leading twist quark GTMDs of an unpolarized target are

W q[γ+] = F q
1 (x, ξ,!k2

T ,!kT · !∆T , !∆2
T ) , (12)

W q[γ+γ5] =
iεij

T ki
T ∆j

T

M2
G̃q

1(x, ξ,!k2
T ,!kT · !∆T , !∆2

T ) , (13)

W q[iσj+γ5] =
iεij

T ki
T

M
Hk,q

1 (x, ξ,!k2
T ,!kT · !∆T , !∆2

T ) +
iεij

T ∆i
T

M
H∆,q

1 (x, ξ,!k2
T ,!kT · !∆T , !∆2

T ) . (14)

From this parametrization one immediately recovers the model-independent validity of
the relations of first type in Eq. (5), as the involved GPDs and TMDs are simply limiting
cases of the same GTMDs,

∫

d2!bT Hq(x,!b 2
T ) =

∫

d2!kT f q
1 (x,!k 2

T ) =
∫

d2!kT Re
[

F q
1 (x, 0,!k 2

T , 0, 0)
]

. (15)

For the relations of second type in Eq. (6) one finds, however, that

(

Eq
T + 2H̃q

T

)′

∼ Re
[

1
2

(

k1
T

∆1
T

+
k2

T

∆2
T

)

Hk,q
1 + H∆,q

1

]

and h⊥q
1 ∼ Im

[

Hk,q
1

]

, (16)

so that the involved GPDs and TMDs are limiting cases of two independent functions,
the real and the imaginary part of some GTMDs. This supports the understanding that
the relations in Eq. (6) do not hold in general. At the present stage our analysis does not
permit any statement about the relations of third or fourth type in Eqs. (7) and (8), as
here we would have to consider, in particular, target polarization.

5 Conclusions

We showed that model-independent considerations suggest possible relations between
GPDs and TMDs. From these relations, so far only the relations of first type are known to
be valid in general. The relations of second type are probably only valid in simple model
calculations, which is supported by our analysis of GTMDs. It will be very interesting
to redo this analysis for the relations of third and fourth type, as at least the relations of
third type are similar to those of first type and could therefore be valid in general.
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However is approximate relation good for 
phenomenological approach for model builders



• EIC in conjunction w/ Drell Yan can test  
fundamental factorization theorem of QCD: 
predicted sign change of Sivers function 

• Crucial to have Q2 range to pin down TMDs in 
particular Sivers function

• Transverse Distortion/Structure and TSSAs and 
unintegrated PDFs --- “Wigner functions” are there 
exclusive processes where they come in?  

• Unifying structure GTMDs/Wigner Functions

• Pheno-Transverse Structure TMDs and TSSAs b and 
k asymm. An improved dynamical approach for FSI 
& model building

     “QCD calc “  FSIs Gauge Links-Color Gauge Inv. “T-odd” TMDs

      

Conclusions 



                                         MORE  .....

• Jet SIDIS 

• Extracting weighted TSSAs

• Connection bwtn. gluonic and fermionic poles--
twist 3 ETQS approach to TSSAs and the TMD 
description

• Opportunities to further explore angular 
momentum sum rule(s)

      



• /∃ calculation Quark-Quark Correlator in Full QCD

Φ[U [C]](x, pT ) =

Z
dξ−d2ξT

2(2π)3
eip·ξ〈P |ψ(0)U [C]

[0,ξ]
ψ(ξ−, ξT )|P 〉|

ξ+=0

• Use Spectator Framework Develop a QFT to explore and estimates these effects with gauge links

$ BHS FSI/ISI Sivers fnct, -PLB 2002, NPB 2002
$ Ji, Yuan PLB 2002 - Sivers Function
$ Metz PLB 2002 - Collins Function
$ L.G. Goldstein, 2002 ICHEP- Boer Mulders Function
$ L.G. Goldstein, Oganessyan TSSA & AAS PRD 2003-SIDIS
$ Boer Brodsky Hwang PRD 2003-Drell Yan Boer Mulders
$ Bacchetta Jang Schafer 2004- PLB, Flavor-Sivers, Boer Mulders
$ Lu Ma Schmidt PLB, PRD, 2004/2005 Pion Boer Mulders
$ L.G. Goldstein DY and higher twist, PLB 2007
$ LG, Goldstein, Schlegel PRD 2008-Flavor dep. Boer Mulders cos 2φ SIDIS
$ Conti, Bacchetta, Radici, Ellis, Hwang, Kotzinian 2008 hep-ph . . . !

• Spectator Model “Field Theoretic” used study Universality of T-odd Fragmentation ∆ij

$ Metz PLB 2002, Collins Metz PRL 2004
$ Bacchetta, Metz, Yang, PBL 2003, Amrath, Bacchetta, Metz 2005,
$ Bacchetta, L.G. Goldstein, Mukherjee, PLB 2008
$ Collins Qui, Collins PRD 2007,2008
$ Yuan 2-loop Collins function PRL 2008
$ L.G., Mulders, Mukherjee Gluonic Poles PRD 2008

Spect. model workbench ISI/FSI in AA & TMDs h⊥
1 , f⊥

1T , H⊥
1 gluonic poles

Has also been used to study Universality of PDFs and FFs



i

½l " vþ i0$ % ð'ieqv!Þ; (14)

where l is the loop momentum, eq is the charge of the
quark, and v is a light-cone vector representing the direc-
tion of the Wilson line. In order to evaluate the box
diagram, we need to specify the gluon-diquark coupling.
With a one-gluon exchange approximation in mind, we use
the gluon-diquark coupling for a scalar diquark, and for an
axial-vector diquark we use a general axial-vector-vector
that models the composite nature of the diquark through an
anomalous magnetic moment " [57]. In the notations of
Fig. 1 (right panel) the gluon-diquark vertices read

!#
s ¼ 'iedqðp1 þ p2Þ#; (15)

!#$1$2
ax ¼ 'iedq½g$1$2ðp1 þ p2Þ# þ ð1þ "Þ

% ðg#$2ðp2 þ qÞ$1 þ g#$1ðp1 ' qÞ$2Þ$: (16)

For " ¼ '2 the vertex !ax reduces to the standard %WW
vertex. We can now express the matrix elements including
the gauge link in the one-gluon approximation in the
following way:

hsdq;P' pjW ½1; 0; ~0Tj0$ ið0ÞjP; Sij1'gl

¼ 'ieqedq
Z d4l

ð2&Þ4 gscððlþ pÞ2ÞDscðP' p' lÞ

% ½ðp6 þ l6 þmqÞuðP; SÞ$iv " ð2P' 2p' lÞ
½l " vþ i0$½l2 þ i0$½ðlþ pÞ2 'm2

q þ i0$ ;

(17)

hadq;P'p;!jW ½1;0; ~0Tj0$ ið0ÞjP;Sij1'gl¼'ieqedq
Z d4l

ð2&Þ4
gaxððpþ lÞ2Þffiffiffi

3
p "*'ðP'p;!ÞDax

()ðP'p' lÞ

% ½g'(v " ð2P' 2p' lÞþ ð1þ"Þðv'ðP'pþ lÞ(þv(ðP'p' 2lÞ'Þ$
½l "vþ i0$½l2þ i0$½ðlþpÞ2'm2

qþ i0$

%
"
ðp6 þ l6 þmqÞ%5

#
%)'Rg

P)

M

$
uðP;SÞ

%

i
; (18)

where the subscript 1' gl denotes ‘‘one gluon exchange.’’
In these expressionsD denotes the propagator of the scalar
and axial-vector diquark,

D scðP' p' lÞ ¼ i

½ðP' p' lÞ2 'm2
s þ i0$ ; (19)

D ax
#$ðP' p' lÞ ¼

'iðg#$ ' ðP'p'lÞ#ðP'p'lÞ$
m2
s

Þ
½ðP' p' lÞ2 'm2

s þ i0$ : (20)

The term
ðP'p'lÞ#ðP'p'lÞ$

m2
s

is a crucial difference of our
approach compared to the calculation in Ref. [41], where
the dependence on the proton and spectator momenta in-
side the loop integral is absent. It is shown below that this
leads to various complications when performing the loop
integral.

In a similar fashion as for f1 and h?1L, we extract the
Boer-Mulders function by inserting Eqs. (17) and (18) [and
the tree-matrix elements (5) and (6), i.e. the leading non-
trivial perturbative contribution is the interference term
between tree graph and box graph] into the quark-quark
correlator (3),

2*ijT p
j
Th

?
1 ðx; ~p2

TÞ ¼
M

2

Z
dp'ðTr½"unpolðp; SÞi'iþ%5$

þ Tr½"unpolðp;'SÞi'iþ%5$Þjpþ¼xPþ ;

(21)

where *ijT + *'þij and *0123 ¼ þ1.

FIG. 2. Contribution of the gauge link in the one-gluon approximation. Left panel: Box graph. Right panel: Box graph Hermitian
conjugated.

GAMBERG, GOLDSTEIN, AND SCHLEGEL PHYSICAL REVIEW D 77, 094016 (2008)

094016-4

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = − M

8(2π)3(1 − x)P+

(
W̄γ+W

∣∣∣
ST

− W̄γ+W
∣∣∣
−ST

)
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the gluon-diquark coupling for a scalar diquark, and for an
axial-vector diquark we use a general axial-vector-vector
that models the composite nature of the diquark through an
anomalous magnetic moment " [57]. In the notations of
Fig. 1 (right panel) the gluon-diquark vertices read

!#
s ¼ 'iedqðp1 þ p2Þ#; (15)

!#$1$2
ax ¼ 'iedq½g$1$2ðp1 þ p2Þ# þ ð1þ "Þ

% ðg#$2ðp2 þ qÞ$1 þ g#$1ðp1 ' qÞ$2Þ$: (16)

For " ¼ '2 the vertex !ax reduces to the standard %WW
vertex. We can now express the matrix elements including
the gauge link in the one-gluon approximation in the
following way:

hsdq;P' pjW ½1; 0; ~0Tj0$ ið0ÞjP; Sij1'gl

¼ 'ieqedq
Z d4l

ð2&Þ4 gscððlþ pÞ2ÞDscðP' p' lÞ

% ½ðp6 þ l6 þmqÞuðP; SÞ$iv " ð2P' 2p' lÞ
½l " vþ i0$½l2 þ i0$½ðlþ pÞ2 'm2

q þ i0$ ;

(17)

hadq;P'p;!jW ½1;0; ~0Tj0$ ið0ÞjP;Sij1'gl¼'ieqedq
Z d4l

ð2&Þ4
gaxððpþ lÞ2Þffiffiffi

3
p "*'ðP'p;!ÞDax

()ðP'p' lÞ

% ½g'(v " ð2P' 2p' lÞþ ð1þ"Þðv'ðP'pþ lÞ(þv(ðP'p' 2lÞ'Þ$
½l "vþ i0$½l2þ i0$½ðlþpÞ2'm2

qþ i0$

%
"
ðp6 þ l6 þmqÞ%5

#
%)'Rg

P)

M

$
uðP;SÞ

%

i
; (18)

where the subscript 1' gl denotes ‘‘one gluon exchange.’’
In these expressionsD denotes the propagator of the scalar
and axial-vector diquark,

D scðP' p' lÞ ¼ i

½ðP' p' lÞ2 'm2
s þ i0$ ; (19)

D ax
#$ðP' p' lÞ ¼

'iðg#$ ' ðP'p'lÞ#ðP'p'lÞ$
m2
s

Þ
½ðP' p' lÞ2 'm2

s þ i0$ : (20)

The term
ðP'p'lÞ#ðP'p'lÞ$

m2
s

is a crucial difference of our
approach compared to the calculation in Ref. [41], where
the dependence on the proton and spectator momenta in-
side the loop integral is absent. It is shown below that this
leads to various complications when performing the loop
integral.

In a similar fashion as for f1 and h?1L, we extract the
Boer-Mulders function by inserting Eqs. (17) and (18) [and
the tree-matrix elements (5) and (6), i.e. the leading non-
trivial perturbative contribution is the interference term
between tree graph and box graph] into the quark-quark
correlator (3),

2*ijT p
j
Th

?
1 ðx; ~p2

TÞ ¼
M

2

Z
dp'ðTr½"unpolðp; SÞi'iþ%5$

þ Tr½"unpolðp;'SÞi'iþ%5$Þjpþ¼xPþ ;

(21)

where *ijT + *'þij and *0123 ¼ þ1.

FIG. 2. Contribution of the gauge link in the one-gluon approximation. Left panel: Box graph. Right panel: Box graph Hermitian
conjugated.
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Keeping the imaginary part of (19) in order to pursue the relation (9), the integral (20) reduces to

Wi(P, k, S) = −i(1− x)gN (k2)
[(/k + mq)u(P, S)]i

!k2
T + m̃2

− i

4P+

∫
d2qT

(2π)2
gN

(
(P − q)2

)
[(/P − q/ + mq)u(P, S)]i M(q; P − k)

[!q2
T + m̃2]

+ b.t.. (20)

Here the light cone components of the diquark momentum are determined by q+ = (1 − x)P+, and q− = !q2
T +m2

s
2(1−x)P+ ,

and m̃2 = xm2
s −x(1−x)M2 +(1−x)m2

q . Again b.t. represents the breaking terms which invalidate relations between
T-odd TMDs and GPDs.

We now use (20) to calculate the Sivers function via (2). Expressed through the amplitude W , the definition of the
Sivers function translates to (with W̄ ≡ W †γ0)

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = − M

8(2π)3(1 − x)P+

(
W̄γ+W

∣∣∣
ST

− W̄γ+W
∣∣∣
−ST

)
. (21)

Furthermore, we specify the form factor that we attach to the nucleon-quark-diquark vertex where we choose a dipole
and Gaussian form,

gDipole
N (k2) = gΛ2 k2 − m2

q

[k2 − Λ2]2
, (22)

gGauss
N (k2) = g exp

[
− |k2|

λ2

]
. (23)

Inserting (20) into (20) and a bit of algebra yields the following expressions for the Sivers function,

εij
T ki

T Sj
T f⊥

1T (x,!k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

[!q2
T + m̃2] [!p2

T + m̃2]
×

$[M](x,!kT , !qT )
4(1 − x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., no form factor, (24)

εij
T ki

T Sj
T f⊥,Dipole

1T (x,!k2
T ) = −g2(1 − x)3Λ4M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T[
!q2
T + Λ̃2

]2 [
!p2

T + Λ̃2
]2 ×

$[M](x,!kT , !qT )
4(1− x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., Dipole, (25)

εij
T ki

T Sj
T f⊥,Gauss

1T (x,!k2
T ) = −g2(1 − x)M(xM + mq)

(2π)3

∫
d2qT

(2π)2

∫
d2pT

(2π)2
εij
T (qi

T + pi
T )Sj

T

[!q2
T + m̃2] [!p2

T + m̃2]
×

exp
[
− !q2

T +!p2
T +2m̃2−2(1−x)m2

q

λ2(1−x)

] $[M](x,!kT , !qT )
4(1− x)P+

(
(2π)2δ(2)(!pT + !kT ) +

%[M](x,!kT , !pT )
4(1 − x)P+

)
+ b. t., Gauss. (26)

In the following sections we calculate the scattering amplitude M(x,!kT , !qT ) in a relativistic eikonal model. One
result of the calculation is the functional dependence on the transverse momenta, M(x,!kT , !qT ) → Meik(x, |!qT +!kT |).
Already at this point we will use this property to simplify the expressions and to show a relation to the GPD E. Since
final-state interactions are believed to be irrelevant for matrix elements of light-cone operators, one can consistently
model GPDs already from tree-level diagrams in the spectator model where the effects of gluon dressings are effectively
hidden in the masses and form factors. A calculation for the GPD E in this fashion for a scalar spectator can be
found in [? ]. It is easy to generalize it for a Dipole and Gaussian form factor. We obtain

E(x, 0,−!∆2
T ) =

g2(1 − x)2

(2π)3
M(xM + mq)

∫
d2kT






1h
(!kT −1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , no f.f.

(1−x)2Λ4
h
(!kT − 1

2 (1−x)!∆T )2+Λ̃2
i2h

(!kT +
1
2 (1−x)!∆T )2+Λ̃2

i2 , Dipole

exp

2

4−
2(!k2

T +
1
4 (1−x)2!∆2

T +m̃2−(1−x)m2
q)

λ2(1−x)

3

5

h
(!kT − 1

2 (1−x)!∆T )2+m̃2
ih

(!kT +
1
2 (1−x)!∆T )2+m̃2

i , Gauss

. (27)

P − p

p + l

l

l

Γ

P

Υ
P − p − l
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with Final State Interactions--
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paper for h?1 to estimate the azimuthal asymmetry Acos2!
UU

[cf. Eq. (41)], where

Acos2!
UU !

R
d! cos2!d"R

d!d"
(45)

and d! is shorthand notation for the phase space integra-

tion. In Fig. 6 we display the Acos2!
UU ðPTÞ in the range of

future JLab kinematics [73] (0:08< x< 0:7, 0:2< y<
0:9, 0:3< z < 0:8, Q2 > 1 GeV=c, and 1<E# <
9 GeV) and HERMES kinematics [1] (0:23< x< 0:4,
0:1< y < 0:85, 0:2< z < 0:7, with Q2 > 1 GeV=c and
4:5<E# < 13:5 GeV). In Fig. 7 we display the x and z
dependence in the range 0:5<PT < 1:5 GeV=c. It should
be noted that this asymmetry was measured at HERA by
ZEUS, but at very low x and very highQ2 [35], where other
QCD effects dominate. It was also measured at CERN by
EMC [74], but with low precision. Those data were ap-
proximated by Barone, Lu, and Ma [75] in a u-quark
dominating model for h?1 , with a Gaussian, algebraic
form and a Gaussian ansatz for the Collins function. Our
dynamical approach leads to different predictions for the
forthcoming JLab data.

B. Single-spin asymmetry Asinð2!Þ
UL in SIDIS

Since we have calculated the chiral-odd but T-even
parton distribution h?1L [cf. Eqs (12) and (13)], we use
this result together with the result of Ref. [71] for the
Collins function to give a prediction for the sinð2!Þ mo-
ment of the single-spin asymmetry AUL for a longitudinally
polarized target. In particular, we are able to take into
account the flavor dependence of the asymmetry. We adopt
a similar procedure for the azimuthal cosð2!Þ asymmetry

for treating the leading twist observable Asinð2!Þ
UL .

A decomposition into structure functions of the cross
section of semi-inclusive DIS for a longitudinally polar-
ized target reads (see e.g. [31])

d"UL

dxdydzd!hdP
2
h?

$ 2#$2

xyQ2 Sk½ð1& yÞ sinð2!hÞFsinð2!Þ
UL

þ ð2& yÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1& y

p
sinð!hÞFsin!

UL (;
(46)

where Sk is the projection of the spin vector on the direc-
tion of the virtual photon. In a partonic picture the structure

function Fsinð2!Þ
UL is a leading twist object (while Fsin!

UL is
subleading), and it is given by a convolution of the TMD
h?1L and the Collins function (cf. [31])

Fsinð2!Þ
UL ¼ C

"
& 2ĥ * kTĥ * pT & kT * pT

MMh
h?1LH

?
1

#
; (47)

where the explicit form of the convolution is given in
Eq. (42).
We insert our result for h?1L [Eqs. (12) and (13)] and the

result of Ref. [71] into Eq. (47) to compute the single-spin
asymmetry. This is the first calculation of this observable in

the spectator framework, whereas the part of Fsinð!Þ
UL de-

scribed by higher twist T-odd PDFs has been analyzed in
the diquark model in Refs. [25,26,28]. Similar phenome-

nology for Fsinð2!Þ
UL and Fsinð!Þ

UL has been performed in
Refs. [76,77] using the framework of the chiral quark
soliton model.
We display the results for the single-spin asymmetry

Asinð2!Þ
UL in Fig. 8 using the kinematics of the upcoming
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FIG. 6 (color online). Left panel: The cos2! asymmetry for #þ and #& as a function of PT at JLab 12 GeV kinematics. Right
panel: The cos2! asymmetry for #þ and #& as a function of PT for HERMES kinematics.
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Fig. 6. The Sivers distribution functions for u, d and s flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our simul-
taneous fit of HERMES and COMPASS data (see text for de-
tails). On the left panel, the first moment x ∆Nf (1)(x), eq. (17),
is shown as a function of x for each flavour, as indicated. Simi-
larly, on the right panel, the Sivers distribution x ∆Nf(x, k⊥) is
shown as a function of k⊥ at a fixed value of x for each flavour,
as indicated. The highest and lowest dashed lines show the
positivity limits |∆Nf | = 2f .

Sivers distribution. In particular, we definitely find

∆Nfs̄/p↑ > 0 (18)

and confirm the previous findings for valence
flavours [2,7–9],

∆Nfu/p↑ > 0, ∆Nfd/p↑ < 0. (19)

There are simple reasons for the above results. The
Sivers distribution function for s̄ quarks turns out to
be definitely positive, due to the large positive value

of Asin(φh−φS)
UT for K+; notice that the value of Ns̄ sat-

urates the positivity bound |Nq| ≤ 1. Similarly, the
positive sign of ∆Nfu/p↑ is, essentially, driven by the
positive π+ and K+ SSAs and the opposite sign of
∆Nfd/p↑ by the small SSA measured by COMPASS
on a deuteron target. The u and d Sivers functions are
also predicted to be opposite in the large-Nc limit [29]
and in chiral models [30].
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Fig. 7. The Sivers distribution functions for u and d flavours,
at the scale Q2 = 2.4 (GeV/c)2, as determined by our present
fit (solid lines), are compared with those of our previous fit [2]
of SIDIS data (dashed lines), where π0 and kaon productions
were not considered and only valence quark contributions were
taken into account. This plot clearly shows that the Sivers func-
tions previously found are consistent, within the statistical un-
certainty bands, with the Sivers functions presently obtained.

– The Sivers functions for ū, d̄ and s quarks, instead,
turn out to have much larger uncertainties; even the
sign of the ū and s Sivers functions is not fixed by avail-
able data, while ∆Nfd̄/p↑ appears to be negative. This
could be consistent with a positive contribution from u
quarks, necessary to explain the large K+ asymmetry,
which is decreased, for π+, by a negative d̄ contribu-
tion. One might expect correlated Sivers functions for
s and s̄ quarks: we have actually checked that choosing
∆Nfs/p↑ = ±∆Nfs̄/p↑ slightly worsens the χ2

dof (from
1 up to about 1.1), but still leads to a reasonable fit.

– We notice that the Burkardt sum rule [31]

∑

a

∫

dxd2k⊥ k⊥ fa/p↑(x,k⊥) ≡
∑

a

〈ka
⊥〉 = 0, (20)

where, from eqs. (2) and (17),

〈ka
⊥〉 =

[

π

2

∫ 1

0
dx

∫ ∞

0
dk⊥ k2

⊥ ∆Nfa/p↑(x, k⊥)

]

(S×P̂ ) =

mp

∫ 1

0
dx ∆Nf (1)

q/p↑(x) (S×P̂ )≡〈ka
⊥〉 (S×P̂ ), (21)

is almost saturated by u and d quarks alone at Q2 =
2.4 (GeV/c)2:

〈ku
⊥〉 + 〈kd

⊥〉 = −17+37
−55 (MeV/c),

〈kū
⊥〉 + 〈kd̄

⊥〉 + 〈ks
⊥〉 + 〈ks̄

⊥〉 = −14+43
−66 (MeV/c).

(22)

The individual contributions for quarks are:

〈ku
⊥〉=96+60

−28 (MeV/c), 〈kd
⊥〉=−113+45

−51 (MeV/c),

〈kū
⊥〉=2+24

−11 (MeV/c), 〈kd̄
⊥〉=−28+20

−60 (MeV/c), (23)

〈ks
⊥〉=−4+11

−15 (MeV/c), 〈ks̄
⊥〉=17+30

−8 (MeV/c),
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Manipulate gauge link and trnsfm to      space!b

1)  hkq;iT !x"iUT # 1

2

Z
d2 ~bT

Z dz$

2!
eixP

%z$hP%; ~0T; Sj ! !z1""%W !z1; z2"Iq;i!z2" !z2"jP%; ~0T; Si;

2)

 jP!; ~bT ; Si " N
Z d2 ~pT

#2!$2 e
%i ~pT & ~bT jp; Si; (31)

 hP!; ~bT ; Sj " N '
Z d2 ~p0

T

#2!$2 e
i ~p0

T & ~bT hp0; Sj; (32)

which characterize a nucleon with momentum P! at a
transverse position ~bT and a polarization specified by S.
The normalization factor N in these formulas is given by

 

1

jN j2 "
Z d2 ~pT

#2!$2 (33)

and therefore infinite. However, using wave packets in-
stead of plane wave states this infinity can be avoided
[41,43]. With the states in Eqs. (31) and (32) the correlators
defining the GPDs of quarks and gluons can be rewritten as

 

F q(!)#x; ~bT ; S$ "
1

2

Z dz%

2!
eixP

!z%hP!; ~0T; Sj " #z1$!

*W #z1; z2$ #z2$jP!; ~0T ; Si; (34)

 

F g(ij)#x; ~bT ; S$ "
1

xP!
Z dz%

2!
eixP

!z%hP!; ~0T ; SjF!j
a #z1$

*Wab#z1; z2$F!i
b #z2$jP!; ~0T ; Si; (35)

with

 z1=2 " #0!;+1
2z

%; ~bT$: (36)

Obviously, the two correlation functions in (34) and (35)
are diagonal.

In analogy with Eq. (30) we define the GPDs in impact
parameter space according to

 X #x; ~b2T$ "
Z d2 ~#T

#2!$2 e
%i ~#T & ~bTX#x; 0;% ~#2

T$: (37)

Using this definition one finds after straightforward algebra
that the correlators in Eqs. (10)–(12) for the quarks and in
Eqs. (17)–(19) for the gluons, written in impact parameter
space at the kinematical point " " 0, take the form

 F q=g#x; ~bT ; S$ " H q=g#x; ~b2T$ !
#ijT b

i
TS

j
T

M
#Eq=g#x; ~b2T$$0;

(38)

 

~F q=g#x; ~bT ; S$ " $ ~H q=g#x; ~b2T$; (39)

 F q;j
T #x; ~bT ; S$ "

#ijT b
i
T

M
#EqT#x; ~b2T$ ! 2 ~H q

T#x; ~b2T$$0

! SjT

!
H q

T#x; ~b2T$ %
~b2T
M2 #b

~H q
T#x; ~b2T$

"

! 2bjT ~bT & ~ST % SjT ~b
2
T

M2 # ~H q
T#x; ~b2T$$00;

(40)
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In these equations we use the notation

 #X#x; ~b2T$$0 "
@

@ ~b2T
#X#x; ~b2T$$; (42)

and analogous for the higher derivatives of the GPDs X, as
well as

 #bX#x; ~b2T$ "
1
~b2T

@

@ ~b2T

#
~b2T

@

@ ~b2T
#X#x; ~b2T$$

$
: (43)

While Eqs. (38)–(40) were already given in the literature
[35,38], the result in (41) is new. Since the point " " 0 is
chosen, the GPDs ~E and ~ET do not show up in (39)–(41):
the GPD ~E is multiplied by the kinematical factor #! " 0
in the correlator, and ~ET vanishes due to the constraint in
Eq. (23).

The expression in (38), for instance, can be interpreted
as the density of unpolarized quarks/gluons with momen-
tum fraction x at the transverse position ~bT in a (trans-
versely polarized) proton. This density has a spin-
independent part given by H , and a spin-dependent part
proportional to the derivative of E. Some details on the
physical interpretation of (39) and (40) can be found in
Refs. [38,39].

Because of the spin-dependent term the impact parame-
ter distribution in (38) is not axially symmetric (unless
E0 " 0), i.e., it depends on the direction of ~bT . In other
words, the spin part causes a distortion of the distribution
(38). Note that the RHS in (40) contains two terms provid-
ing a distortion, one determined by the first derivative of
ET ! 2 ~H T and one given by the second derivative of ~H T .
In (41) none of the three terms on the RHS is axially
symmetric. Later on, we will use the results (38)–(41)
and compare them with the corresponding correlators for
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 jP!; ~bT ; Si " N
Z d2 ~pT

#2!$2 e
%i ~pT & ~bT jp; Si; (31)

 hP!; ~bT ; Sj " N '
Z d2 ~p0

T

#2!$2 e
i ~p0

T & ~bT hp0; Sj; (32)

which characterize a nucleon with momentum P! at a
transverse position ~bT and a polarization specified by S.
The normalization factor N in these formulas is given by

 

1

jN j2 "
Z d2 ~pT

#2!$2 (33)

and therefore infinite. However, using wave packets in-
stead of plane wave states this infinity can be avoided
[41,43]. With the states in Eqs. (31) and (32) the correlators
defining the GPDs of quarks and gluons can be rewritten as
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2z

%; ~bT$: (36)

Obviously, the two correlation functions in (34) and (35)
are diagonal.

In analogy with Eq. (30) we define the GPDs in impact
parameter space according to
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#2!$2 e
%i ~#T & ~bTX#x; 0;% ~#2

T$: (37)

Using this definition one finds after straightforward algebra
that the correlators in Eqs. (10)–(12) for the quarks and in
Eqs. (17)–(19) for the gluons, written in impact parameter
space at the kinematical point " " 0, take the form
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In these equations we use the notation
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@ ~b2T
#X#x; ~b2T$$; (42)

and analogous for the higher derivatives of the GPDs X, as
well as
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1
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While Eqs. (38)–(40) were already given in the literature
[35,38], the result in (41) is new. Since the point " " 0 is
chosen, the GPDs ~E and ~ET do not show up in (39)–(41):
the GPD ~E is multiplied by the kinematical factor #! " 0
in the correlator, and ~ET vanishes due to the constraint in
Eq. (23).

The expression in (38), for instance, can be interpreted
as the density of unpolarized quarks/gluons with momen-
tum fraction x at the transverse position ~bT in a (trans-
versely polarized) proton. This density has a spin-
independent part given by H , and a spin-dependent part
proportional to the derivative of E. Some details on the
physical interpretation of (39) and (40) can be found in
Refs. [38,39].

Because of the spin-dependent term the impact parame-
ter distribution in (38) is not axially symmetric (unless
E0 " 0), i.e., it depends on the direction of ~bT . In other
words, the spin part causes a distortion of the distribution
(38). Note that the RHS in (40) contains two terms provid-
ing a distortion, one determined by the first derivative of
ET ! 2 ~H T and one given by the second derivative of ~H T .
In (41) none of the three terms on the RHS is axially
symmetric. Later on, we will use the results (38)–(41)
and compare them with the corresponding correlators for
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Γ ≡ γ+

Comparing expressions difference is additional factor,        
and integration over       !bIq,i

To unravel a possible connection between the Sivers effect and the GPD Eq, in Ref. [36] the RHS of (70) was
transformed to the impact parameter space, where it takes the form

 hkq;iT !x"iUT # 1

2

Z
d2 ~bT

Z dz$

2!
eixP

%z$hP%; ~0T; Sj ! !z1""%W !z1; z2"Iq;i!z2" !z2"jP%; ~0T; Si; (71)

with z1=2 as given in Eq. (36). Comparing the expression in
(71) with the correlator (34) for the quark GPDs in impact
parameter space (for " # "%) one realizes that the only
difference is the additional factor Iq;i and an integration
upon the impact parameter ~bT [36]. On the basis of this
observation one may hope to find a relation of the type

 hkq;iT !x"iUT #
Z
d2 ~kTkiT#

q!x; ~kT ; S"

’
Z
d2 ~bTIq;i!x; ~bT"F q!x; ~bT; S"; (72)

where, in rough terms, the function Iq;i incorporates the
effect of the gluon field in the correlator on the RHS of
(70). We mention that in the second term on the RHS of
(72) only the spin-dependent term of F q contributes.

Expressed in terms of TMDs and GPDs Eq. (72) reads

 hkq;iT !x"iUT # $
Z
d2 ~kTkiT

#jkT k
j
TS

k
T

M
f?q1T !x; ~k

2
T"

’
Z
d2 ~bTIq;i!x; ~bT"

#jkT b
j
TS

k
T

M
!Eq!x; ~b2T""0:

(73)

Interestingly, the relation (73) is indeed fulfilled in the
context of perturbative low order model calculations [37]
(see also Sec. IV). It also provides an intuitive understand-
ing of the origin of the Sivers transverse SSA [35,36].
However, Eq. (73) does not have the status of a general,
model-independent result (see also, e.g., Ref. [69]). The
crucial problem lies in the fact that, in general, the average
transverse momentum hkq;iT !x"iUT caused by the Sivers
effect cannot be factorized into the function Iq;i (called
lensing function in [36]) and the distortion of the impact
parameter distribution of quarks in a transversely polarized
target which is determined by !Eq"0.

C. Generalization of relations

To get further insight into possible relations between
GPDs and TMDs, which at least may hold in the context of
model calculations, we now follow a procedure given in
Ref. [38]. The equations defining the GPDs in impact
parameter space [see Eqs. (38)–(41)] on the one hand
and the TMDs [see Eqs. (48)–(50) and (52)–(54)] on the
other obviously have a corresponding structure if one
interchanges the impact parameter ~bT and the transverse
momentum ~kT . Comparing these equations one directly
finds out which functions may be related. However, using
this procedure one cannot extract the precise form of the

relations. Note also that the two TMDs g1T and h?1L have no
counterpart on the GPD side, as already pointed out in
Sec. II C. In the following we, respectively, talk about
relations of first, second, third, and fourth type, depending
on the number of derivatives of the involved GPDs in
impact parameter space. In the case of quark distributions
the results given in this subsection were already presented
in Ref. [38]. At this point one has to keep in mind that,
apart from the trivial model-independent relations (rela-
tions of first type), all relations presented in this and the
following subsection so far have only the status of anal-
ogies between functions which follow from obvious anal-
ogies in the structures of the GPD and TMD correlators.
Quantitative relations will be discussed in Sec. IV in con-
nection with model calculations.

First of all, one finds the following connections by
means of the mentioned comparison,

 fq=g1 $ H q=g; gq=g1L $ ~H q=g;
!
hq1T %

~k2T
2M2 h

?q
1T

"
$

!
H q

T $
~b2T
M2 $b

~H q
T

"
;

(74)

which simply correspond to the trivial relations discussed
in Sec. III A.

Relations of second type contain GPDs with one deriva-
tive,

 f?q=g1T $ $!Eq=g"0; h?q1 $ $!EqT % 2 ~H q
T"0;

!
hg1T %

~k2T
2M2 h

?g
1T

"
$ $2

!
H g

T $
~b2T
M2 $b

~H g
T

"0
;

(75)

where the first relation in (75) involving f?q1T and the
derivative of Eq corresponds to Eq. (73). At this point it
is also worthwhile to notice that the computation of the
average transverse momentum of a transversely polarized
quark in an unpolarized target, using the correlator in
Eq. (50), can be carried out completely analogous to
Sec. III B above where the transverse momentum caused
by the Sivers effect is considered. Doing so, one eventually
obtains an equation corresponding to (73), with the quark
Boer-Mulders function h?q1 showing up on the TMD side,
and the first derivative of the linear combination EqT %
2 ~H q

T on the GPD side. On the basis of these considera-
tions one, in particular, also expects the same lensing
function Iq;i to appear in the analogue of Eq. (73). This
feature indeed emerges in the context of the model calcu-
lations presented in Sec. IV. We note that a corresponding
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