Transverse structure of the nucleon

19 May 2010 Jefferson Lab

Leonard Gamberg Penn State University

Outline

- Transverse spin Effects in TSSAs
- Gauge links-Color Gauge Inv.-"T-odd" TMDs
- Transverse Distortion and TSSAs
- Unifying structure GTMDs/Wigner Functions
"QCD calc" FSIs Gauge Links-Color Gauge Inv."T-odd"TMDs
"Pheno" -Transverse Structure TMDs and TSSAs-b and \mathbf{k} asymm An improved dynamical approach for FSIs \& model building

$$
\mathcal{E}\left(x, \mathbf{b}_{\perp}^{2}\right)
$$

Conclusions

- EIC in conjunction w/ Drell Yan can test fundamental factorization theorem of QCD: predicted sign change of Sivers function
- Crucial to have $\mathbf{Q}^{\mathbf{2}}$ range to pin down TMDs in particular Sivers function
- Transverse Distortion/Structure and TSSAs and unintegrated PDFs --- "Wigner functions" are there exclusive processes where they come in?
- Unifying structure GTMDs/Wigner Functions
- Pheno-Transverse Structure TMDs and TSSAs b and k asymm. An improved dynamical approach for FSI \& model building

```
"QCD calc" FSIs Gauge Links-Color Gauge Inv."T-odd"TMDs
```


MORE

- Jet SIDIS
- Extracting weighted TSSAs
- Connection bwtn. gluonic and fermionic poles-twist 3 ETQS approach to TSSAs and the TMD description
- Opportunities to further explore angular momentum sum rule(s)

Transverse SPIN Observables SSA (TSSA) $P^{\dagger} P \rightarrow \pi X$

- Single Spin Asymmetry

Parity Conserving interactions: SSAs Transverse Scattering plane $\Delta \sigma \sim i S_{T} \cdot\left(\mathbf{P} \times P_{\perp}^{\pi}\right)$

- Rotational invariance $\sigma^{\downarrow}\left(x_{F}, \boldsymbol{p}_{\perp}\right)=\sigma^{\uparrow}\left(x_{F},-\boldsymbol{p}_{\perp}\right)$
\Rightarrow Left-Right Asymmetry

$$
\boldsymbol{A}_{N}=\frac{\sigma^{\uparrow}\left(x_{F}, \boldsymbol{p}_{\perp}\right)-\sigma^{\uparrow}\left(x_{F},-\boldsymbol{p}_{\perp}\right)}{\sigma^{\uparrow}\left(x_{F}, \boldsymbol{p}_{\perp}\right)+\sigma^{\uparrow}\left(x_{F},-\boldsymbol{p}_{\perp}\right)} \equiv \Delta \sigma
$$

Reaction Mechanism

* Co-linear factorized QCD-parton dynamics
$\Delta \sigma^{p p^{\uparrow} \rightarrow \pi X} \sim f_{a} \otimes f_{b} \otimes \Delta \hat{\sigma} \otimes D^{q \rightarrow \pi}$
Requires helicity flip-hard part $\Delta \hat{\sigma} \equiv \hat{\sigma}^{\uparrow}-\hat{\sigma}^{\downarrow}$
\star TSSA requires relative phase btwn different helicity amps

$$
\begin{aligned}
& \hat{a}_{N}=\frac{\hat{\sigma}^{\uparrow}-\hat{\sigma}^{\downarrow}}{\hat{\sigma}^{\uparrow}+\hat{\sigma}^{\downarrow}} \sim \frac{\operatorname{Im}\left(\mathcal{M}^{+}{ }^{*} \mathcal{M}^{-}\right)}{\left|\mathcal{M}^{+}\right|^{2}+\left|\mathcal{M}^{-}\right|^{2}} \\
& |\uparrow / \downarrow\rangle=(|+\rangle \pm i|-\rangle)
\end{aligned}
$$

Factorization Theorem in QCD Helicity limit....triviality.....

$+$

- QCD interactions conserve helicity $m_{q} \rightarrow 0$ and Born amplitudes real
$\star A_{N} \sim \frac{m_{q} \alpha_{s}}{E}$ Kane, Repko, PRL:1978 Twist three and trival?!

Not the full storyo...Twist 3 approach ETQS approach
Phases in soft poles of propagator in hard subprocess Efremov \& Teryaev :PLB 1982
Qiu-Sterman:PLB 1991, 1999, Koike et al. PLB 2000. . . 2007,
Ji,Qiu,Vogelsang,Yuan:PR 2006,2007. . .

Large Transverse Polarization in Inclusive Reactions $P^{\uparrow} P \rightarrow \pi X$

W.H. Dragoset et al.,
PRL 36, 929 (1976)

FNAL-E704
PLB261, 201 (1991), PLB264, 462 (1991)

Argonne ZGS, $\mathrm{p}_{\text {beam }}=12 \mathrm{GeV} / \mathrm{c}$

Polarization in inclusive Λ and $\bar{\Lambda}$ production at large p_{T}

B. Lundberg,* R. Handler, L. Pondrom, M. Sheaff, and C. Wilkinson ${ }^{\dagger}$ Physics Department, University of Wisconsin, Madison, Wisconsin 53706

FIG. 4. The Λ polarization is shown as a function of x_{F} for all production angles. Over this range of production angles and within experimental uncertainties, the polarization is angle (or p_{T}) independent.

$$
P_{\Lambda}=\frac{\sigma^{p p \rightarrow \Lambda^{\uparrow} X}-\sigma^{p p \rightarrow \Lambda^{\downarrow} X}}{\sigma^{p p \rightarrow \Lambda^{\uparrow} X}+\sigma^{p p \rightarrow \Lambda^{\downarrow} X}}
$$

FIG. 5. Inclusive Λ polarization as a function of p_{T} with \boldsymbol{x}_{F} restricted to each of the four ranges indicated in (a)-(d). The data plotted are from this experiment and Refs. 3, 23, and 24. All four experiments used the same spectrometer and measurement techniques. Errors when not shown are smaller than the points. The lines are a fit to the $p+\mathrm{Be}$ data using Eq. (9). Note that some of the scatter in the points is due to differences in the values of x_{F} at which they were measured.

Transverse SSA's at $\sqrt{ } \mathrm{s}=62.4 \& 200 \mathrm{GeV}$ at RHIC

PH ENIX
$p+p \rightarrow \pi^{0}+X$ at $\sqrt{s}=62.4 \mathrm{GeV}$

$$
\ell p \rightarrow \ell^{\prime} \pi X
$$

Collins Asymmetry

Compass-proton data 2007 comparison w/ HERMES-Collins

D. Hasch INT-I 2 GeV

TSSAs thru "T-odd" non-pertb. spin-orbit correlations....

Sensitivity to $p_{T} \sim \mathbf{k}_{T} \ll \sqrt{Q^{2}}$

- Sivers PRD: 1990 TSSA is associated $w /$ correlation transverse spin and momenta in initial state hadron

$\Delta \sigma^{p p^{\uparrow} \rightarrow \pi X} \sim D \otimes f \otimes \Delta f^{\perp} \otimes \hat{\sigma}_{B o r n} \Longrightarrow \Delta \boldsymbol{f}^{\perp}\left(\boldsymbol{x}, \boldsymbol{k}_{\perp}\right)=\boldsymbol{i S}_{\boldsymbol{T}} \cdot\left(\boldsymbol{P} \times \boldsymbol{k}_{\perp}\right) f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{\perp}\right)$
- Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting quark and transverse momentum of final state hadron

$\Delta \sigma^{e p^{\uparrow} \rightarrow e \pi X} \sim \Delta D^{\perp} \otimes f \otimes \hat{\sigma}_{B o r n} \Rightarrow \Delta D^{\perp}\left(x, \boldsymbol{p}_{\perp}\right)=\boldsymbol{i s}_{\boldsymbol{T}} \cdot\left(\boldsymbol{P} \times \boldsymbol{p}_{\perp}\right) H_{1}^{\perp}\left(x, \boldsymbol{p}_{\perp}\right)$

Mechanism-FSI produce phases in TSSAs at Leading Twist

O Brodsky, Hwang, Schmidt PLB: 2002 SIDIS w/ transverse polarized nucleon target

$$
e p^{\uparrow} \rightarrow e \pi X
$$

Collins PLB 2002- Gauge link Sivers function doesn't vanish

O Ji, Yuan PLB: 2002 -Sivers fnct. FSI emerge from Color Gauge-links
O LG, Goldstein, Oganessyan 2002, 2003 PRD Boer-Mulders Fnct, and Sivers -spectator model

O LG, M. Schlegel, PLB 2010 Boer-Mulders Fnct, and Sivers beyond summing the FSIs through the gauge link

Factorization Sensitivity to $\quad P_{T} \sim k_{\perp} \longrightarrow$ TMDs

Fig. 2. Parton model for semi-inclusive deeply inelastic scattering.

3.4. FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM AND POLARIZATION

We now explain factorization for the semi-inclusive deep inelastic cross section when the incoming hadron A is transversely polarized but the lepton remains unpolarized. (It is left as an exercise to treat the most general case.) The factorization theorems, eq. (12) and eq. (14), continue to apply when we include polarization for the incoming hadron, but with the insertion of helicity density matrices for in and out quarks; this is a simple generalization of the results in refs. [10,23].
Ralston Spoper NPB I979, Collins NPB 1993

$$
E^{\prime} E_{B} \frac{\mathrm{~d} \sigma}{\mathrm{~d}^{3} l^{\prime} \mathrm{d}^{3} p_{B}}=\sum_{a} \int \mathrm{~d} \xi \int \frac{\mathrm{~d} \zeta}{\zeta} \int \mathrm{~d}^{2} k_{a \perp} \int \mathrm{~d}^{2} k_{b \perp} \hat{f_{a / A}}\left(\xi, k_{a \perp}\right)
$$

$$
\times E^{\prime} E_{k_{b}} \frac{\mathrm{~d} \hat{\sigma}}{\mathrm{~d}^{3} l^{\prime} \mathrm{d}^{3} k_{b}} \hat{D}_{B / a}\left(\zeta, k_{b \perp}\right)+Y\left(x_{\mathrm{Bj}}, Q, z, q_{\perp} / Q\right)
$$

The function $\hat{f_{a / A}}$ defined earlier gives the intrinsic transverse-momentum dependence of partons in the initial-state hadron. Similarly, $\hat{D}_{B / a}$ gives the distribution of hadrons in a parton, with $k_{b \perp}$ being the transverse momentum of the parton relative to the hadron.

Factorization parton model, P_{T} of the hadron is small!

$$
W^{\mu \nu}\left(q, P, S, P_{h}\right) \approx \sum_{a} e^{2} \int \frac{d^{2} \mathbf{p}_{T} d p^{-} d p^{+}}{(2 \pi)^{4}} \int \frac{d^{2} \mathbf{k}_{T} d k^{-} d k^{+}}{(2 \pi)^{4}} \delta\left(p^{+}-x_{B} P^{+}\right) \delta\left(k^{-}-\frac{P_{h}^{-}}{z}\right) \delta^{2}\left(\mathbf{p}_{T}+\mathbf{q}_{T}-\mathbf{k}_{T}\right)
$$ integrate out small momenta components

$$
\times \operatorname{Tr}\left[\Phi(p, P, S) \gamma^{\mu} \Delta\left(k, P_{h}\right) \gamma^{\nu}\right]
$$

$W^{\mu \nu}\left(q, P, S, P_{h}\right)=\int \frac{d^{2} \mathbf{p}_{T}}{(2 \pi)^{4}} \int \frac{d^{2} \mathbf{k}_{T}}{(2 \pi)^{4}} \delta^{2}\left(\mathbf{p}_{T}-\frac{\mathbf{P}_{h \perp}}{z}-\mathbf{k}_{T}\right) \operatorname{Tr}\left[\left(\int d p^{-} \Phi\right) \gamma^{\mu}\left(\int d k^{+} \Delta\right) \gamma^{\nu}\right]$

Small transverse momentum

$$
\left.\Phi\left(x, \mathbf{p}_{T}, S\right) \equiv \int d p^{-} \Phi(p, P, S)\right|_{p^{+}=x_{B} P^{+}}
$$

Integration support for integrals is where transverse momentum is small-"cov parton model" e.g. Landshoff Polkinghorne NPB28, 197 I

Extend Parton Model result-Gauge Links

-What are the "leading order" gluons that implement color gauge invariance?
\bullet How is the correlator modified?

$$
H_{\rho, \nu}=\gamma^{\nu}
$$

"T-Odd" Effects From Color Gauge Inv.Via Gauge links

Gauge link determined re-summing gluon interactions btwn soft and hard
Efremov,Radyushkin Theor. Math. Phys. 1981
Belitsky, Ji, Yuan NPB 2003,
Boer, Bomhof, Mulders Pijlman, et al. 2003-2008- NPB, PLB, PRD

$$
\Phi^{[\mathcal{U}[\mathcal{C}]]}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{2(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) \mathcal{U}_{[0, \xi]}^{[C]} \psi\left(\xi^{-}, \xi_{T}\right)|P\rangle\right|_{\xi^{+}=0}
$$

Summing gauge link with color LG, M. Schlegel PLB 2010

- The path $[C]$ is fixed by hard subprocess within hadronic process.

Wilson Line = Gauge links

$$
U_{\left[z_{1}, z_{2}\right]}^{s}=\mathcal{W}\left[z_{1} ; z_{2}\right]=\left[z_{1} ; z_{2}\right]=\mathcal{P} \mathrm{e}^{-i g \int_{z_{1}}^{z_{2}} d s \cdot A(s)}
$$

Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}\left[f_{1} D_{1}\right] \\
& =\int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}\right) U\left(l_{T}^{2}, \mu^{2}\right) H\left(Q^{2}, \mu^{2}\right) \\
& \text { TMD PDF }
\end{aligned}
$$

"Generalized Universality" Fund. Prediction of QCD Factorization

$$
f_{1 T_{s i d i s}}^{\perp}\left(x, k_{T}\right)=-f_{1 T_{D Y}}^{\perp}\left(x, k_{T}\right) \quad p_{T} \sim \mathbf{k}_{T} \ll \sqrt{Q^{2}}
$$

EIC conjunction with DY exp. E906-Fermi, RHIC II, Compass, JPARC

Process Dependence, Collins plb 02, Brodsky et al. NPB 02, Boer Mulders Pijlman Bomhoff 03,04 ...

$$
\Phi^{[+] *}\left(x, p_{T}\right)=i \gamma^{1} \gamma^{3} \Phi^{[-]}\left(x, p_{T}\right) i \gamma^{1} \gamma^{3}
$$

Correlator is Matrix in Dirac space

$$
\begin{aligned}
& \Phi_{j i}(p ; P, S)=\int \frac{d^{4} \xi}{(2 \pi)^{4}} e^{i p \cdot \xi}\langle P S| \bar{\psi}_{i}(0) \psi_{j}(\xi)|P S\rangle \\
& \Phi_{j i}\left(x, \mathbf{p}_{T}\right)=\left.\int \frac{d p^{-}}{2} \Phi_{j i}(p, P, S)\right|_{p^{+}=x P^{+}} \\
& \Phi_{j i}\left(x, \mathbf{p}_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi}{2(2 \pi)^{3}} e^{i p \cdot \xi}\langle P S| \bar{\psi}_{i}(0) \psi_{j}(\xi)|P S\rangle\right|_{x^{+}=0}
\end{aligned}
$$

Decompose into basis of Dirac matricies
$1, \gamma_{5}, \gamma^{\mu}, \gamma^{\mu} \gamma_{5}, \mathrm{i} \sigma^{\mu v} \gamma_{5}$

Hermiticity:
parity:

$$
\begin{aligned}
& \Phi(p, P, S)=\gamma^{0} \Phi^{\dagger}(p, P, S) \gamma^{0} \\
& \Phi(p, P, S)=\gamma^{0} \Phi(\tilde{p}, \tilde{P},-\tilde{S}) \gamma^{0}
\end{aligned}
$$

Leading Twist TMDs from Correlator

$$
\begin{aligned}
& \Phi^{\left[\gamma^{+}\right]}\left(x, \boldsymbol{p}_{T}\right) \equiv f_{1}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\epsilon_{T}^{i j} p_{T i} S_{T j}}{M} f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& \Phi^{\left[\gamma^{+} \gamma \overline{ }\right]}\left(x, \boldsymbol{p}_{T}\right) \equiv \lambda g_{1 L}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\boldsymbol{p}_{T} \cdot \boldsymbol{S}_{T}}{M} g_{1 T}\left(x, \boldsymbol{p}_{T}^{2}\right) \\
& \Phi^{\left[i \sigma^{i}+\gamma\right]}\left(x, \boldsymbol{p}_{T}\right) \equiv S_{T}^{i} h_{1 T}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{p_{T}^{i}}{M}\left(\lambda h_{1 L}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\boldsymbol{p}_{T} \cdot \boldsymbol{S}_{T}}{M} h_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)\right) \\
& +\frac{\epsilon_{T}^{i j} p_{T}^{j}}{M} h_{1}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)
\end{aligned}
$$

"Avakian Mulders-tableau"

Integrated pdfs

$$
f(x)=\int \mathrm{d}^{2} \boldsymbol{p}_{T} f\left(x, \boldsymbol{p}_{T}^{2}\right)
$$

Transversity

$$
h_{1}(x)=\int \mathrm{d}^{2} \boldsymbol{p}_{T}\left(h_{1 T}\left(x, \boldsymbol{p}_{T}^{2}\right)+\frac{\boldsymbol{p}_{T}^{2}}{2 M^{2}} h_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}^{2}\right)\right)
$$

TSSAs in SIDIS

$$
d^{6} \sigma=\hat{\sigma}_{\text {hard }} \mathcal{C}[w f D]
$$

Structure functions that are extracted

$$
\mathcal{F}_{A B}=\mathcal{C}[w f D]
$$

$$
\mathcal{C}[w f D]=\sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f^{a}\left(x, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right)
$$

Transverse Spin Observables and TMD Correlators in SIDIS

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{p}_{T}\right)=\frac{1}{2}\left\{f_{1}\left(x, \boldsymbol{p}_{T}\right) \not P+i h_{1}^{\perp}\left(x, \boldsymbol{p}_{T}\right) \frac{\left[\boldsymbol{p}_{T}, \not P\right]}{2 M}-f_{1 T}^{\perp}\left(x, \boldsymbol{p}_{T}\right) \frac{\epsilon_{T}^{i j} p_{T i} S_{T j}}{M} \not P \cdots\right\} \\
& \Delta\left(z, \boldsymbol{k}_{T}\right)=\frac{1}{4}\left\{z D_{1}\left(z, \boldsymbol{k}_{T}\right) \not P_{h}+i z H_{1}^{\perp}\left(z, \boldsymbol{k}_{T}\right) \frac{\left[k_{T}, \not P_{h}\right]}{2 M_{h}}-z D_{1 T}^{\perp}\left(z, \boldsymbol{k}_{T}\right) \frac{\epsilon_{T}^{i j} k_{T i} S_{T j}}{M_{h}} \not P_{h}+\cdots\right\}
\end{aligned}
$$

SIDIS cross section

$d \sigma_{\{\lambda, \Lambda\}}^{\ell N \rightarrow \ell \pi X} \quad \propto \quad f_{1} \otimes d \hat{\sigma}^{\ell q \rightarrow \ell q} \otimes D_{1}+\frac{k_{\perp}}{Q} f_{1} \otimes d \hat{\sigma}^{\ell q \rightarrow \ell q} \otimes D_{1} \cdot \cos \phi$

Leading Twist Contributions

Anselmino et al. PRD 05, EPJA 08

Simultaneous fit of pion and kaon data from HERMES and COMPASS

SeeTalk of Alexei Prokudin

Fig. 7. The Sivers distribution functions for u and d flavours, at the scale $Q^{2}=2.4(\mathrm{GeV} / c)^{2}$, as determined by our present fit (solid lines), are compared with those of our previous fit [2] of SIDIS data (dashed lines), where π^{0} and kaon productions were not considered and only valence quark contributions were taken into account. This plot clearly shows that the Sivers functions previously found are consistent, within the statistical uncertainty bands, with the Sivers functions presently obtained.

Some snapshots of EIC

EIC © $\sqrt{s}=20 \mathrm{GeV}$

EIC © $\sqrt{s}=65 \mathrm{GeV}$

Biggest asymmetries are at $x \sim 0.2$.
Wide range of Q^{2} at some fixed x is plausible.
Increasing the energy we go to the low-x region, but loose Q^{2} range at moderate x. One of the advantages of EIC is a possibility to vary the energy and to accommodate appropriate $x-Q^{2}$ range.

$2+1$ Dimensions Transverse Structure and TSSAs and TMDs

Intuitive picture of Sivers asymmetry:
 Spatial distortion in transverse plane due to polarization
 + FSI leads to observable effect
 non-zero Left Right (Sivers) momentum asymmetry
 M. Burkardt [Nucl.Phys. A735, 185], [PRD66, 114005]

Transverse Structure-Consider "3-D" Parton Structure

Uncertainty Princ. doesn't forbid simultaneous info longitudinal momentum and transverse position of partons "Impact Parameter PDFs"

$$
\left(\overrightarrow{\mathbf{b}}_{\perp} \& x\right) \quad \longleftrightarrow f\left(x, \mathbf{b}_{\perp}\right)
$$

form factors
location of partons in nucleon
parton distributions
longitudinal momentum fraction X

D. Hasch's talk M. Vanderhaeghen

Pictures of Andre Belitsky

Remind ourselves of Some simple relations for FFs and forward PDFs

$$
\begin{aligned}
\int_{-1}^{1} d x H^{q}(x, \xi, t) & =F_{1}^{q}(t) \\
\int_{-1}^{1} d x E^{q}(x, \xi, t) & =F_{2}^{q}(t) \\
\int_{-1}^{1} d x \tilde{H}^{q}(x, \xi, t) & =G_{A}^{q}(t) \\
\int_{-1}^{1} d x \tilde{E}^{q}(x, \xi, t) & =G_{P}^{q}(t)
\end{aligned}
$$

Trivial Relations are well-known:

$$
f_{1}(x)=H(x, 0,0)=\int d^{2} k_{T} f_{1}\left(x, \vec{k}_{T}^{2}\right)=\int d^{2} b_{T} \mathcal{H}\left(x, \vec{b}_{T}^{2}\right)
$$

$$
g_{1}(x)=\tilde{H}(x, 0,0)=\int d^{2} k_{T} g_{1 L}\left(x, \vec{k}_{T}^{2}\right)
$$

$$
h_{1}(x)=H_{T}(x, 0,0)=\int d^{2} k_{T} h_{1}\left(x, \vec{k}_{T}^{2}\right)
$$

model-independent, integrated relations

Explore connection FSIs-Links \& Transv. Distortion

Non-perturbative calculation of FSIs

W~

L.G. \& Marc Schlegel

Phys.Lett.B685:95-103, 2010 \&
Mod.Phys.Lett.A24:2960-2972,2009

Used to predicting sign of TSSA-Sivers

Burkardt 02,04 NPA PRD
$\boldsymbol{d}_{q}^{y^{\vdots}=\frac{1}{2 M} \int d x \int d^{2} \mathbf{b}_{\perp} \mathcal{E}_{q}\left(x, \mathbf{b}_{\perp}\right)}$

$$
=\frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{F_{2, q}(0)}{2 M}=\frac{\kappa}{2 M}
$$

$$
\kappa^{p}=1.79, \quad \kappa^{n}=-1.91
$$

$\longrightarrow \kappa^{u / p}=1.67, \quad \kappa^{d / p}=-2.03$

$$
f_{1 T}^{\perp(u)}=\operatorname{neg} \quad \& \quad f_{1 T}^{\perp(d)}=\operatorname{pos}
$$

Anselmino et al. PRD 05, EPJA 08

Fig. 7. The Sivers distribution functions for u and d flavours, at the scale $Q^{2}=2.4(\mathrm{GeV} / c)^{2}$, as determined by our present fit (solid lines), are compared with those of our previous fit [2] were not considered and only valence quark contributions were were in count This plot clearly shows that the Sivers func tions previously found are consistent, within the statistical tion pind with the Sivers fuction prestly obtain

Sivers
Gamberg, Goldstein, Schlegel PRD 77, 2008

FIG. 5 (color online). The first moment of the Boer-Mulders and Sivers functions versus x for $\kappa=1.0$.

"Spin-Orbit kinematics"

Analysis of correlators for TMDs and IP-GPDs similar forms

Burkhardt-02 PRD \& ... Diehl Hagler-05 EPJC,
Meissner, Metz, Goeke 07 PRD

$$
\begin{aligned}
\Phi^{q}\left(x, \vec{k}_{T} ; S\right) & =f_{1}^{q}\left(x, \vec{k}_{T}^{2}\right)-\frac{\epsilon_{T}^{i j} k_{T}^{i} S_{T}^{j}}{M} f_{1 T}^{\perp q}\left(x, \vec{k}_{T}^{2}\right) \\
\mathcal{F}^{q}\left(x, \vec{b}_{T} ; S\right) & =\mathcal{H}^{q}\left(x, \vec{b}_{T}^{2}\right)+\frac{\epsilon_{T}^{i j} b_{T}^{i} S_{T}^{j}}{M}\left(\mathcal{E}^{q}\left(x, \vec{b}_{T}^{2}\right)\right)^{\prime}
\end{aligned}
$$

$\mathbf{k}_{T} \leftrightarrow \mathbf{b}_{T} \quad$ Not conjugates (!) and ...
$f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)$
"Naive T-odd"
$\left(\mathcal{E}\left(x, \vec{b}_{T}^{2}\right)\right)^{\prime} \quad$ "Naive T-even"
FSIs needed.... Burkardt PRD 02 \& NPA 04 How do we test this further?

DVCS Factorizes into hard and soft \longrightarrow GPDs

Collins \& Freund PRD (1999)
Collins Frankfurt Strikman (1997) DVMP
\&
X. Ji, PRL (1997); PRD(I997)
A.V. Radyushkin, PLB (I996); PRD (I997)

$$
F^{[\Gamma]}\left(x, \xi, t ; \lambda, \lambda^{\prime}\right)=\left.\int \frac{d z^{-}}{(4 \pi)} e^{i x P^{+} z^{-}}\left\langle P^{\prime} ; \lambda^{\prime}\right| \bar{q}\left(\frac{-z}{2}\right) \Gamma \mathcal{W}\left(-\frac{z}{2}, \frac{z}{2}\right) q\left(\frac{z}{2}\right)|P ; \lambda\rangle\right|_{z^{+}=\mathbf{z}_{\perp}=0}
$$

Eight GPDs H unpol \& E-helicity flip
$F^{q\left[\gamma^{+}\right]}\left(x, \Delta ; \lambda, \lambda^{\prime}\right)=\frac{1}{2 P^{+}} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left(\gamma^{+} H^{q}(x, \xi, t)+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 M} E^{q}(x, \xi, t)\right) u(p, \lambda)$,

Fourier transform of GPD $F\left(x, 0, \vec{\Delta}_{T}\right) @ \xi=0$

$$
\begin{aligned}
& \text { Burkardt PRD 00, 02, 04... } \\
& \text { Localizing partons: impact parameter } \\
& \text { - states with definite light-cone momentum } p^{+} \\
& \text {and transverse position (impact parameter): } \\
& \text { Soper PRD1977 }\left|p^{+}, b\right\rangle=\int d^{2} \boldsymbol{p} e^{-i b \boldsymbol{p}}\left|p^{+}, \boldsymbol{p}\right\rangle \\
& \begin{array}{r}
\mathcal{F}(x, \vec{b})=\int \frac{d z^{-}}{(2 \pi)^{2}} e^{i x P^{+} z^{-}}\left\langle P^{+} ; \overrightarrow{0}_{T}\right| \bar{q}\left(z_{1}\right) \mathcal{W}\left(z_{1}, z_{2}\right) q\left(z_{2}\right)\left|P^{+} ; \overrightarrow{0}_{T}\right\rangle \\
z_{1 / 2}= \pm \frac{z^{-}}{2} n_{-}+\frac{\vec{b}_{T}}{2}
\end{array} \\
& \mathcal{F}(x, \vec{b})=\int \frac{d^{2} \Delta_{T}}{(2 \pi)^{2}} e^{i \vec{\Delta}_{T} \cdot \vec{b}} F\left(x, 0, \vec{\Delta}_{T}\right) \\
& \text { F.T. } \\
& =\mathcal{H}(x, \vec{b})+\frac{\epsilon_{T}^{i j} b_{T}^{i} S_{T}^{j}}{M}(\mathcal{E}(x, \vec{b}))^{\prime} \quad \vec{b} \leftrightarrow \vec{\Delta}_{T}
\end{aligned}
$$

Prob. of finding unpol. quark w/ long momentum x at position b_{T} in trans. polarized $S_{\text {T nucleon: spin independent }}^{\mathcal{H}}$ and spin flip part \mathcal{E}^{\prime}

What observable to test this possible connection btnw TMD and Impact par. picture? Gluoní Pole ME

$$
\left\langle k_{T}^{i}\right\rangle_{T}(x)=\int d^{2} k_{T} k_{T}^{i} \frac{1}{2}\left[\operatorname{Tr}\left[\gamma^{+} \Phi\left(\vec{S}_{T}\right)\right]-\operatorname{Tr}\left[\gamma^{+} \Phi\right]\left(-\vec{S}_{T}\right)\right]
$$

$$
\begin{gathered}
\left\langle k_{T}^{i}\right\rangle(x)=\int d^{2} b_{T} \int \frac{d z^{-}}{2(2 \pi e} e^{i x P^{+} z}\left\langle P^{+} ; \overrightarrow{0}_{T} ; S_{T}\right| \bar{\psi}\left(z_{1}\right) \gamma^{+}\left[z_{1} ; z_{2}\right] I^{i}\left(z_{2}\right) \\
\left.z_{1 / 2}=\mp \frac{z^{-}}{2} n_{-}+b_{T} \quad \text { Impact parameter }\right)\left|P^{+} ; \overrightarrow{0}_{T} ; S_{T}\right\rangle \\
I^{i}\left(z^{-}\right)=\int d y^{-}\left[z^{-} ; y^{-}\right] g F^{+i}\left(y^{-}\right)\left[y^{-} ; z^{-}\right] \quad \text { Soft gluonic pole op }
\end{gathered}
$$

Conjecture: factorization of FSI and spatial distortion:

$$
\begin{gathered}
\left\langle k_{T}^{i}\right\rangle(x)=M \epsilon_{T}^{i j} S_{T}^{i} f_{1 T}^{\perp(1)} \approx \int d^{2} b_{T} \mathcal{I}^{i}\left(x, \vec{b}_{T}^{2}\right) \frac{\vec{b}_{T} \times \vec{S}_{T}}{M} \frac{\partial}{\partial b_{T}^{2}} \mathcal{E}\left(x, \vec{b}_{T}^{2}\right) \\
\mathcal{I}^{i}\left(x, \vec{b}_{T}^{2}\right) \quad \text { Lensing Function }
\end{gathered}
$$

Boer Mulders as well ...

- Av. transv. momentum of transv. pol. partons in an unpol. hadron:

$$
\left\langle k_{T}^{i}\right\rangle^{j}(x)=\int d^{2} k_{T} k_{T}^{i} \frac{1}{2}\left(\Phi^{\left[i \sigma^{i+} \gamma^{5}\right]}(S)+\Phi^{\left[i \sigma^{i+} \gamma^{5}\right]}(-S)\right)
$$

$$
-2 M^{2} h_{1}^{\perp,(1)}(x) \simeq \int d^{2} b_{T} \overrightarrow{b_{T}} \cdot \overrightarrow{\mathcal{I}}\left(x, \vec{b}_{T}\right) \frac{\partial}{\partial b_{T}^{2}}\left(\mathcal{E}_{T}+2 \tilde{\mathcal{H}}_{T}\right)\left(x, \vec{b}_{T}^{2}\right)
$$

Diehl \& Hagler EJPC (05), Burkardt PRD (04)

Sivers Function in this approach

- Relativistic Eikonal models: Treat FSI non-perturbatively.

For Details see extra slides and

L.G. \& Marc Schlegel

Phys.Lett.B685:95-103,2010 \& in prep for Sivers...

- Relativistic Eikonal models: Treat FSI non-perturbatively.

We calc "W" again....

$$
\epsilon_{T}^{i j} k_{T}^{i} S_{T}^{j} f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right)=-\frac{M}{8(2 \pi)^{3}(1-x) P^{+}}\left(\left.\bar{W} \gamma^{+} W\right|_{S_{T}}-\left.\bar{W} \gamma^{+} W\right|_{-S_{T}}\right)
$$

$\Delta W(P, k)=\int \frac{d^{4} q}{(2 \pi)^{4}} g_{N}\left[(P-q)^{2}\right] \frac{\left[\left(P-q q+m_{q}\right) u(P, S)\right]_{i} \mathcal{M}_{b c}^{a b}(q, P-k)}{[n \cdot(P-k-q)+i \varepsilon]\left[(P-q)^{2}+m_{q}^{2}+i \varepsilon\right]\left[q^{2}-m_{s}^{2}+i \varepsilon\right]}$

- Step 1: Integration over q":

color indices suprsd.

Assume no $\mathbf{q}^{-} \& \mathbf{q}^{+}$poles in M.
\mathbf{q}^{-}- poles at one loop for higher twist T-odd TMDs [Gamberg, Hwang, Metz, MS, PLB 639, 508]

- Step 2: Integration over q. ${ }^{+}$

$$
\frac{1}{(1-x) P^{+}-q^{+}+i \varepsilon}=\mathrm{P} \frac{1}{(1-x) P^{+}-q^{+}}-i \pi \delta\left((1-x) P^{+}-q^{+}\right)
$$

Fix the q^{+}- pole
emphasizes a "natural" picture of FSI
equivalent to Cutkosky cut, assumptions of Step 1 valid in Eikonal models

Lensing Function

Assume a non-perturbative scattering amplitude M +
Separate GPD and FSI via contour integration

Contour integration \rightarrow cut diagram \rightarrow enforces "natural" picture of FSI

$$
f_{1 T}^{\perp,(1) u}(x)=-\frac{1}{2(1-x) M^{2}} \int \frac{d^{2} q_{T}}{(2 \pi)^{2}} q_{T}^{y} I^{y}\left(x, \vec{q}_{T}\right) \dot{F}^{u}\left(x, 0,-\frac{\vec{q}_{T}^{2}}{(1-x)^{2}}\right)
$$

$$
I^{i}\left(x, \vec{q}_{T}\right)=\int \frac{d^{2} p_{T}}{(2 \pi)^{2}}\left(2 p_{T}-q_{T}\right)^{i} \Im M_{b c}^{a b}\left(\left|\vec{p}_{T}\right|\right)\left((2 \pi)^{2} \delta^{a c} \delta^{(2)}\left(\vec{p}_{T}-\vec{q}_{T}\right)+\Re M_{d a}^{c d}\left(\left|p_{T}-q_{T}\right|\right)\right)
$$

- More or less "realistic" model for $M \rightarrow$ allows for numerical comparison
- Sivers function from HERMES/COMPASS data, GPD E from models or parameterizations

Eikonal Color calculation

Abarabanel Itzykson PRL 69
Gamberg Milton PRD 1999
Fried et al. 2000
$G_{\mathrm{eik}}^{a b}(x, y \mid A)=-i \int_{0}^{\infty} d s \mathrm{e}^{-i s\left(m_{q}-i 0\right)} \delta^{(4)}(x-y-s v)\left(\mathrm{e}^{-i g \int_{0}^{s} d \beta v \cdot A^{\alpha}(y+\beta v) t^{\alpha}}\right)_{+}^{a b}$
Trick to disentangle the A-field and the color matrices t: Functional FT

$$
\left(\mathrm{e}^{-i g \int_{0}^{s} d \beta v \cdot A^{\alpha}(y+\beta v) t^{\alpha}}\right)_{+}^{a b}=\mathcal{N}^{\prime} \int \mathcal{D} \alpha \int \mathcal{D} u \mathrm{e}^{i \int d \tau \alpha^{\beta}(\tau) u^{\beta}(\tau)} \mathrm{e}^{i g \int d \tau \alpha^{\beta}(\tau) v \cdot A^{\beta}(y+\tau v)}\left(\mathrm{e}^{i \int_{0}^{s} d \tau t^{\beta} u^{\beta}(\tau)}\right)_{+}^{a b}
$$

FLOW CHART for calculation of Boer Mulders

L.G. \& Marc Schlegel

Phys.Lett.B685:95-103,2010 $\boldsymbol{\mathcal { E }}$ Mod.Phys.Lett.A24:2960-2972,2009.

$$
\begin{gathered}
2 m_{\pi}^{2} h_{1}^{\perp(1)}(x) \simeq \int d^{2} b_{T} \vec{b}_{T} \cdot \overrightarrow{\mathcal{I}}\left(x, \vec{b}_{T}\right) \frac{\partial}{\partial \vec{b}_{T}^{2}} \mathcal{H}_{1}^{\pi}\left(x, \vec{b}_{T}^{2}\right) \\
I^{i}\left(x, \vec{q}_{T} \sqrt{N_{c}} \int \frac{d^{2} p_{T}}{(2 \pi)^{2}}\left(2 p_{T}-q_{T}\right)^{i}\left(\mathfrak{T}\left[\overline{\mathrm{M}}^{\mathrm{eik}}\right]\right)_{\delta \beta}^{\alpha \delta}\left(\left|\vec{p}_{T}\right|\right)\right. \\
\left((2 \pi)^{2} \delta^{\alpha \beta} \delta^{(2)}\left(\vec{p}_{T}-\vec{q}_{T}\right)+\left(\mathfrak{R}\left[\overline{\mathrm{M}}^{\mathrm{eik}}\right]\right)_{\gamma \alpha}^{\beta \gamma}\left(\left|\vec{p}_{T}-\vec{q}_{T}\right|\right)\right) . \\
\left(\mathrm{M}^{\mathrm{eik}}\right)_{\delta \beta}^{\alpha \delta}\left(x,\left|\vec{q}_{T}+\vec{k}_{T}\right|\right)=\frac{(1-x) P^{+}}{m_{s}} \int d^{2} z_{T} \mathrm{e}^{-i \vec{z}_{T} \cdot\left(\vec{q}_{T}+\vec{k}_{T}\right)}(20) \\
\times\left[\int d^{N_{c}^{2}-1} \alpha \int \frac{d^{N_{c}^{2}-1} u}{(2 \pi)^{N_{c}^{2}-1}} \mathrm{e}^{-i \alpha \cdot u}\left(\mathrm{e}^{i \chi\left(\left|\vec{z}_{T}\right|\right) \cdot \alpha}\right)_{\alpha \delta}\left(\mathrm{e}^{i t \cdot u}\right)_{\delta \beta}-\delta_{\alpha \beta}\right] \\
\\
f_{\alpha \beta}(\chi) \equiv \int d^{N_{c}^{2}-1} \alpha \int \frac{d^{N_{c}^{2}-1} u}{(2 \pi)^{N_{c}^{2}-1}} \mathrm{e}^{-i \alpha \cdot u}\left(\mathrm{e}^{i \chi\left(\left|\vec{z}_{T}\right|\right) t \cdot \alpha}\right)_{\alpha \delta}\left(\mathrm{e}^{i t \cdot u}\right)_{\delta \beta}-\delta_{\alpha \beta}
\end{gathered}
$$

COLOR FACTOR!

$$
\mathcal{I}^{i}\left(x, \vec{b}_{T}\right)=\frac{(1-x)}{2 N_{c}} \frac{b_{T}^{l}}{\left|\vec{b}_{T}\right|} \frac{\chi^{\prime}}{4} C\left[\frac{\chi}{4}\right],
$$

$$
\begin{align*}
& \text { Eikonal Phase } \\
& \alpha_{s}\left(\mu^{2}\right)=\frac{\alpha_{s}(0)}{\ln \left[\mathrm{e}+\mathrm{a}_{1}\left(\mu^{2} / \Lambda^{2}\right)^{\mathrm{a}_{2}}+\mathrm{b}_{1}\left(\mu^{2} / \Lambda^{2}\right)^{\mathrm{b}_{2}}\right]} . \tag{35}\\
& \text { The values for the fit parameters are } \Lambda=0.71 \mathrm{GeV}, a_{1}=1.106 \text {, } \tag{36}\\
& a_{2}=2.324, b_{1}=0.004 \text { and } b_{2}=3.169 \text {. These calculations } \\
& \chi^{D S}\left(\left|\vec{z}_{T}\right|\right)=2 \int_{0}^{\infty} d k_{T} k_{T} \alpha_{s}\left(k_{T}^{2}\right) J_{0}\left(\left|\vec{z}_{T}\right| k_{T}\right) Z\left(k_{T}^{2}, \Lambda_{Q C D}^{2}\right) / k_{T}^{2} . \\
& \begin{aligned}
Z\left(p^{2}, \mu^{2}\right) & =p^{2} \mathcal{D}^{-1}\left(p^{2}, \mu^{2}\right) \\
& =\left(\frac{\alpha_{s}\left(p^{2}\right)}{\alpha_{s}\left(\mu^{2}\right)}\right)^{1+2 \delta}\left(\frac{c\left(\frac{p^{2}}{\Lambda^{2}}\right)^{K}+d\left(\frac{p^{2}}{\Lambda^{2}}\right)^{2 \kappa}}{1+c\left(\frac{p^{2}}{\Lambda^{2}}\right)^{K}+d\left(\frac{p^{2}}{\Lambda^{2}}\right)^{2 K}}\right)^{2},
\end{aligned}
\end{align*}
$$

with the parameters $c=1.269, d=2.105$, and $\delta=-\frac{9}{44}$.

Lensing Function

Express Lensing Function in terms of Eikonal Phase:

$$
\mathcal{I}_{(N=1)}^{i}\left(x, \vec{b}_{T}\right)=\frac{1}{4} \frac{b_{T}^{i}}{\left|\vec{b}_{T}\right|} \chi^{\prime}\left(\frac{\left(\vec{b}_{T} \mid\right.}{1-x}\right)\left[1+\cos \chi\left(\frac{\left|\vec{b}_{T}\right|}{1-x}\right)\right]
$$

$$
\mathcal{I}_{(N=3)}^{i}\left(x, \vec{b}_{T}\right)=\text { numerics }
$$

$$
\mathcal{I}_{(N=2)}^{i}\left(x, \vec{b}_{T}\right)=\frac{1}{8} \frac{b_{T}^{i}}{\left|\vec{b}_{T}\right|} \chi^{\prime}\left(\frac{\left|\vec{b}_{T}\right|}{1-x}\right)\left[3\left(1+\cos \frac{\chi}{4}\right)+\left(\frac{\chi}{4}\right)^{2}-\sin \frac{\chi}{4}\left(\frac{\chi}{4}-\sin \frac{\chi}{4}\right)\right]\left(\frac{\left|\vec{b}_{T}\right|}{1-x}\right)
$$

L.G. \& Marc Schlegel

Phys.Lett.B685:95-103,2010 \mathcal{C} Mod.Phys.Lett.A24:2960-2972,2009.
FSI + distortion

FSIs are negative and "grow" with Color!

Prediction for Boer-Mulders Function of PION

L.G. \& Marc Schlegel

Phys.Lett.B685:95-103,2010 \mathcal{C} Mod.Phys.Lett.A24:2960-2972,2009

Relations produce a BM funct. approx equiv. to Sivers from HERMES
Expected sign i.e. FSI are negative
Answer will come from pion BM from COMPASS πN Drell Yan

Results for u\&d-quark Sivers

Fig. 7. The Sivers distribution functions for u and d flavours, at the scale $Q^{2}=2.4(\mathrm{GeV} / c)^{2}$, as determined by our present fit (solid lines), are compared with those of our previous fit [2] of SIDIS data (dashed lines), where π^{0} and kaon productions were not considered and only valence quark contributions were taken into account. This plot clearly shows that the Sivers functions previously found are consistent, within the statistical uncertainty bands, with the Sivers functions presently obtained.
$\circ 3$
-Torino extraction $\sim 0.05 \mathrm{SU}(3)$! agrees with Chromodynamic LENSING

- Sivers effect increases with color: Color tracing in summing gauge link goes like - Color tracing gives result of N_{c} counting of Pobylitsa

Unifying Transverse Structure of Nucleon GTMDs

GTMD--Meissner Metz Schlegel 07, 08

Reduce to TMDs, GPDs, Impact GPDs Relations among them?

TMDs \& Impact GPDs Project from GTMDs

$W_{\lambda, \lambda}^{\left(\mathbb{T}, x^{\prime}\right.}\left(P, x, \mathbf{k}_{T}, 0, n\right)=\left(1\left(x, \mathbf{k}_{T}\right)\right.$
TMD

EIC?? $\quad \int d^{2} \mathbf{k}_{T}$
$\Delta=0$

GTMD--Meissner Metz Schlegel, 07
$W_{\lambda, \lambda}^{[(T)}(P, k, \Delta, n)$

Exclusive Inclusive Relations

$$
\begin{aligned}
\int_{-1}^{1} d x H^{q}(x, \xi, t) & =F_{1}^{q}(t) \\
\int_{-1}^{1} d x E^{q}(x, \xi, t) & =F_{2}^{q}(t) \\
\int_{-1}^{1} d x \tilde{H}^{q}(x, \xi, t) & =G_{A}^{q}(t) \\
\int_{-1}^{1} d x \tilde{E}^{q}(x, \xi, t) & =G_{P}^{q}(t)
\end{aligned}
$$

Trivial Relations are well-known:

$$
f_{1}(x)=H(x, 0,0)=\int d^{2} k_{T} f_{1}\left(x, \vec{k}_{T}^{2}\right)=\int d^{2} b_{T} \mathcal{H}\left(x, \vec{b}_{T}^{2}\right)
$$

$$
g_{1}(x)=\tilde{H}(x, 0,0)=\int d^{2} k_{T} g_{1 L}\left(x, \vec{k}_{T}^{2}\right)
$$

$$
h_{1}(x)=H_{T}(x, 0,0)=\int d^{2} k_{T} h_{1}\left(x, \vec{k}_{T}^{2}\right)
$$

model-independent, integrated relations

Reality Check

Parm. of GTMD correlator hermiticity parity time-reversal

 from Andreas Metz INT talk$$
\begin{gathered}
\left(x, \xi, \vec{k}_{T}, \vec{\Delta}_{T}\right) \\
W^{q}=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} \frac{d^{2} \vec{z}_{T}}{(2 \pi)^{2}} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}_{G T M D} \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0}
\end{gathered}
$$

- Projection onto GPDs and TMDs

$$
\begin{aligned}
F^{q} & =\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i k \cdot z}\left\langle p^{\prime} ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}_{G P D} \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=z_{T}=0} \\
& =\int d^{2} \vec{k}_{T} W^{q} \\
\Phi^{q} & =\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} \frac{d^{2} \vec{z}_{T}}{(2 \pi)^{2}} e^{i k \cdot z}\left\langle p ; \lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \gamma^{+} \mathcal{W}_{T M D} \psi\left(\frac{z}{2}\right)|p ; \lambda\rangle\right|_{z^{+}=0} \\
& =\left.W^{q}\right|_{\Delta=0}
\end{aligned}
$$

GTMD-Wigner Function Correlator

- Parameterization of GTMD-correlator

Example:
$W^{q\left[\gamma^{+}\right]}=\frac{1}{2 M} \bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[F_{1,1}+\frac{i \sigma^{i+} k_{T}^{i}}{P^{+}} F_{1,2}+\frac{i \sigma^{i+} \Delta_{T}^{i}}{P^{+}} F_{1,3}+\frac{i \sigma^{i j} k_{T}^{i} \Delta_{T}^{j}}{M^{2}} F_{1,4}\right] u(p, \lambda)$
\rightarrow GTMDs are complex functions: $F_{1, n}=F_{1, n}^{e}+i F_{1, n}^{o}$

- Implications for potential nontrivial relations
- Relations of second type

$$
\begin{aligned}
E\left(x, 0, \vec{\Delta}_{T}^{2}\right) & =\int d^{2} \vec{k}_{T}\left[-F_{1,1}^{e}+2\left(\frac{\vec{k}_{T} \cdot \vec{\Delta}_{T}}{\vec{\Delta}_{T}^{2}} F_{1,2}^{e}+F_{1,3}^{e}\right)\right] \\
f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2}\right) & =-F_{1,2}^{o}\left(x, 0, \vec{k}_{T}^{2}, 0,0\right)
\end{aligned}
$$

These Have Different Mothers

$$
\begin{aligned}
& \int d^{2} \vec{b}_{T} \mathcal{H}^{q}\left(x, \vec{b}_{T}^{2}\right)=\int d^{2} \vec{k}_{T} f_{1}^{q}\left(x, \vec{k}_{T}^{2}\right)=\int d^{2} \vec{k}_{T} \operatorname{Re}\left[F_{1}^{q}\left(x, 0, \vec{k}_{T}^{2}, 0,0\right)\right] \\
& f_{1 T}^{\perp}\left(x, \vec{k}_{T}^{2} ; \eta\right)=-F_{1,2}^{o}\left(x, 0, \vec{k}_{T}^{2}, 0,0 ; \eta\right) \\
& E(x, \xi, t)=\int d^{2} \vec{k}_{T}\left[-F_{1,1}^{e}+2\left(1-\xi^{2}\right)\left(\frac{\vec{k}_{T} \cdot \vec{\Delta}_{T}}{\vec{\Delta}_{T}^{2}} F_{1,2}^{e}+F_{1,3}^{e}\right)\right]
\end{aligned}
$$

\rightarrow No model-independent nontrivial relation between E and $f_{1 T}^{\perp}$ possible
\rightarrow Relation in spectator model due to simplicity of the model
\rightarrow No information on numerical violation of relation
\rightarrow Likewise for nontrivial relation involving h_{1}^{\perp}
However is approximate relation good for phenomenological approach for model builders

Conclusions

- EIC in conjunction w/ Drell Yan can test fundamental factorization theorem of QCD: predicted sign change of Sivers function
- Crucial to have $\mathbf{Q}^{\mathbf{2}}$ range to pin down TMDs in particular Sivers function
- Transverse Distortion/Structure and TSSAs and unintegrated PDFs --- "Wigner functions" are there exclusive processes where they come in?
- Unifying structure GTMDs/Wigner Functions
- Pheno-Transverse Structure TMDs and TSSAs b and k asymm. An improved dynamical approach for FSI \& model building

```
"QCD calc" FSIs Gauge Links-Color Gauge Inv."T-odd"TMDs
```


MORE

- Jet SIDIS
- Extracting weighted TSSAs
- Connection bwtn. gluonic and fermionic poles-twist 3 ETQS approach to TSSAs and the TMD description
- Opportunities to further explore angular momentum sum rule(s)

Spect. model workbench ISI/FSI in AA \& TMDs $h_{1}^{\perp}, f_{1 T}^{\perp}, H_{1}^{\perp}$ gluonic poles

Has also been used to study Universality of PDFs and FFs

- \exists calculation Quark-Quark Correlator in Full QCD

$$
\Phi^{[\mathcal{U}[\mathcal{C}]]}\left(x, p_{T}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{2(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}(0) \mathcal{U}_{[0, \xi]}^{[C]} \psi\left(\xi^{-}, \xi_{T}\right)|P\rangle\right|_{\xi^{+}=0}
$$

- Use Spectator Framework Develop a QFT to explore and estimates these effects with gauge links
* BHS FSI/ISI Sivers fnct, -PLB 2002, NPB 2002
* Ji, Yuan PLB 2002 - Sivers Function
\star Metz PLB 2002 - Collins Function
\star L.G. Goldstein, 2002 ICHEP- Boer Mulders Function
* L.G. Goldstein, Oganessyan TSSA \& AAS PRD 2003-SIDIS
* Boer Brodsky Hwang PRD 2003-Drell Yan Boer Mulders
* Bacchetta Jang Schafer 2004- PLB, Flavor-Sivers, Boer Mulders
* Lu Ma Schmidt PLB, PRD, 2004/2005 Pion Boer Mulders
* L.G. Goldstein DY and higher twist, PLB 2007
* LG, Goldstein, Schlegel PRD 2008-Flavor dep. Boer Mulders $\cos 2 \phi$ SIDIS
^ Conti, Bacchetta, Radici, Ellis, Hwang, Kotzinian 2008 hep-ph . . . !
- Spectator Model "Field Theoretic" used study Universality of T-odd Fragmentation $\Delta_{i j}$
* Metz PLB 2002, Collins Metz PRL 2004
* Bacchetta, Metz, Yang, PBL 2003, Amrath, Bacchetta, Metz 2005,
\star Bacchetta, L.G. Goldstein, Mukherjee, PLB 2008
^ Collins Qui, Collins PRD 2007,2008
* Yuan 2-loop Collins function PRL 2008
* L.G., Mulders, Mukherjee Gluonic Poles PRD 2008

Studies FSIs in 1-gluon exchange approx.

LG, G. Goldstein, M. Schlegel PRD 77 2008, Bacchetta Conti Radici PRD 78, 2008

Many model calculations studying dynamics of FSIs
Brodsky, Hwang et al, Bacchetta \& Radici, et al, Pasquini et al, Courtoy et al,

Sivers Parameterizations and studies from FSIs

Anselmino et al. PRD 05, EPJA 08

Fig. 7. The Sivers distribution functions for u and d flavours, at the scale $Q^{2}=2.4(\mathrm{GeV} / c)^{2}$, as determined by our present fit (solid lines), are compared with those of our previous fit [2] of SIDIS data (dashed lines), where π^{0} and kaon productions were not considered and only valence quark contributions were taken into account. This plot clearly shows that the Sivers functions previously found are consistent, within the statistical uncertainty bands, with the Sivers functions presently obtained.

Gamberg, Goldstein,Schlegel PRD 77, 2008

FIG. 5 (color online). The first moment of the Boer-Mulders and Sivers functions versus x for $\kappa=1.0$.

"Factorization" of Distortion and FSIs

M. Burkardt [Nucl.Phys. A735, 185], [PRD66, 114005]
$\left\langle k_{T}^{q, i}(x)\right\rangle_{U T}=\int^{\int} k_{T} k_{T}^{i} \frac{1}{2}\left[\operatorname{Tr}\left[\gamma^{+} \Phi\left(\vec{S}_{T}\right)\right]-\operatorname{Tr}\left[\gamma^{+} \Phi\right]\left(-\vec{S}_{T}\right)\right]$
Manipulate gauge link and trnsfm to \vec{b} space

1) $\left\langle k_{T}^{q, i}(x)\right\rangle_{U T}=\frac{1}{2} \int d^{2} \vec{b}_{T} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P^{+}, \overrightarrow{0}_{T} ; S\right| \bar{\psi}\left(z_{1}\right) \gamma^{+} \mathcal{W}\left(z_{1} ; z_{2}\right) I^{q, i}\left(z_{2}\right) \psi\left(z_{2}\right)\left|P^{+}, \overrightarrow{0}_{T} ; S\right\rangle$.
2) $\mathcal{F}^{q[\Gamma]}\left(x, \vec{b}_{T} ; S\right)=\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P^{+}, \overrightarrow{0}_{T} ; S\right| \bar{\psi}\left(z_{1}\right) \Gamma \mathcal{W}\left(z_{1} ; z_{2}\right) \psi\left(z_{2}\right)\left|P^{+}, \overrightarrow{0}_{T} ; S\right\rangle, \quad \Gamma \equiv \gamma^{+}$

Comparing expressions difference is additional factor, $I^{q, i}$ and integration over \vec{b}

