Proton Form Factor Ratio Measurements at High Q^2 with Super Bigbite

Mahbub Khandaker

Norfolk State University / Jefferson Lab

Exclusive Reactions at High Momentum Transfer Jefferson Lab, Newport News, VA, May 18-21, 2010

- Introduction
- The GEp-V experiment
- Physics goals of GEp-V
- Experimental method
- Super Bigbite apparatus
- Current Status

- Ground-state EM nucleon FFs are among the most fundamental quantities that describe the nucleon's non-perturbative structure.
- First Hall A G^e_E/G^e_M measurement made the discovery that the ratio drops almost linearly with Q² above ~ 1 GeV². [Jones *et al.*, PRL 84 (2000)]
- Subsequent measurements extended Q^2 range up to 8.5 GeV².
- New results have stimulated huge amounts of theoretical activity.
- Refined pQCD calculations to explain existing data include an L=1 component in the quark light-cone wavefunction.
 [Belitsky, Ji, Yuan, PRL 91 (2003)]
- Most promising and realistic approach based on DSE/Faddeev eqn. [Cloët et al., Few-Body Systems, 46 (2009)]

Proton Form Factor Ratio

- Current theoretical models describe proton data well up to $Q^2 \sim 5 \text{ GeV}^2$.
- Models diverge strongly at higher *Q*² where there are no data to constrain the calculations.
- Evident that only way to achieve clarity in discriminating between theoretical explanations of $G_{E}^{\rho}/G_{M}^{\rho}$ data is to measure it with considerable precision to high values of Q^{2} .

The GEp-V Experiment

"Large Acceptance Proton Form Factor Ratio Measurements up to 14.5 GeV² Using Recoil-Polarization Method"

E. Brash, E. Cisbani, M. Jones, M. Khandaker, L. Pentchev, C.F. Perdrisat, V. Punjabi, B. Wojtsekhowski (spokespersons), and the Hall A Collaboration.

• GEp-V (E12-07-109) approved for 60 days by JLab PAC32 in Aug., 2007.

The GEp-V Experiment

"Large Acceptance Proton Form Factor Ratio Measurements up to 14.5 GeV² Using Recoil-Polarization Method"

E. Brash, E. Cisbani, M. Jones, M. Khandaker, L. Pentchev, C.F. Perdrisat, V. Punjabi, B. Wojtsekhowski (spokespersons), and the Hall A Collaboration.

• GEp-V (E12-07-109) approved for 60 days by JLab PAC32 in Aug., 2007.

GEp-V Theory Report (F. Gross, N. Mathur)

"Measurement of the ratio $G_{E}^{\rho}/G_{M}^{\rho}$ through polarization transfer continues to be of great theoretical interest. The proton charge form factor is a fundamental quantity that can only be measured (in this Q² range) at JLab, and an accurate measurement of it is of lasting fundamental importance."

Physics Goals of GEp-V: Ratio F_2/F_1

Hadronic current:

$$\mathcal{J}_{\text{hadronic}}^{\mu} = e\overline{N}(p') \left[\gamma^{\mu} F_{1}(Q^{2}) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_{2}(Q^{2}) \right] N(p)$$

Sachs form factors:

 $G_{\rm E} = F_1 - \tau F_2$ and $G_{\rm M} = F_1 + F_2$, where $\tau = Q^2 / 4M_{\rm nucleon}^2$

Differential cross section:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(G_{\text{E}}^{2} + \frac{\tau}{\epsilon}G_{\text{M}}^{2}\right) / (1+\tau),$$
$$\epsilon^{-1} = \left[1 + 2(1+\tau)\tan^{2}\frac{\theta_{\text{e}}}{2}\right]$$

• Ratio F_2/F_1 :

where

$$G_{_{E}}/G_{_{M}} = rac{1 - au F_2/F_1}{1 + F_2/F_1}$$

Refined pQCD calculation (Belitsky, Ji, Yuan) including quark OAM predicts

$$Q^2 rac{F_2}{F_1} \propto ln^2 \left(rac{Q^2}{\Lambda^2}
ight)$$

where Λ is a non-perturbative mass scale.

Refined pQCD calculation (Belitsky, Ji, Yuan) including quark OAM predicts

$$Q^2 rac{F_2}{F_1} \propto ln^2 \left(rac{Q^2}{\Lambda^2}
ight)$$

where Λ is a non-perturbative mass scale.

GEp-V will

- significantly increase the Q² range up to 14.5 GeV²
- study the spin-flip part of the hadronic current
- constrain GPDs at high t
- provide critical test of FF models and reaction dynamics

Precision Measurement of $G^{\rho}_{_{M}}$ at High Q^{2}

- Measure *ep* elastic x-section in Q² ~ 7-17 GeV² with unprecedented precision (< 2%) (using HRSs in Hall A) [E12-07-108, J. Arrington, S. Gilad, B. Moffit, B. Wojtsekhowski (spokespersons)].
- Obtain $G^{\rho}_{_{M}}$ by removing contribution of $G^{\rho}_{_{E}}$ from measured x-section using results on $G^{\rho}_{_{E}}/G^{\rho}_{_{M}}$ [E12-07-109, GEp-V].
- Provide important new constrains on GPDs, especially at high Q^2 .
- G^{ρ}_{M} essential for accurate normalization of other FF measurements.

Experimental Method of GEp-V: Recoil Polarization

• Best sensitivity to proton FF achieved via recoil polarization ratio in $p(\vec{e}, e'\vec{p})$

$$I_0 P_t = -2\sqrt{\tau (1+\tau)} G_E G_M \tan \frac{\theta_e}{2}$$

$$I_0 P_\ell = \frac{1}{m_p} (E_e + E'_e) \sqrt{\tau (1+\tau)} G_M^2 \tan^2 \frac{\theta_e}{2}$$

$$I_0 \propto \epsilon G_E^2 + \tau G_M^2$$

- Ratio method developed by C.F. Perdrisat and V. Punjabi and used in several JLab experiments.
- G_{E}/G_{M} at a given Q^{2} obtained without measuring absolute x-section and without change of beam energy or detector angle.
- Analyzing power of polarimeter and beam polarization cancel out.

Challenges of High Q² Measurements

Challenges of High Q² Measurements

Need large statistics	\Rightarrow	maximum luminosity and solid angle
Maximum luminosity	\Rightarrow	large background
Large solid angle	\Rightarrow	small bend \Rightarrow huge background

Challenges of High Q^2 Measurements

Need large statistics	\Rightarrow	maximum luminosity and solid angle
Maximum luminosity	\Rightarrow	large background
Large solid angle	\Rightarrow	small bend \Rightarrow huge background

Solution?

• Super Bigbite with modern tracking detector based on Gas Electron Multiplier (F. Sauli, 1997).

 Relevant FOM for proposed measurements within the SBS project exceeds those of all competing experiments by a factor of 10 to 50!

- Relevant FOM for proposed measurements within the SBS project exceeds those of all competing experiments by a factor of 10 to 50!
- SBS capabilities derived from using a large open-geometry dipole magnet together with a detector package with direct view of target.

- Relevant FOM for proposed measurements within the SBS project exceeds those of all competing experiments by a factor of 10 to 50!
- SBS capabilities derived from using a large open-geometry dipole magnet together with a detector package with direct view of target.
- GEM-based tracking system able to tolerate the very high rates.

Parameters of Super Bigbite

Large solid angle, $\Omega \sim$ Large momentum acceptance, $P \sim$ High luminosity capability, $\mathcal{L} \sim$ Small scatt. angle capability, $\theta_{\min} \sim$ Very good angular resolution, $\sigma_{\theta} =$ Good vertex resolution, $\sigma_{y} \sim$ Good momentum resolution, $\frac{\sigma_{P}}{P} =$

$$\sim 5 - 76 \text{ msr}
\sim 2 - 10 \text{ GeV/}c
\sim 8 \times 10^{38} e^{-}/\text{s} \times \text{nucl./cm}^{2}
\sim 3.5^{\circ}
= 0.14 + \frac{1.3}{P[\text{GeV/}c]} \text{ [mrad]}
\sim 1 - 2 \text{ mm}
= (0.29 + 0.03 \times P[\text{GeV/}c]) [\%]$$

Parameters of Super Bigbite

Large solid angle, $\Omega \sim 5-76 \text{ msr}$ Large momentum acceptance, $P \sim 2-10 \text{ GeV/c}$ High luminosity capability, $\mathcal{L} \sim 8 \times 10^{38} e^-/\text{s} \times \text{nucl./cm}^2$ Small scatt. angle capability, $\theta_{\min} \sim 3.5^\circ$ Very good angular resolution, $\sigma_{\theta} = 0.14 + \frac{1.3}{P[\text{GeV/c}]}$ [mrad] Good vertex resolution, $\sigma_y \sim 1-2 \text{ mm}$ Good momentum resolution, $\frac{\sigma_P}{P} = (0.29 + 0.03 \times P[\text{GeV/c}])$ [%]

These features combined will give SBS at least \times 10 advantage compared to any existing or proposed nucleon FF experiments at JLab!

Schematic of GEp-V Setup

Proton form factors ratio, GEp(5) (E12-07-109)

- Recoil proton polarization measured using the large-acceptance SBS.
- Double polarimeter with large GEM trackers $(50 \times 200 \text{ cm}^2)$ together with a highly segmented hadron calorimeter.
- Electron detected in coincidence by a large EM calorimeter, "BigCal".
- 40-cm long LH₂ standard Hall A cryotarget.

Kinematics of GEp-V

Q^2	Ebeam	Pp	$\theta_{\rm SBS}$	$E_{e'}$	θ_{BigCal}	$\Delta[\mu_p G_F^{\rho}/G_M^{\rho}]$
(GeV ²)	(GeV)	(GeV)	(deg)	(GeV)	(deg)	
5.0	6.6	3.48	28.0	3.94	26.3	0.023
10.0	8.8	6.20	16.7	3.47	35.3	0.065
14.5	11.0	8.61	12.0	3.27	39.0	0.135

Kinematics of GEp-V

Q^2	E_{beam}	P_{ρ}	$\theta_{\rm SBS}$	E _{e'}	θ_{BigCal}	$\Delta [\mu_{\mathcal{P}} G_{\mathcal{F}}^{\mathcal{P}} / G_{\mathcal{M}}^{\mathcal{P}}]$
(GeV ²)	(GeV)	(GeV)	(deg)	(GeV)	(deg)	
5.0	6.6	3.48	28.0	3.94	26.3	0.023
10.0	8.8	6.20	16.7	3.47	35.3	0.065
14.5	11.0	8.61	12.0	3.27	39.0	0.135

PAC35 on GEp-V

PR12-07-109: "The PAC recommends the beam time be reduced from 60 to 45 days by only measuring the ratio $\mu G_E/G_M$ up to a maximum value of $Q^2 = 12 \text{ GeV}^P$. Different models can already be discriminated at this lower Q^2 value and the trend in the behaviour of the ratio $\mu G_E/G_M$ can be established before reaching $Q^2 = 14.5 \text{ GeV}^P$."

- Reduction in background rates on proton side.
- Rates about the same on electron side.
- Reduced error bar on $\mu_{\rho} G_{E}^{\rho} / G_{M}^{\rho}$.

Q^2	E_{beam}	P_{p}	$\theta_{\rm SBS}$	$E_{e'}$	$\theta_{\rm BigCal}$	$\Delta [\mu_{\mathcal{P}} G_{\mathcal{F}}^{\mathcal{P}} / G_{\mathcal{M}}^{\mathcal{P}}]$
(GeV ²)	(GeV)	(GeV)	(deg)	(GeV)	(deg)	
12.0	11.0	7.27	17.4	4.60	29.0	0.08

GEM Working Principle

GEM foil: 50 μ m Kapton + few μ m copper on both sides w/ 70 μ m holes, 140 μ m pitch

- Strong electrostatic field in the
- Recent technology: F. Sauli, Nucl. Instrum. Methods A386 (1997) 531.
- Readout independent from ionization and multiplication stages.

- SBS GEM chambers are modular in design (40 \times 50 cm² modules).
- Chambers configurable for all FF measurements within the SBS program.

GEM Rate Capability / Rates in GEp-V

- No gain loss up to \sim 300 MHz/cm².
- No visible aging detected as a function of integrated charge.

GEM Rate Capability / Rates in GEp-V

- No gain loss up to \sim 300 MHz/cm².
- No visible aging detected as a function of integrated charge.

Rates in GEp-V Trackers

	γ induced hits	Charged hits	Total hits
	(kHz/cm ²)	(kHz/cm ²)	(kHz/cm ²)
First Tracker	437	119	556
Second Tracker	7	352	359
Third Tracker	1	124	125
BigCal Coord. Det.	34	96	130

Hadron Calorimeter for SBS

- Primarily for detecting recoiling proton in coincidence with electron in EM calorimeter (BigCal) for *ep* elastics in GEp-V.
- Sampling calorimeter (absorber+scintillator) layers with WLS fibers (based on COMPASS HCAL1).
- 242 blocks of iron/scintillator plates arranged in a 11 × 22 matrix.

• Linear response and good energy and position resolutions (from COMPASS):

$$\frac{\sigma_{\pi}(E)}{E[GeV]} = \frac{59.3 \pm 2.9}{\sqrt{E}} + (7.6 \pm 0.4)\%$$

$$\frac{\sigma_{e}(E)}{E[GeV]} = \frac{24.6 \pm 0.7}{\sqrt{E}} + (0.7 \pm 0.4)\%$$

$$\sigma_{x,y} \sim 1.4 \text{ cm}$$

$$\sigma_{\text{time}} \sim 1.4 \text{ ns}$$

$$\left\langle \frac{e}{h} \right\rangle \sim 1.2 \pm 0.1$$

Electromagnetic Calorimeter for GEp-V

- Two main purposes for "BigCal" in GEp-V:
 - Position correlation between elastic *e* in BigCal and *p* in HCAL used in trigger to reduce rate to levels acceptable for DAQ.
 - Applying kinematic correlations of elastic *e* in BigCal to analyze where elastic *p* is expected in front GEM tracker to identify *p* tracks even at very high random hit multiplicity.
- Required energy resolution better than $10\%/\sqrt{E}$ and position resolution of \sim 1 cm.
- 1744 lead-glass blocks arranged in a 32×54 matrix.

Trigger in GEp-V

- Critical part of experimental design in achieving a reasonable data rate.
- Two main features:
 - high energy threshold in HCAL (3-4 GeV for proton) and in BigCal (2.5 GeV for electron);
 - "smart" coincidence electronics based on FPGA.
- Rate in electron arm ~ 60 kHz.
- Rate in proton arm ~ 1.5 MHz.
- Coincidence time window of 50 ns \Rightarrow 5 kHz trigger rate.
- Using angular correlation between *e*-*p* elastics at the trigger level reduces the coincidence trigger to ~ 1 kHz.

- SBS will take best quality data in a good set of high priority experiments.
- Over 100 collaborators from 30 institutions.
- Conceptual design report in place. (http://hallaweb.jlab.org/12GeV/SuperBigBite/SBS_CDR/)
- Two technical reviews completed.
- Prototype GEMs currently undergoing beam test in Hall A.
- GEM trackers design / front tracker construction INFN \$1.1M approved.
- SBS budget proposal incorporated in JLab's long-term capital funding request to DOE.