Introduction to EIC/detector concept

Tanja Horn

THE
CATHOLIC UNIVERSITY
of AMERICA

4th Workshop on Exclusive Reactions at High Momentum Transfer
Newport News, VA
19 May 2010
Why an electron-ion Collider?

- Easier to reach high Center of Mass energies \(E_{CM}^2 = s \)
 - \(s = 4E_eE_p \) for colliders (e.g., \(4 \times 9 \times 60 = 2160 \text{ GeV}^2 \))
 - \(s = 2E_eM_p \) for fixed target experiments (e.g., \(2 \times 11 \times 0.938 = 20 \text{ GeV}^2 \))

- Spin physics with high figure of merit
 - Unpolarized \(\text{FOM} = \text{Rate} = \text{Luminosity} \times \text{Cross Section} \times \text{Acceptance} \)
 - Polarized \(\text{FOM} = \text{Rate} \times (\text{Target Polarization})^2 \times (\text{Target Dilution})^2 \)
 - No \textit{dilution} and high ion polarization (also \textit{transverse})
 - No current (\textit{luminosity}) limitations, no holding fields (\textit{acceptance})
 - No \textit{backgrounds} from target (Moller electrons)

- Easier detection of reaction products
 - Can optimize kinematics by adjusting beam energies
 - More symmetric kinematics improve acceptance, resolution, particle ID, etc.
 - Access to neutron structure with deuteron beams (\(p_p = 0 \))

<table>
<thead>
<tr>
<th>Target</th>
<th>(f_{\text{dilution, fixed_target}})</th>
<th>(P_{\text{fixed_target}})</th>
<th>(f^2P^2_{\text{fixed_target}})</th>
<th>(f^2P^2_{\text{EIC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.2</td>
<td>0.8</td>
<td>0.03</td>
<td>0.5</td>
</tr>
<tr>
<td>d</td>
<td>0.4</td>
<td>0.5</td>
<td>0.04</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Past and Future e-p and e-A Colliders

27 GeV e on 920 GeV p, $L=5\times10^{31}$

LHeC, CERN, Geneva

Jefferson Lab, Newport News, VA

BNL, Upton, NY
Design Goals for Colliders Under Consideration World-wide

<table>
<thead>
<tr>
<th></th>
<th>Max e/p Energies</th>
<th>s</th>
<th>Max Luminosity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENC@GSI</td>
<td>3 x 15</td>
<td>180</td>
<td>Few x 10^{32}</td>
</tr>
<tr>
<td>MEIC@JLab</td>
<td>11 x 70(100)</td>
<td>250-3080(4400)</td>
<td>10^{34}</td>
</tr>
<tr>
<td>MeRHIC@BNL</td>
<td>4 x 250</td>
<td>1200-4000</td>
<td>10^{32}</td>
</tr>
<tr>
<td>ELIC@JLab</td>
<td>11 x 250</td>
<td>11000</td>
<td>Close to 10^{35}</td>
</tr>
<tr>
<td>eRHIC@BNL</td>
<td>20 x 325</td>
<td>26000</td>
<td>Few x 10^{33}</td>
</tr>
<tr>
<td>LHeC@CERN</td>
<td>70 x 1000</td>
<td>280000</td>
<td>10^{33}</td>
</tr>
</tbody>
</table>

*without coherent electron cooling
Kinematic Coverage

Q^2 / y_s

Medium-energy EIC
- Overlaps with and is complementary to the LHeC (both JLab and BNL versions)
- Overlaps with JLab 12 GeV (JLab version)
- Provides high luminosity and excellent polarization for the range in between
 - Currently only low-statistics fixed-target data available in this region

[Nadel-Turonski 09]
Kinematic Coverage

- High-energy EIC
 - Will move higher into the region covered by HERA (and LHeC)
 - Will provide good polarization and heavy ions (which HERA did not have)
 - If LHeC is not built, may be the only machine that can see gluon saturation in e-A collisions

[Nadel-Turonski 09]

- mEIC at JLab, 11 on 60
- JLab 12 GeV
- H1
- ZEUS

\[x \sim Q^2/ys \]
A high-luminosity EIC at JLab

Use CEBAF “as-is” after the 12-GeV Upgrade

Electron energy: 3-11 GeV
Ion energy: 20-70(100) GeV

s=250-3080(4400) GeV^2

Can operate in parallel with fixed-target program

- **MEIC=EIC@JLAB**
 - 1-2 high-luminosity detectors
 - Luminosity ~10^{34} cm^{-2}s^{-1}
 - Low backgrounds
 - Special detector

- **ELIC=high-energy EIC@JLab**
 - Future Upgrade?

Tanja Horn, Introduction to EIC/detector concept, Exclusive Reactions Workshop 2010
Physics, Kinematic Coverage, and Luminosity

- Right plot (L vs. s) is a projection on the diagonal of the left one (Q^2 vs. x)

C. Weiss

- valence quarks/gluons
- non-pert. sea quarks/gluons
- radiative gluons/sea

Q^2

- $s = 10000$
- $s = 1000$

"Theoretical" coverage

JLab 12 GeV

Luminosity [cm$^{-2}$ s$^{-1}$]

- 10^{35}
- 10^{34}
- 10^{33}
- 10^{32}

MeRHIC

[Ent 08]
- JLAB6&12
- HERMES
- ENC@GSI
- COMPASS
- (M)EIC
- MeRHIC

Tanja Horn, Introduction to EIC/detector concept, Exclusive Reactions Workshop 2010
Gluon and sea quark (transverse) imaging of the nucleon
Nucleon Spin (ΔG vs. $\ln(Q^2)$, transverse momentum)
Nuclei in QCD (gluons in nuclei, quark/gluon energy loss)
QCD Vacuum and Hadron Structure and Creation
Electroweak Physics

More detail in physics talks in this session:

- W. Cosyn, L. Gamberg, V. Guzey, N. Ivanov, S. Liuti, M. Strikman

<table>
<thead>
<tr>
<th>EIC@Jlab</th>
<th>Energies</th>
<th>s</th>
<th>Luminosity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIC@Jlab</td>
<td>Up to 11 x 70(100)</td>
<td>250-3080(4400)</td>
<td>10^{34}</td>
</tr>
<tr>
<td>Future option</td>
<td>Up to 11 x 250</td>
<td>11000</td>
<td>$>10^{34}$</td>
</tr>
</tbody>
</table>

*without coherent electron cooling
The spin of the proton

Ambiguities arise when decomposing proton spin in gauge theories

- Intuitive; partonic interpretation
 - $\Delta g, L'_{qg}$ local only in $A^+=0$ gauge
 - How to determine L'_{qg} experimentally?

- Lattice results for L_q are for Ji's sum rule and cannot be mixed with Δg

- Num. difference between L_q and L'_q can be sizable

[From M. Stratmann, INT09-43W]

Jaffe, Manohar; Bashinsky, Jaffe

Reshuffling of ang. momentum
between matter and gauge degrees
only $\Delta \Sigma$ unchanged

Ji

J_g

$\Delta \Sigma$

Δg

L'_q

L'_{qg}

L_q

manifest gauge invariant local operators contain interactions \rightarrow interpretation?

$L_q + \Delta q/2, J_g \leftrightarrow$ GPDs (DVCS)

Burkardt, BC
arXiv:0812.1605
Proton Spin: two complementary approaches

- Measure GPDs and TMDs to learn about angular momentum (Ji)
 - Connected to Lattice QCD
 - Exclusive measurements require high luminosity at lower energies
- Measure Δg (Jaffe et al.) over a sufficiently wide range in x

At sufficiently small x, $x\Delta g$ is expected to be small, but not clear what is sufficiently small (are we there yet?)

The net contribution measured by RHIC spin is close to zero

Since all values of x contribute to the final uncertainty, this will be large without data at small x
Measuring Δg (Jaffe et al.) at an EIC

\[
\frac{dg_1}{d\log(Q^2)} \propto -\Delta g(x, Q^2)
\]

$\gamma + p \rightarrow D^0 + X$

- Uncertainties in $x\Delta g$ smaller than 0.01
- Measures $\Delta G @ Q^2 = 10$ GeV2

Tanja Horn, Introduction to EIC/detector concept, Exclusive Reactions Workshop 2010
• Lattice QCD allows calculations in the non-perturbative regime
• Gives access to moments of GPDs, experimentally extracted from deep exclusive scattering data
• Orbital angular momentum of quarks
 – L^u and L^d are both ~ 0.15, but cancel
• Quark spin $\Delta \Sigma$ as expected
• Implications for gluon angular momentum J^g
• Exclusive processes at sufficiently high Q^2 should be understandable in terms of the “handbag” diagram
 – The non-perturbative (soft) physics is represented by the GPDs
 • Shown to factorize from QCD perturbative processes for longitudinal photons \([\text{Collins, Frankfurt, Strikman 97}]\)

• Nucleon Structure from GPDs
 – $\xi=0$ Transverse spatial distribution of partons with longitudinal momentum x \([\text{Burkhardt 00}]\)
 – $|x|<\xi$ $q\bar{q}$ correlations in the nucleon
 – Moment x^{n-1} Form factor of local twist-2 spin-n operator: EM tensor, angular momentum
 \([\text{Ji 96, Polyakov 02}]\)

• Tests of reaction mechanism
 – Model-independent features of small-size regime? Finite-size corrections? \([\text{Frankfurt et al., Kroll, Goloskokov 05+}]\)
Transverse Sea Quark Imaging

- Spatial structure of non-perturbative sea
 - Closely related to JLab 6/12 GeV
 - Quark spin/flavor separations
 - Nucleon/meson structure

- Do strange and non-strange sea quarks have the same spatial distribution?
 - πN or $K \Lambda$ components in nucleon
 - QCD vacuum fluctuations
 - Nucleon/meson structure
Transverse Gluon Imaging

- Gluon size directly probed by J/Ψ and ϕ production ($Q^2 > 10 \text{ GeV}^2$)
 - Require full t-distribution \rightarrow Fourier
 - Powerlike at $|t| > 1 \text{ GeV}^2$?

- Do singlet quarks and gluons have the same transverse distribution?
 - Hints from HERA
 - Difference expected from chiral dynamics: pion cloud

[Sandacz, Hyde, Weiss 09]
Detector and IR Concepts

• Crossing angle and symmetric kinematics
 – Allows for a compact, hermetic forward ion detector
 – Can be used to eliminate synchrotron radiation
 – Produce electron and meson momenta comparable to CLAS

• Detector Challenges
 – Optimization of forward ion detection
 – PID at higher electron energies (5-10 GeV)
 – Beam divergence and transverse momentum spread

• Interaction region challenges
 – Quadrupole gradients and apertures
 – Chromatic corrections (∼f/β*) limit β_{max} to ∼2.5 km
Diffractive and SIDIS (TMDs)

Both processes produce high-momentum mesons at small angles.

For exclusive reactions, this constitutes our background.
Exclusive light meson kinematics

- mesons
 - very high momenta
 - PID challenging

- scattered electrons
 - $\delta t/t \sim t/E_p$
 - $\Theta \sim \sqrt{t/E_p}$

- recoil baryons
 - $0.2 - 0.45$
 - $0.2 - 2.5$

$$ep \rightarrow e' \pi^+ n$$
Low (Υ) vs. high Q^2 (light mesons) - 4 on 30

- **Mesons**
 - Forward mesons: low Q^2, high p

- **Scattered Electrons**
 - Low-Q^2 electrons in electron endcap

- **Recoil Baryons**
 - Beam divergence: $\Theta \sim 1/\sqrt{\beta^*}$

Q^2 > 10 GeV^2

- Mesons in central barrel: $2 < p < 4$ GeV
- High-Q^2 electrons in central barrel: $1-2 < p < 4$ GeV

Q^2 < 10 GeV^2

- No Q^2 cut

t-distribution unaffected
DES at higher electron energies

- With 12 GeV CEBAF, EIC@JLab has the option of using higher electron energies
 - DIRC no longer sufficient for π/K separation
- DIRC needs to be complemented by gas Cherenkov or replaced by dual radiator RICH to push the limit above 4 GeV
Interaction Region

- IP quad gradients limit the size of apertures imposing low energy cut-off: $E_{\text{min}} \sim E_{\text{max}}$

- Q3 aperture 10 cm @12 m → 7 T peak field
 - Particles < 0.5 go through FF quads

Gradients at 60 GeV

<table>
<thead>
<tr>
<th>Quadrupole</th>
<th>[T/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>-97</td>
</tr>
<tr>
<td>Q2</td>
<td>+67</td>
</tr>
<tr>
<td>Q3</td>
<td>-63</td>
</tr>
</tbody>
</table>

IP ~ 20 meters

Very forward tagging?

Ion beam has 3 horizontal crossing angle
• Downstream dipole on ion beam line has several advantages
 – No synchrotron radiation
 – Electron quads can be placed close to IP
 – Dipole field not set by electron energy
 – Positive particles are bent away from the electron beam
 – Long recoil baryon flight path gives access to low -t
 – Dipole does not interfere with RICH and forward calorimeters
 • Excellent acceptance (hermeticity)
Central detector layout

- Crossing angle: 3
- “Holes” for small-angle ion and electron detection not shown
- TOF (5-10 cm)
- DIRC (10 cm) ?

- If DIRC is used, configuration on left side may need adjustment to make space for readout
Central Detector

Solenoid Yoke, Hadron Calorimeter, Muons

- 3-4 T solenoid with about 4 m diameter
- Hadronic calorimeter and muon detector integrated with the return yoke (*c.f.* CMS)

Particle Identification

- TOF for low momenta
- π/K separation options
 - DIRC + LTCC up to 9 GeV
 - dual radiator RICH up to 8 GeV
- e/π separation
 - LTCC (C_4F_8O RICH) up to 3 (5) GeV
 - EC: Tungsten powder / scintillating fiber?
 - Very compact, 6% resolution

Tracking

- vertex tracker (Si, microchannel?)
- barrel: (r, ϕ) chambers
 - Outer layer: z-tracker
- vertical caps: (x, y) trackers
Detector Endcaps

Electron side (left)

- Bore angle: ~45° (line-of-sight from IP)
- High-Threshold Cerenkov
- Time-of-Flight Detectors
- Electromagnetic Calorimeter

Ion side (right)

- Bore angle: 30-40° (line-of-sight from IP)
- Ring-Imaging Cerenkov (RICH)
- Time-of-Flight Detectors
- Electromagnetic Calorimeter
- Hadronic Calorimeter
- Muon detector (at least at small angles)
 - Important for J/Ψ photoproduction

Tracking

- Forward / Backward
 - IP shifted to electron side (2+3 m)
 - Vertical planes in central tracker
 - Drift chambers on either side
Forward Neutron Detection Thoughts – A Zero Degree Calorimeter

- EIC@JLab case: 20 Tm bend magnet at 20 meters from IP → very comparable to present RHIC case!
- 20 Tm bends 60 GeV protons with 2 times 3 degrees
 → deflection @ a distance of about 4 meters = 40 cm (protons)
 → no problem to insert Zero Degree Calorimeter in this design

Zero Degree Calorimeter properties:

- Example: for 30 GeV neutrons get about 25% energy resolution (*large constant term due to unequal response to electrons and photons relative to hadrons*)
 → Should be studied more whether this is sufficient
- Timing resolution ~ 200 ps
- Very radiation hard (as measured at reactor)
- Angle and shower position resolution?
Very-Forward Ion Tagging

3 degree horizontal crossing angle for ion beam would require large 20Tm magnet at 20 meter from the IP. If so, can use this for spectator proton tagging.

Roman pots (photos at CDF (top) and LHC (bottom), …) ~ 1 mm from beam achieve proton detection with < 100m resolution

→ Need to use this for coherent processes like DVCS(p,4He) where recoil nucleus energy = beam energy minus a small t correction. Work in progress.
Summary

• The EIC@JLab is well suited for taking JLab beyond 12 GeV
 – Excellent tool to access nucleon/nuclear structure

• A medium energy collider is particularly appealing for measurements requiring *transverse targets* and/or good *resolution* and *particle id* (e.g., TMDs, GPDs).
 – These processes benefit from high *luminosity*, excellent *polarization*, and more *symmetric* collision kinematics.

• Hermetic detector concept allows excellent coverage of all kinematics in exclusive reactions and SIDIS

• Rapidly Expanding User Community
EIC@JLAB – further info

• EIC@JLAB webpage: http://eic.jlab.org
 – Overview and general information

• EIC@JLAB WIKI: https://eic.jlab.org/wiki
 – Ongoing project information
 – Working groups

• EIC Collaboration Meeting 29-31 July 2010 at CUA

• INT Workshop at the University of Washington, Seattle:
 – http://www.int.washington.edu/PROGRAMS/10-3

• Weekly project meetings at JLab
 – Fridays at 9:30am in ARC724 or F324/25
Hadronic Background Comparison with HERA

• Hadronic Random Background:
 – Dominated by interaction of beam ions with residual gas
 – Worst case at maximum energy

• Comparison of MEIC (11 on 60) and HERA (27 on 920)
 – Distance from ARC to IP: 30 m /120 m = 0.25
 – Average hadron multiplicity: \(\sqrt{51 \text{ GeV}/319 \text{ GeV}} = 0.4 \)
 – p-p cross section (fixed target): \(\sigma(60 \text{ GeV})/\sigma(920 \text{ GeV})=0.7 \)
 – At the same current and vacuum, MEIC background is 7% of HERA

• Hadronic background is not a problem for the MEIC
 – At constant vacuum the MEIC can run 1.4 A with comparable background
 – Vacuum is much easier to maintain in a short section of a small ring
 – MEIC luminosity is more than 100 times higher (depending on kinematics)
 – Signal-to-background will be considerably better at the MEIC
Deep Exclusive - meson kinematics

$ep \rightarrow e'\pi^+n$

$P(\text{GeV/c})$

$Q^2 > 10 \text{GeV}^2$

Tanja Horn, Introduction to EIC/detector concept, Exclusive Reactions Workshop 2010

Moderate momentum over large angular range

High momentum over full angular range

Moderate momentum over large angular range
Deep Exclusive - recoil baryon kinematics

\[\text{ep} \rightarrow e'\pi^+n \]

Want \(0 < t < 1\) GeV

\(\Delta \Theta = 5\)

\(\Delta \Theta = 1.3\)

\(\Delta \Theta = 1.3\)

\(\Delta \Theta = 0.3\)

\(\Delta \Theta = 0.3\)
Transverse Momentum Distributions (TMDs)

- In SIDIS, PDFs can remain unintegrated over transverse momentum
- Parton and nucleon spins give 18 structure functions
- Can be combined into TMDs, from which we can learn about orbital angular momentum

\[x f_1(x, p_T^2) \]

\[
\frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dp_{h\perp}^2} = \frac{-\alpha^2}{x \, y \, Q^2} \frac{y^2}{2(1-\varepsilon)} \bigg\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UU}^{\cos\phi_h} + c \cos(2\phi_h) F_{UU}^{\cos2\phi_h} \\
+ \lambda_c \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + s_L \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + c \sin(2\phi_h) F_{UL}^{\sin2\phi_h} \\
+ s_L \lambda_c \sqrt{1-\varepsilon^2} F_{LL}^{\cos\phi_h} + 2\varepsilon(1-\varepsilon) \cos\phi_h F_{LL}^{\cos\phi_h} \\
+ s_t \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} \right) \\
+ \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_S F_{UT}^{\sin\phi_S} \\
+ \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \bigg\} + s_t \lambda_c \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} \right. \\
+ \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_S F_{LT}^{\cos\phi_S} + \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \bigg\} \]

Tanja Horn, Introduction to EIC/detector concept, Exclusive Reactions Workshop 2010
Higher CM energies give
- better coverage at small x
- larger uncertainties at large x (> 0.1)

Note that inclusive DIS gives $\Delta q + \Delta \bar{q}$