

Hadron Form Factors at Large Momentum Transfer from Lattice QCD

Huey-Wen Lin University of Washington

WASHINGTON

Outline

§ Lattice Form Factor Calculations

- What's been done in the past
- What's new in this talk
- Some results (nucleon and pion)

§ Summary and Outlook

§ Challenge for lattice-QCD calculations

Typical Q^2 range for nucleon form factors is < 3.0 GeV² Examples from 2+1f cases

§ Problem: traditional approach

Study hadron properties by looking at 2-point function

$$\left< J_N J_N \right> = \Sigma_n \left< J | n \right> \left< n | J \right> e^{-E_n t}$$

t

§ Problem: traditional approach

> Study hadron properties by looking at 2-point function

 $\langle J_N J_N \rangle = \Sigma_n \langle J | n \rangle \langle n | J \rangle e^{-E_n t}$

Simplify to a one-state problem

Nucleon "effective mass"

§ Problem: traditional approach *in Simplify to one-state problem*

3pt correlator

$$\sum_{\alpha,\beta} \Gamma^{\alpha,\beta} \langle J_{\beta} \left(\vec{p}, t \right) \mathcal{O}(\tau) \overline{J}_{\alpha} \left(\vec{p}, 0 \right) \rangle$$

$$\stackrel{t}{\underset{\text{src}}{}} q = p_{f} - p_{i}$$

$$t_{\text{snk}}$$

 $p_{i,f} = (2\pi/L) n_{i,f} a^{-1}$

§ Problem: traditional approach Simplify to one state mehlem

Simplify to one-state problem

Example of $\Sigma @ 600$ MeV pion

Ψ.

6

 $t-t_{\rm src}$

3pt correlator

2

2.4

2.0

1.6

.2

1.2

1.0

0.8

0.6

 $R_{V_4}(n^2=0)$

 $R_{V_4^S}(n^2=0)$

Φ

Φ

Œ

D

4

10

8

§ Problem: traditional approach fails at large Q^2

§ Solution: confront excited states directly and allow operators to couple to excited states

Actions

§ N_f=2+1 anisotropic clover fermions

§ Renormalized anisotropy $a_s/a_t = 3.5$ § Better resolution in temporal direction

Show Correlators have time-dependent form A e^{-Et}
§ a_s≈0.1227(8) fm (using m_Ω)

R. Edwards, B. Joo, HWL, Phys. Rev. D 78, 014505 (2008) HWL et al., Phys. Rev. D 79, 034502 (2009)

Dynamical Anisotropic Lattices

§ $N_f = 2+1$ anisotropic clover vacuum structure ($M_\pi \approx 380$ MeV)

http://www.phys.washington.edu/users/hwlin/visQCD.html

Form Factors

§ Consider multiple-state 3pt correlators...

$$\Gamma_{\mu,AB}^{(3),T}(t_{i},t,t_{f},\vec{p}_{i},\vec{p}_{f})$$

$$= a^{3}\sum_{n}\sum_{n'}\frac{1}{Z_{j}}\frac{Z_{n',B}(p_{f})Z_{n,A}(p_{i})}{4E_{n}'(\vec{p}_{f})E_{n}(\vec{p}_{i})}e^{-(t-t)E_{n}'(\vec{p}_{f})}e^{-(t-t_{i})E_{n}(\vec{p}_{i})}$$
Wanted $\bigvee_{s,s'}T_{\alpha\beta}u_{n'}(\vec{p}_{f},s')_{\beta}\langle N_{n'}(\vec{p}_{f},s') | j_{\mu}(0) | N_{n}(\vec{p}_{i},s)\rangle \overline{u}_{n}(\vec{p}_{i},s)$

Form Factors

§ Consider multiple-state 3pt correlators...

$$\Gamma_{\mu,AB}^{(3),T}(t_{i},t,t_{f},\vec{p}_{i},\vec{p}_{f}) = a^{3}\sum_{n}\sum_{n'}\frac{1}{Z_{j}}\frac{Z_{n',B}(p_{f})Z_{n,A}(p_{i})}{4E_{n}'(\vec{p}_{f})E_{n}(\vec{p}_{i})}e^{-(t_{f}-t)E_{n}'(\vec{p}_{f})}e^{-(t-t_{i})E_{n}(\vec{p}_{i})} \\
\times \sum_{s,s'}T_{\alpha\beta}u_{n'}(\vec{p}_{f},s')_{\beta}\langle N_{n'}(\vec{p}_{f},s') | j_{\mu}(0) | N_{n}(\vec{p}_{i},s) \rangle \overline{u}_{n}(\vec{p}_{i},s) \rangle$$

§ "Variational method" for better determined Z's and E's

Form Factors

§ Consider multiple-state 3pt correlators...

$$\begin{split} & \sum_{\mu,AB}^{(3),T} (t_i, t, t_f, \vec{p}_i, \vec{p}_f) \\ &= a^3 \sum_{n} \sum_{n'} \frac{1}{Z_j} \frac{Z_{n',B}(p_f) Z_{n,A}(p_i)}{4E'_n(\vec{p}_f) E_n(\vec{p}_i)} e^{-(t_f - t)E'_n(\vec{p}_f)} e^{-(t - t_i)E_n(\vec{p}_i)} \\ & \times \sum_{s,s'} T_{\alpha\beta} u_{n'}(\vec{p}_f, s')_\beta \langle N_{n'}(\vec{p}_f, s') | j_\mu(0) | N_n(\vec{p}_i, s) \rangle \overline{u}_n(\vec{p}_i, s) \rangle \end{split}$$

§ "Variational method" for better determined Z's and E's

§ n = n' = 0 gives us nucleon Matrix Element $\langle N | V_{\mu} | N \rangle (q)$ and solve linear equations for form factors

Γ

Consistency Checks

WASHINGTON

Our Results

§ $N_f = 0$ anisotropic lattices, $M_\pi \approx 480$, 720, 1080 MeV

Our Results

Huey-Wen Lin — Exclusive 2010

SHIN

Parametrízation

§ Phenomenological choice with dimensionless parameter

Transverse Charge Densíty

§ Infinite-momentum frame

G. A. Miller, arXiv: 1002.0355

$$\rho(\mathbf{b}) \equiv \int \frac{d^2 \mathbf{q}}{(2\pi)^2} F_1(\mathbf{q}^2) e^{i\mathbf{q}\cdot\mathbf{b}} = \int_0^\infty \frac{Q \, dQ}{2\pi} J_0(bQ) F_1(Q^2)$$

§ How does high- Q^2 affect charge density?

Transverse Charge Densíty

§ Transverse charge density in infinite-momentum frame

Transverse Charge Density

§ Transverse charge density in infinite-momentum frame

WASHINGTON

Transverse Magnetization Density

§ Magnetization density in infinite-momentum frame

Transverse Magnetization Density

§ Magnetization density in infinite-momentum frame

Nucleon Axíal Form Factors

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 450$, 580, 875 MeV

Píon Form Factors

§ $N_f = 2+1$ anisotropic lattices, $M_\pi \approx 875$, 1350 MeV

G.M. Huber et al., Phys.Rev.C78:045203,2008.

Míscellany

§ Disconnected contribution O(10⁻²) for EM form factor
 Small for most of the form factors but could be significant for neutron electric form factor

§ To get larger momentum, we use O(ap) ≈ 1
≫ Rome was not built in a day...
≫ Methodology for improving a traditional lattice calculation

§ Possible future improvement

 Step-scaling through multiple lattice spacings and volumes
 Higher momentum transfer

Exploratory study of large momentum transfer on the lattice

§ A Novel Strategy

- > Include operators that couple to high-momentum and excited states
- > Explicitly analyze excited states to get better ground-state signal

§ What We Show

- > Demonstrated results for heavier pions
- Transverse densities

§ Future Work

- Smaller src-snk separation for better signal
- > Extend to other hadrons or isotropic lattices
- Multiple lattice spacings to study/reduce systematic error

