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Meson production  - does squeezing  takes place?

Rapidity gap processes with J/ψ and VM at large pt and DGLAP

α’IP for J/ψ production: pQCD  and nonpQCD mechanisms

❖

❖

❖

❖ Introduction  -  what was (not) learned in 15 years of studies

❖ From 2 → 2 to 2 →3 hard processes

Outline
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3D (Q2, t ,s ) landscape of exclusive processes at EIC

Q2>> -t

Three  interesting high energy regimes

x=const,  Q2→∞, t=const <<  Q2

-t ~Q2, s →∞

-t > Q2 ~ GeV2, s →∞
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Studies of the diffraction at HERA stimulated derivation of new QCD factorization theorems.  In 
difference from derivation in the  inclusive case which  used closure, main ingredient of the proofs  
is color transparency property of QCD.

π + T (A, N) → jet1 + jet2 + T (A, N) Frankfurt, Miller, MS 93 & 03

γ∗ + N → γ + N(baryonic system)

γ∗L + N → ”meson”(mesons) + N(baryonic system)

D.Muller 94 et al, Radyushkin 96, Ji 96, Collins &Freund 98

Brodsky,Frankfurt, Gunion,Mueller, MS
 94- vector mesons, small x

Collins, Frankfurt, MS 97 -  general case
provide  new effective tools for study of the 3D 
hadron structure,  color transparency and opacity 
and chiral dynamics

Exclusive processes

Fragmentation  processes including diffraction
Proof in QCD - Collins 98
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element.4 We will give the definition later. The factor � j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. �3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density �the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter � in Eq. �3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The � dependence of the

distribution f i/p and of the light-cone wave function � j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi �DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2�a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function �V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2�a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

��� for the lower two lines and 1
2V

��� for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2�b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ���/2, where � and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude � j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p�x1 ,x2 ,t ,��

��
��

� dy�

4�
e�ix2p

�y�
�p��T�̄�0,y�,0T���P��0 ��p�,

�4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. �4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t�0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,�) is obtained by setting

t�0 and x1�x2�x in Eq. �4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. �4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. �1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. �3� is illustrated in Fig. 1.
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tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in
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vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
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The parameter � in Eq. �3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The � dependence of the

distribution f i/p and of the light-cone wave function � j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi �DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2�a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function �V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2�a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

��� for the lower two lines and 1
2V

��� for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2�b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be
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where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. �4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed
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there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,�) is obtained by setting

t�0 and x1�x2�x in Eq. �4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. �4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because
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final-state proton in Eq. �1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .
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tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual
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appears to depend only on x2 and not on x1 nor on t . The
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neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of
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tering. Similarly, the two quark lines entering the meson may be
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element.4Wewillgivethedefinitionlater.Thefactor�
j
V

is

thelight-conewavefunctionforthemeson,andH
ijisthe

hardscatteringfunction.Thesumsareoverthepartontypes

iandjthatconnectthehardscatteringtothedistribution

functionandtothemeson.Sincethemesonhasnonzero

flavor,thepartonjisrestrictedtobeaquark.Thefactoriza-

tiontheoremEq.�3�isillustratedinFig.1.
Theaboveformulaiscorrectfortheproductionoflongi-

tudinallypolarizedvectormesons.Fortheproductionof

transverselypolarizedvectormesonsorofpseudoscalarme-

sons,wehaveaformulaofexactlythesamestructure,butin

whichtheunpolarizedpartondensityisreplacedbyapolar-

izedpartondensity�thetransversitydensityfortransverse

vectormesons,andthehelicitydensityforpseudoscalarme-

sons�.Similarchangeswillneedtobemadetothedefinition

ofthemesonwavefunction. Theparameter�inEq.�3�istheusualrenormalization-

factorizationscale.ItshouldbeoforderQ,inorderthatthe

hardscatteringfunctionH
ijbecalculablebytheuseof

finite-orderperturbationtheory.The�dependenceofthe

distributionfi/pandofthelight-conewavefunction�
j
V

are

givenbyequationsoftheDokshitzer-Gribov-Lipatov-

Altarelli-Parisi�DGLAP�kind,aswewilldiscussinSec.

VIII.
TypicallowestordergraphsforHareshowninFig.2.

ConsiderFig.2�a�,allofwhoseexternallinesarequarks.

Afterwegothroughthederivationofthefactorizationtheo-

rem,andhaveconstructeddefinitionsofthedistributionfi/p

andofthelight-conewavefunction�V
,wewillbeableto

seethatthedefinitionofHisthesumofgraphssuchasFig.

2�a�contractedwithsuitableexternallinefactorsthatcorre-

spondtotheDiracwavefunctionsofthepartons.Inthecase

oflongitudinalvectormesonproduction,thefactorsare

1
2p���

forthelowertwolinesand1
2V���

forthelines

connectedtotheoutgoingmeson.Thesefactorsarerelatedto

spinaveragesofDiracwavefunctionsforthequarks.

Inthecaseofthegluon-inducedsubprocess,Fig.2�b�,the

externalfermionlinesofHaretobecontractedwiththe

samefactorsasbefore,butthetwogluonlinesaretobe

contractedwith���
/2,where�and�aretransverseindices,

andthe1/2representsakindofspinaverage.

SeeSec.IXformoreinformationontheprecisenormal-

izationconventionsforthehardscatteringfunction. B.Definitionsoflight-conedistributionsandamplitudes:

Longitudinalvectormeson
1.Quarkdistribution Thedistributionfunctionfi/pandmesonamplitude�

j
V

aredefined,asusual,asmatrixelementsofgauge-invariant

bilocaloperatorsonthelightcone.Inthecaseofaquarkof

flavori,wedefine

fi/p�x1,x2,t,��

��
��

�dy�

4�e�ix2p
�

y�

�p��T�̄�0,y�
,0T���P��0��p�,

�4�
wherePisapath-orderedexponentialofthegluonfield

alongthelightlikelinejoiningthetwooperatorsforaquark

offlavori.Wehavedefinedx1tobethefractionalmomen-

tumgivenbythequarktothehardscatteringand�x2tobe

themomentumgivenbytheantiquark;inthefactorization

theoremtheyobeyx1�x2�x,withxbeingtheusual

Bjorkenvariable.Atfirstsighttheright-hand-sideofEq.�4�

appearstodependonlyonx2andnotonx1noront.The

dependenceontheothertwovariablescomesfromthefact

thatthematrixelementisnonforward.Thedifferenceinmo-

mentumbetweenthestates�p�and�p��togetherwiththe

useofalight-coneoperatorbringsindependenceonx1and

ont.Itisnecessarytotakeonlytheconnectedpartofthe

matrixelement.
Thesamedefinitionhasrecentlybeengivenanddiscussed

byJiandRadyushkin�12–14�.AsJipointsout,whent�0

thereareinfacttwoseparatepartondensities,withdifferent

dependenceonthenucleonspin.Forthepurposesofour

proof,itwillbeunnecessarytotakethisintoaccountexplic-

itly;wecansimplysupposethatthisandtheotherparton

densitieshavedependenceonthespinstateofthehadron

states�p�and�p��. Theusualquarkdensityfi/p(x,�)isobtainedbysetting

t�0andx1�x2�xinEq.�4�.Inaddition,itwouldappear

thatonehastoremovethetime-orderingoperationfromthe

operatoroperatorsinEq.�4�toobtaintheoperatorusedfor

thepartondensitiesassociatedwithinclusivescattering�17�.

Weneedtime-orderedoperatorsinourpresentworkbecause

4
Infact,ourwholepaperappliestoamoregeneralcase.The

final-stateprotoninEq.�1�maybereplacedbyageneralbaryon:a

neutron,forexample.Thentheexchangedobjectnolongerhasto

havevacuumquantumnumbers.Theindexiinthefactorization

theoremisthentobereplacedbyapairofindicesfortheflavorsof

thetwoquarklinesjoiningthepartondensityfi/ptothehardscat-

tering.Similarly,thetwoquarklinesenteringthemesonmaybe

different,andtheindexjistobereplacedbyapairofindices.

FIG.2.Typicallowest-ordergraphsforH.

FIG.1.Factorizationtheorem.
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element.4 We will give the definition later. The factor � j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. �3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density �the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter � in Eq. �3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The � dependence of the

distribution f i/p and of the light-cone wave function � j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi �DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2�a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function �V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2�a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

��� for the lower two lines and 1
2V

��� for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2�b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ���/2, where � and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude � j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p�x1 ,x2 ,t ,��

��
��

� dy�

4�
e�ix2p

�y�
�p��T�̄�0,y�,0T���P��0 ��p�,

�4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. �4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t�0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,�) is obtained by setting

t�0 and x1�x2�x in Eq. �4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. �4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. �1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor � j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. �3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density �the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter � in Eq. �3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The � dependence of the

distribution f i/p and of the light-cone wave function � j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi �DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2�a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function �V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2�a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

��� for the lower two lines and 1
2V

��� for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2�b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ���/2, where � and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude � j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p�x1 ,x2 ,t ,��

��
��

� dy�

4�
e�ix2p

�y�
�p��T�̄�0,y�,0T���P��0 ��p�,

�4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. �4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t�0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,�) is obtained by setting

t�0 and x1�x2�x in Eq. �4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. �4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. �1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor � j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. �3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density �the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter � in Eq. �3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The � dependence of the

distribution f i/p and of the light-cone wave function � j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi �DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2�a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function �V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2�a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

��� for the lower two lines and 1
2V

��� for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2�b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ���/2, where � and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude � j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p�x1 ,x2 ,t ,��

��
��

� dy�

4�
e�ix2p

�y�
�p��T�̄�0,y�,0T���P��0 ��p�,

�4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. �4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t�0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,�) is obtained by setting

t�0 and x1�x2�x in Eq. �4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. �4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. �1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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element.4 We will give the definition later. The factor � j
V is

the light-cone wave function for the meson, and Hi j is the

hard scattering function. The sums are over the parton types

i and j that connect the hard scattering to the distribution

function and to the meson. Since the meson has nonzero

flavor, the parton j is restricted to be a quark. The factoriza-

tion theorem Eq. �3� is illustrated in Fig. 1.
The above formula is correct for the production of longi-

tudinally polarized vector mesons. For the production of

transversely polarized vector mesons or of pseudoscalar me-

sons, we have a formula of exactly the same structure, but in

which the unpolarized parton density is replaced by a polar-

ized parton density �the transversity density for transverse
vector mesons, and the helicity density for pseudoscalar me-

sons�. Similar changes will need to be made to the definition
of the meson wave function.

The parameter � in Eq. �3� is the usual renormalization-
factorization scale. It should be of order Q , in order that the

hard scattering function Hi j be calculable by the use of

finite-order perturbation theory. The � dependence of the

distribution f i/p and of the light-cone wave function � j
V are

given by equations of the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi �DGLAP� kind, as we will discuss in Sec.
VIII.

Typical lowest order graphs for H are shown in Fig. 2.

Consider Fig. 2�a�, all of whose external lines are quarks.
After we go through the derivation of the factorization theo-

rem, and have constructed definitions of the distribution f i/p
and of the light-cone wave function �V, we will be able to

see that the definition of H is the sum of graphs such as Fig.

2�a� contracted with suitable external line factors that corre-
spond to the Dirac wave functions of the partons. In the case

of longitudinal vector meson production, the factors are
1
2 p

��� for the lower two lines and 1
2V

��� for the lines

connected to the outgoing meson. These factors are related to

spin averages of Dirac wave functions for the quarks.

In the case of the gluon-induced subprocess, Fig. 2�b�, the
external fermion lines of H are to be contracted with the

same factors as before, but the two gluon lines are to be

contracted with ���/2, where � and � are transverse indices,
and the 1/2 represents a kind of spin average.

See Sec. IX for more information on the precise normal-

ization conventions for the hard scattering function.

B. Definitions of light-cone distributions and amplitudes:

Longitudinal vector meson

1. Quark distribution

The distribution function f i/p and meson amplitude � j
V

are defined, as usual, as matrix elements of gauge-invariant

bilocal operators on the light cone. In the case of a quark of

flavor i , we define

f i/p�x1 ,x2 ,t ,��

��
��

� dy�

4�
e�ix2p

�y�
�p��T�̄�0,y�,0T���P��0 ��p�,

�4�

where P is a path-ordered exponential of the gluon field

along the lightlike line joining the two operators for a quark

of flavor i . We have defined x1 to be the fractional momen-

tum given by the quark to the hard scattering and �x2 to be

the momentum given by the antiquark; in the factorization

theorem they obey x1�x2�x , with x being the usual

Bjorken variable. At first sight the right-hand-side of Eq. �4�
appears to depend only on x2 and not on x1 nor on t . The

dependence on the other two variables comes from the fact

that the matrix element is nonforward. The difference in mo-

mentum between the states �p� and �p�� together with the
use of a light-cone operator brings in dependence on x1 and

on t . It is necessary to take only the connected part of the

matrix element.

The same definition has recently been given and discussed

by Ji and Radyushkin �12–14�. As Ji points out, when t�0
there are in fact two separate parton densities, with different

dependence on the nucleon spin. For the purposes of our

proof, it will be unnecessary to take this into account explic-

itly; we can simply suppose that this and the other parton

densities have dependence on the spin state of the hadron

states �p� and �p��.
The usual quark density f i/p(x ,�) is obtained by setting

t�0 and x1�x2�x in Eq. �4�. In addition, it would appear
that one has to remove the time-ordering operation from the

operator operators in Eq. �4� to obtain the operator used for
the parton densities associated with inclusive scattering �17�.
We need time-ordered operators in our present work because

4In fact, our whole paper applies to a more general case. The

final-state proton in Eq. �1� may be replaced by a general baryon: a
neutron, for example. Then the exchanged object no longer has to

have vacuum quantum numbers. The index i in the factorization

theorem is then to be replaced by a pair of indices for the flavors of

the two quark lines joining the parton density f i/p to the hard scat-

tering. Similarly, the two quark lines entering the meson may be

different, and the index j is to be replaced by a pair of indices. FIG. 2. Typical lowest-order graphs for H .

FIG. 1. Factorization theorem.
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For large enough x (x>0.1?) 
the configuration in the 
nucleon which is likely to give 
the dominant contribution is 
when virtual photon hits a 
highly localized qq pair. So the 
minimal Fock component in N 
which contributes is 4qq.

Baryo-baryonic

t-dependence only from GPD’s
_

_
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To squeeze, or not to squeeze: this is the question. 
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Factorization and link to CT are best seen in the Breit frame

Before the interaction

N γ*
➠ (p,p)   ❍  ❍ (0, q)  

After photon absorption: for m2meson system= const, m2baryon=const, x=const, Q2→∞

Meson system
fast left movers➠

Baryon system
fast right movers  ➠

No soft interactions between left and right movers is possible provided the meson system has a 
small size. Insured by the choice of γ*L . Note that large Q2 is not enough - need large W!

For γ*T  nonperturbative contribution is suppressed only by ln Q2 similar to F2N(x,Q2)

Signature differences between VM production with  γ*T  and γ*L  are
● larger t-slope for “ γ*T

                                         ● increase of σL/ σT with  W at mixed Q2

Difficult measurements - H1 sees some evidence for a larger σT t-slope, ZEUS does not.
7



Fixed target data - moderate Q - higher twist effects are definitely important . 
However squeezing is taking place at least starting at Q2 ~ 3 GeV2

Measurements of CT for pion and rho production at Jlab - pion case 
will be discussed in W. Cosey talk. Some evidence also from HERMES

8



How big are HT effects?

Structure of the answer:  σL ∝
Q2

(Q2 + M2)4

AL ∝ Q

�
dzd2ktψV (z, kt)

�
1

Q2 + M2
qq̄

�2

mass2 of the intermediate quark- antiquark state
 - ≥ 1 GeV2  for light mesons & for J/ψ a factor of 1.5 larger than m2J/ψ

HT are large up to  Q2 ~ 20 GeV2

LT≡ M2
qq̄ � Q2

HT 1/Q4  are large up to  Q2 ~ 5 GeV2

Transverse momenta rapidly increase with Q2  - squeezing is effective !!

M2
qq̄ =

m2
q + k2

t

z(1− z)

☛
☛
☛

extra power - from scattering 
operator 
= Laplacian applied to ψL

�
1

Q2 + M2

�4

=
1

Q8
(1− 4M2/Q2 + 10M4/Q4 + ....)

 Summary of conclusions of FKS[Frankfurt,Koepf, MS] 95, 97 for VM production 

 Fermi motion of quarks

Warning - HT increase with increase of -t
9



FKS95 

d d

d

dT ∝
1
Q

(
1

mc
)� rN
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Predictions: 

A rather slow  convergence of the t-
slopes B  of ρ and J/ψ at large Q  

dσ

dt
∝ exp(Bt)

13 Oct 2005 18:17 AR AR257-NS55-10.tex XMLPublishSM(2004/02/24) P1: KUV

SMALL-x PHYSICS 425

Figure 8 The average dipole size, d, (left) and the effective scale, Q2
eff, (right) in

exclusive vector meson production (ρ, J/ψ, ϒ) by longitudinally polarized photons,
as a function of Q2 (26, 56). Also shown are the average values of d in the integrand
of the expression for the inclusive cross section, σL .

HERA data on heavy and light vector meson production. The data confirm in
particular the following predictions of this picture:

! Increase of cross sections with energy. Equation 19 implies that dσ/dt(t = 0)
grows with energy as [xG(x, Q2

eff)]
2, with Q2

eff estimated to be ∼3 GeV2.
When combined with the LO gluon density obtained from fits to DIS data, this
implies a growth ∝ W 0.8. Such behavior has been observed for ρ production
at Q2 = 10–20 GeV2, and for J/ψ production starting from Q2 = 0 (57).
The later onset of the hard regime for ρ electroproduction is due to the rather
slow “squeezing” of the qq̄ configuration in the ρ meson; it reaches a size
comparable to that of the J/ψ only at Q2 ∼ 20 GeV2 (Figure 8).3 The
naive choice Q2

eff = Q2 would imply a too fast growth (Figure 5). For soft
interactions, on the other hand, dσ/dt(t = 0) ∝ W 0.32, and the growth is
even smaller for the cross section integrated over t.

! Decrease of cross sections with Q2. The decrease with Q2 of σL for ρ-meson
production, and of the total cross section for J/ψ production, is slower than
1/Q6, owing to the Q2-dependence of αs G in Equation 19, as well as finite-
size (higher-twist) effects. This is best observed in J/ψ electroproduction,
where the model of Reference (55), which neglects finite-size effects, predicts

3In the case of ρ-meson production initiated by transverse photons, the squeezing is gener-
ated by the Sudakov form factor, as well as by the more rapid increase with energy of the
small size contribution. The observed behavior of σL/σT can be fitted within the current
models (58).
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 Weak Q dependence of B(J/ψ)  

Fast increase of σ(γ*→ρ) only at large Q 

●

●
●

Large NLO effects:
Q2eff << Q2
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Implications for color transparency studies with nuclei
ZEUS

Q
2
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2
)

b
 (

G
e
V
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ZEUS 1994
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KMW
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Figure 28: The value of the slope b from a fit of the form dσ/d|t| ∼ e−b|t| for the
reaction γ∗p → ρ0p, as a function of Q2. The lines are the predictions of models
as denoted in the figure (see text).

55

B(Q2)−B2g

B(Q2 = 0)−B2g
∼ R2(dipole)

R2
ρ

Convergence of B for  ρ-meson electroproduction to the slope of  J/ψ photo(electro)production - 
direct proof of squeezing.  

Expect significant CT effects for meson production for Q2 ≥ 3GeV2

Consistent with    Jlab  6, at collider - possible shift to higher Q2 due on set of black regime 
and nuclear shadowing

R2(dipole)(Q2 ≥ 3GeV2)
R2

ρ

≤ 1/2÷ 1/3
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Where transition from soft to hard dynamics occurs? 
Is there a significant squeezing for Q2=2 GeV2? 

Small change of the slope for  Q2=2 GeV2  as compared to 
Q2=0 GeV2? HERMES: ΔB < 1 GeV2

r2(Q2=2 GeV2)/ r2(Q2=0 GeV2)≥ 2/3

Need CT data for π & ρ production   at  Q2=2 ÷ 4 GeV2 , q0 ~ 10 
÷ 20 GeV HERMES? Easy for collider kinematics of EIC

Extraction of information on GPDs from data at  
Q2≤2 ÷ 3 GeV2 is problematic 
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Universal t-slope: process is dominated by the scattering of quark-antiquark pair in a small size configuration - t-dependence is 
predominantly due to the transverse spread of the gluons in the nucleon - two gluon nucleon form factor,         

  Onset of universal regime FKS 97. 

 

Convergence of the t-slopes, B  -                         ),
 of  ρ-meson electroproduction to the slope of
  J/ψ photo(electro)production.  

●

Transverse  distribution of gluons can be extracted from 
  
 

⇒
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Fg(x, t). dσ/dt ∝ F2g (x, t).

dσ

dt
= A exp(Bt)

γ + p→ J/ψ + N

Issue: precision.



Upsilon - the smallest hadron - are HT corrections large for photoproduction?
FMS - Frankfurt, McDermott, Strikman 98 dipole approximation - HT a factor of two suppression; large 
effect of real part and skewedness. Q2eff ~ 40 GeV2 

NLO calculations:
 Ivanov, Krasnikov,  Szymanowski 05  Strong dependence of NLO result on μR. 

        Data  described for a very small μR

            Martin et al 08  much smaller sensitivity? 
open questions - energy conservation and related issues with gauge invariance. treatment of the meson  wave function

15



Transverse gluon spread

Enters into calculation of the gap survival probability in the double Pomeron exclusive Higgs 
production in a very sensitive way.  Relevant for new particle searches. 
☛ Important to understand gluon GPD transverse shape as a function of x dependence 

γ + p J/ψ + p, <E  > = 100 GeVγ Theoretical analysis of       photoproduction at                                           
corresponds to the two-gluon form factor of the 
nucleon for  

which is larger than e.m.  dipole  mass

m2e.m. = 0.7 GeV 2.

Significant contribution to the difference isdue to 
the chiral dynamics - lack of scattering off the pion 
field at x>0.05 (Weiss &MS 03)

(FS02)

Binkley et al 82 
J/ψ

100 GeV ≥ Eγ ≥ 10 GeV

0.03≤ x≤ 0.2, Q20 ∼ 3 GeV 2,−t ≤ 2 GeV 2

Fg(x,Q2, t) = (1− t/m2g)−2. m2g = 1.1 GeV 2

detected recoil proton
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J/ψ elastic photo and electro production
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Figure 9: a) The effective trajectory α(t) as a function of |t| in the range 40 < Wγp < 305 GeV
for photoproduction (〈Q2〉 = 0.05 GeV2) and 40 < Wγp < 160 GeV for electroproduction

(〈Q2〉 = 8.9 GeV2). The data points are the results of the one-dimensional fits shown in

figure 8. The inner error bars show the statistical error, while the outer error bars show the

statistical and systematic uncertainties added in quadrature. The solid and dashed lines show

the results of two-dimensional fits (equation 2) together with 1σ-error bands, which take the
correlation between the fit parameters into account. A comparison with the results of the ZEUS

collaboration [6, 16] is shown in b) and c) for photoproduction and electroproduction respec-

tively. The data in [16] are derived at slightly different values of 〈Q2〉. The lines are results
from the two-dimensional fits.
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Figure 9: a) The effective trajectory α(t) as a function of |t| in the range 40 < Wγp < 305 GeV
for photoproduction (〈Q2〉 = 0.05 GeV2) and 40 < Wγp < 160 GeV for electroproduction

(〈Q2〉 = 8.9 GeV2). The data points are the results of the one-dimensional fits shown in
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the results of two-dimensional fits (equation 2) together with 1σ-error bands, which take the
correlation between the fit parameters into account. A comparison with the results of the ZEUS

collaboration [6, 16] is shown in b) and c) for photoproduction and electroproduction respec-

tively. The data in [16] are derived at slightly different values of 〈Q2〉. The lines are results
from the two-dimensional fits.
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statistical and systematic uncertainties added in quadrature. The solid and dashed lines show

the results of two-dimensional fits (equation 2) together with 1σ-error bands, which take the
correlation between the fit parameters into account. A comparison with the results of the ZEUS

collaboration [6, 16] is shown in b) and c) for photoproduction and electroproduction respec-

tively. The data in [16] are derived at slightly different values of 〈Q2〉. The lines are results
from the two-dimensional fits.
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Figure 10: The values of the t slope parameter b(Wγp) as a function of Wγp in the range |t| <
1.2 GeV2 for a) photoproduction and b) electroproduction. 〈Q2〉 indicates the bin centre value
in the Q2 range considered. The data points are the results of one-dimensional fits of the form

dσ/dt ∝ ebt in Wγp bins. The inner error bars show the statistical errors, while the outer error

bars show the statistical and systematic uncertainties added in quadrature. The solid lines show

the results of the two-dimensional fits (equation 2) as in figure 9. In a) the data are compared

with results from the ZEUS collaboration [6].
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Binkley et al
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α’ consistent 
with zero!!!

t-slope, b,  for J/ψ especially at Q2=9 
GeV2 is systematically lower than for 

DVCS and for ρ - production

Experimental problems - poor resolution in t for -t < 0.1 GeV2(large difference for these t for 
dipole end exp fits), proton is practically never detected while veto relies on soft Regge model - 
while dynamics changes with increase of -t where inelastic dominates.

B = B0 + 2α�ln(x0/x)

17



Can we reliably extract variation with x of the ρ- dependence 
of gluon GPDs from J/psi data?   

DGLAP evolution of  α’ is slow 
between photo an electro 

production do explain the drop 

 0
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☹ Fluctuations in the transverse size is due to HT in the J/psi wave function: 
on the amplitude level 10 -20 % of large size configurations for real photon case 
- can lead to drop of  α´ between Q2=0 and 10 GeV2  (McDermott & F&S)
 of the order 0.05 GeV-2

☻

 Frankfurt, MS, Weiss 03

☞ DGLAP is modified at -t comparable to Q2 Blok,  Frankfurt, MS, 10
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New effect - DGLAP at large t

CFS factorization theorem derived in the limit  -t << Q2

For -t ~ Q2, in the double log approximation essentially no energy dependence of the 
ladder - hence α|P  is close to one - effectively looks as presence of α’ of the order of 
0.07 GeV-2- but effect does not reflect increase of the transverse distribution of 
partons !!!  (Blok, FS, 10)

Consider process for 

Elementary reaction - scattering of a hadron (γ, γ*)
off a parton of the target at large t=(pγ-pV)2 

FS 89 (large t pp→p +gap + jet), FS95

Mueller & Tung 91
Forshaw & Ryskin 95xJ =

−t

−t + M2
X −m2

N

Larger cross section than 
exclusive which has the 
same s - dependence

gap

19



For

dσγ+p→V +X

dtdxJ
=

dσγ+quark→V +quark

dt

�
81
16

gp(xJ , t)+
�

i

(qi
p(xJ , t)+ q̄i

p(xJ , t))
�

20



=

Note that in this calculation the scale governing the J/ψ production was taken to be MV2. More realistic 
estimate ( at least for exclusive photoproduction is 3 GeV2 )
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Maybe relevant for the explanation of the 
pattern observed in photoproduction
 of  ρ-mesons. No diffusion  if -t is larger 
than the soft scale. 

Test of squeezing:  γ+A→ ρ +p +(A-1)*

 T=σ(γ+A→ ρ +p +(A-1)*) /Zσ(γ+p→ ρ +p ) >> Glauber value

Pb(γ,ρN)

G.Miller, MS

Transparency ratio: 

(pt(ρ)+ pt(N) ≤kF )

Early squeezing - graduate shift of <σ> 
for dominant configurations 

Average configuration
 dominance

Negligible effect from proton squeezing - fast expansion

CT (optimistic)

0 2 4 6 8 10 �t�GeV2�
0.05

0.10

0.15

0.20

0.25

0.30
T

Pb �Π,Πp�
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Early scaling in DIS → mechanism of inelastic diffraction is likely to change at - t ~ 1 GeV2.  
Hence  subtraction of inelastic contribution done  via MC at HERA for these t is especially 
problematic.

Need a design of the detector with proton detection up to large t ☛

Slow convergence of the Fourier transform of  F2g(t) for dipole fit.  For b=0 

☛ To probe small b large Q2 are necessary - otherwise factorization in 
the form given by CFS is broken

➠fract ≡
� −tmax

0 F2g(t)dt�∞
0 F2g(t)dt

=
1

1− tmax/M2
2g

fract(−tmax = 1GeV2) = 1/2
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☛ - t ~ 1÷ 2 GeV2 + strong enhancement of interactions with gluons - unique way to 
excite gluonic modes in nucleon at xJ ~ 0.2. Novel baryon I=1/2 spectroscopy if gluons 
are not strongly coupled to valence quarks - in any case - a new tool -  price - good 
forward detector not only for protons and neutrons  but also for mesons. Interesting 
effects in the case of polarized proton are possible  - need further analysis.

dσγ+p→V +X

dtdxJ
=

dσγ+quark→V +quark

dt

�
81
16

gp(xJ , t)+
�

i

(qi
p(xJ , t)+ q̄i

p(xJ , t))
�

☛ Can also check chiral dynamics in near threshold πN production,  Polyakov et al
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Presence of many channels allows to perform many cross checks 

Exclusive channels with nonvacuum exchange in t -channel γ
∗
L +N → πN(∆),K −Hyperon, ρ

±
N(∆), ...

Medium energy EIC is optimal  - at higher W cross sections are too small, doable with current detector design
T.Horn 2d talk

eA option is an advantage - can check how fast squeezing sets in  (guess - starting at Q2= 4GeV2)

main advantage vs Jlab - frozen approximation is good ⇒ much larger CT  for same Q 

γ∗
L +A → πA�

Energy and t  dependence - αpertR (t) 

My  guess -  αpertR (t)  closer to nonreggeized
  two quark exchange: αpertR (t)~  0

α’R(pert) << α’R(nonperturb)

αR(pert) ( - t > 1 GeV2)  ~ -0.2,

αρ (t)
0.5

0

-0.5

-t1.0

linear trajectory

low Qhigh Q

Interesting physics in broad range of Q.
25



New type of hard hadronic processes - branching exclusive  processes of 
large c.m. angle scattering on a “cluster” in a target/projectile (MS94)                         

t’
d

c

b

a

et

s’=(pd+pc)2
-t’ > few GeV2, -t’/ s’ ~1/2 
-t=const ~ 0 
  ➠  s’/s=y<1, 
tmin=[ma2 -mb2/(1-y)]y

Limit:

Two recent papers: Kumano, MS, and Sudoh PRD 09; 
                             Kumano &MS arXiv:0909.1299, Phys.Lett. 2010

to study both CT of  2 → 2  and hadron GPDs

26
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2 →3 branching processes: 

test onset of CT for 2 →2  avoiding  diffusion effects  

measure cross sections of large angle (γ)pion - pion (kaon) scattering

probe 5q in nucleon and 4q in mesons

measure GPDs of nucleons, photons,  and mesons(!)

☀

☀
☀
☀

measure transverse sizes of b, d,c ☀

☀ measure pattern of freezing of space evolution of small size configurations

27

For example at what s’,t process γπ→ππ  is due to scattering in small 
configurations, when point -like component of photon starts to dominate.



Factorization:

GPD

N

t ’b
d

e (baryon)

c (meson)

t t

e (meson)N

GPD

t ’b d

c (baryon)

If the upper block is a hard (2 →2 ) process,   “b”, “d”, “c” are in small size configurations as well as 
exchange system (qq, qqq). Can use CT argument as in the proof of QCD factorization of  meson  
exclusive production in DIS (Collins, LF, MS 97)

⇓

MNN→NπB = GPD(N → B)⊗ ψ
i
b ⊗H ⊗ ψd ⊗ ψc
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For e p collider possible processes  

γ (γ*) +p →  π+π0 n γ (γ*) +p →  ρ0 π+n}

current fragmentation
nucleon fragmentation

For e A collider examples of possible processes  

γ* +A →  π+π0 A* γ* +A →  ρ0 π+A*}

current fragmentation
nuclear fragmentation

}
}

Can one use hadronic projectiles to study  baryo/meso baryonic 

and meso-mesonic  GPDs? Will be especially beneficial to study in parallel 

with 12 GeV program at Jlab (GPD studies is the main trust of their program)

Idea (MS95) is to consider new type of hard hadronic processes - 
branching exclusive  processes of large c.m.angle scattering on a 

“cluster” in a target/projectile or  scattering of two small clusters 
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Study of Hidden/Intrinsic Strangeness & Charm in hadrons

γp →M + Λsp (any other strange baryon)+ K+(K*) 

pp → φsp + p + p

γp →Dsp +  Λc+ M

γp → K(K*)sp + Λ + p BNL experiment: EVA has few candidate events

_
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γ M

γp →M+ Dsp +  Λc

γ M



TA(�pb, �pc, �pd) =
1
A

�
d3rρA(�r)Pb(�pb,�r)Pc(�pc,�r)Pd(�pd,�r)

where                     are three momenta of the incoming  and outgoing 
particles b, c, d; ρA is the nuclear density normalized to

�pb, �pc, �pd �
ρA(�r)d3r = A

Pj(�pj ,�r) = exp
�
−

�

path
dz σeff(�pj , z)ρA(z)

�

0.03

0.1

1

10 100 30020 50 200

A

5 mb

10 mb
15 mb
20 mb

T 
(A

)

σeff = 25 mb

Large effect even if the pion 
radius is changed just by 20%

If there are two scales in pion 
(Gribov)  - steps in T(ktπ) as a 
function of ktπ

If squeezing is large enough can measure quark- antiquark size using dipole - nucleon cross section 
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TA =
dσ(γA→π−π0A∗)

dΩ

Z dσ(γn→π−π0p)
dΩ
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Discussed 2 →3 processes will allow

to discover the pattern of  interplay of large and small transverse distance effects 
(soft and hard physics) in wide range of the processes including elastic scattering, 
large angle two body processes

compare wave function of different mesons

map the  space-time evolution of small wave packets at distances

test the role of chiral degrees of freedom in hard interactions

✺

✺

✺

✺

1 < z <6 fm

✺ measure a variety of GPDs including GPDs of photon



HERA left plenty of open questions related to the dynamics of  exclusive VM 
production and characteristics of GPDs - especially the gluon GPD which 
dominates at small x.

Conclusions

Rapidity gap processes provide tests of elastic hard scattering in QCD at large t 
and also serve as a new tool for studying N→ N* form factors involving gluons  

Key for a successful experimental research in this field is a sufficiently hermetic 
detector in the nucleon fragmentation region.

QCD factorization theorem for exclusive processes imposes a condition on t 
which could be probed at given Q for the purposes of studying GPDs

❖

❖

❖

❖

❖ Many novel processes in QCD not yet explored which will reveal QCD high energy 
dynamics and hadron structure on multiparton level
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Supplementary slides





B = B0 + 2α�
IP ln(x0/x)



Strength of the gluon field should depend on the size of the quark configurations - for small configurations the 
field is strongly screened - gluon density much smaller than average.

Consider γ∗L + p→ V + X for Q2 > few GeV2

 Expand initial proton state in a set of partonic states characterized by the number of partons 
and their transverse positions, summarily labeled as  |n〉

|p� =
�

n

an|n�

Each configuration n has a definite gluon density G(x, Q2| n) given by the expectation value of 
the twist--2 gluon operator in the state |n〉

G(x, Q2) =
�

n|an|2G(x, Q2|n) ≡ �G�

In this limit the QCD factorization theorem (BFGMS03, CFS07) for these processes is applicable 

Do we know anything about such fluctuations? Yes - MS + LF + C.Weiss,
 D.Treliani PRL 08



(dσel/dt)t=0 ∝
��

n|an|2G(x, Q2|n)
�2 ≡ �G�2,

(dσdiff/dt)t=0 ∝
�

n|an|2
�
G(x, Q2|n)

�2 ≡ �G2�.

σinel = σdiff − σel

ωg ≡ �G2� − �G�2

�G�2 =
dσγ∗+p→V M+X

dt

�
dσγ∗+p→V M+p

dt

����
t=0

.

Making use of the completeness of partonic states, we find that the elastic(X = p)
 and total diffractive (X arbitrary) cross sections are proportional to

Hence cross section of inelastic diffraction is 

⇒



2

soft diffractive processes. We introduce the concept of
a configuration–dependent parton density and follow its
implications for various types of high–energy scattering
experiments with hard processes. Our investigation pro-
ceeds in three stages. First, we relate the fluctuations
of the gluon density to the ratio of inelastic to elastic
hard diffraction in ep scattering (HERA, future EIC) in
a model–independent fashion. Second, we use a simple
model of color fluctuations in the nucleon to illustrate
and quantify our results. Third, we discuss the implica-
tions of color fluctuations for pp/p̄p collisions with multi-
ple hard processes (Tevatron CDF), and for rapidity gap
survival in double–gap exclusive diffractive pp scattering
(RHIC, Tevatron, LHC). A more detailed account of our
studies will be given elsewhere [? ].

Consider diffractive production of vector mesons in ep
scattering at Q2 >∼ few GeV2, γ∗L + p → V + X, where
the proton may remain intact or dissociate into a set of
hadronic states X. The proton state can be expanded
in a set of partonic states characterized by the number
of partons and their transverse positions, summarily la-
beled as |n�: |p� =

�
n an|n�. Each configuration n has a

definite gluon density G(x,Q2|n), given by the expecta-
tion value of the twist–2 gluon operator in the state |n�,
and the overall gluon density in the proton is

G(x,Q2) =
�

n|an|2G(x,Q2|n) ≡ �G�. (2)

Because the partonic states appear “frozen” on the typi-
cal timescale of the hard scattering process, one can use
QCD factorization to calculate the amplitude for the vec-
tor meson production process configuration by configu-
ration. The latter is (up to small calculable corrections)
proportional to the gluon density in that configuration
[? ]. An essential point is now that in the leading–twist
approximation the hard scattering process attaches to a
single parton, and, moreover, does not transfer momen-
tum to that parton. It thus does not change the partonic
state |n�. Making use of the completeness of partonic
states, we find that the elastic (X = p) and total diffrac-
tive (X arbitrary) cross sections are proportional to

(dσel/dt)t=0 ∝
��

n|an|2G(x,Q2|n)
�2 ≡ �G�2, (3)

(dσdiff/dt)t=0 ∝
�

n|an|2
�
G(x,Q2|n)

�2 ≡ �G2�. (4)

For the cross section of diffractive dissociation σinel =
σdiff − σel we thus obtain

ωg ≡ �G2� − �G�2

�G�2 =
dσinel

dt

�
dσel

dt

����
t=0

. (5)

This model–independent relation allows one to infer the
fluctuations of the gluon density from the observable ra-
tio of inelastic and elastic diffractive vector meson pro-
duction. It can be easily generalized to a large variety of
hard processes such as γ∗L + T → 2π (two jets) + T , or Υ
production in ultraperipheral pp collisions at LHC [? ].
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FIG. 1: The dispersion of fluctuations of the gluon density, ωg,
as a function of x for several values of Q2, as obtained from
the scaling model, Eqs. (??)–(??), and a phenomenological
parametrization of the gluon density.

Generally, relative fluctuations of the density decrease
if the number of constituents of a system increases. Thus,
we expect ωg to decrease slowly with increasing Q2 for
fixed x, and with decreasing x for fixed Q2. For the same
reason we expect ωg to be suppressed in scattering from
nuclear targets. Present experimental data on the cross
section ratio of Eq. (??) are very limited; they are consis-
tent with a weak dependence on Q2 (the effective scale in
vector meson production at HERA is Q2

eff ∼ 2− 4GeV2)
and the vector meson mass, and indicate a value of ωg of
the same magnitude as ωσ at comparable energies.

More quantitative studies of gluon fluctuations are pos-
sible within a dynamical model of nucleon structure.
Modeling the configuration dependence of parton den-
sities is a complex task, requiring detailed knowledge of
the nucleon’s partonic wave function. To study the pos-
sible magnitude of fluctuation effects and their x– and
Q2–dependence, we propose here a simple model based
on two assumptions: (a) The hadronic cross section of a
configuration moderate energies (

√
s ∼ 20 GeV) is pro-

portional to the transverse area occupied by the color
charges in that configuration, σ ∝ R2

config; (b) the par-
ton density changes with the size of the configuration
only through its dependence on the normalization scale,
µ2 ∝ R−2

config ∝ σ. The latter is similar to the “nucleon
swelling” model of the EMC effect [? ] and implies a
simple scaling relation for the σ–dependent gluon den-
sity:

g(x,Q2 |σ) = g(x, ξQ2), (6)

ξ(Q2) ≡ (σ/�σ�)αs(Q2
0)/αs(Q2) , (7)

where Q2
0 ∼ 1 GeV2. Assumption (b) then allows us to

The dispersion of fluctuations of the gluon density, ωg, as a function of x for several 
values of Q2, as obtained from the scaling model we developed which connects 
fluctuations of σ and fluctuations of color. We naturally reproduce the observed 
magnitude of the ratio measured experimentally at HERA.


