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@ Form Factor Models and Interpretations
@ G to Q? = 10 GeV?: E12-09-016
@ Gy to Q2% =13.5 GeV?: E12-09-019
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@ Form factors are a fundamental property of the nucleon

@ Provide excellent testing ground for QCD and QCD-inspired
models

@ Gives constraints on models of nucleon structure

@ Are not yet calculable from first principles
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Nucleon Currents

i gH
Scattering matrix element, M ~ “(‘;2

Generalizing to spin 1/2 with arbitrary structure, one-photon exchange,
using parity conservation, current conservation the current
parameterized by two form factors

N

I = el(p)[Fa(a?)Y +iggano*Fa(@)]u(p) |

@ Dirac - F1, chirality non-flip

@ Pauli - F,, chirality flip
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Sachs Form Factors

Replace with Sachs Form Factors

G = F;—K1F
Gy = Fi14+KR
GE(Q*=0) =1, Gh(Q%2=0)=p,= 2.79
GE(Q*=0) =0, Gu(R%2=0)=p,= -1.01
Rosenbluth Formula
do do| E’'|GZ+1G} 5. 0 Q?
— = —|E—MinGhtan’-|,1=—
dQ  dQ| E| 1+T B Y EETVE
[0)
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Neutron Form Factors

@ Typically lag behind proton counterparts
@ Neutron studies require nuclear corrections

@ Gg is small
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Nucleon Structure Information in Form Factors

@ Constituent quark models

@ ((gq) Dyson-Schiwinger equations approach
@ Charge distributions in the IMF

@ QCD motivated fits - VMDs, GPDs

@ With proton and neutron form factors - quark flavor and
isoscalar/vector decomposition
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Constituent Quark Light-Front Cloudy Bag Model

@ Constituent quark model - successful for calculation of baryon
magnetic moments

@ Construct wavefunction for 3 massive quarks, relate current
matrix elements to form factors

@ Light front dynamics makes boosts to wavefunction easy so
relating initial and final states for current matrix element is much
easier, but rotations are more difficult

@ Form allows for quark orbital angular momentum

@ Form is assumed for spatial distribution, confinement size is a
free parameter

@ Miller includes additional pion cloud effects for low Q? behavior
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Constituent Quark Light-Front Cloudy Bag Model

@ Results match present Gf at higher Q2

0.10——— —— ————
I ) L *  Passchier ]
1.0 — RCQM- G. Miller (2005) | L v Herberg 1
. : .
[ N 0.08—7 —— RCQM - G. Miller (2005) : ﬂit‘;':; _
L ] L o Glazier bl
L N L O  Zhu ]
. 4 "W

YT os- 1 oos R
ol L | gu L O Becker ]

O] ©  Bermuth
= [ 1 L v Rohe bl
= [ b 0.04 A Geis —
L n :% A E02-013 :
0.0 L ]
F = GEp(1) E 0.02 =
[ v GEp(2 ] r =

S S S N S S SN SO S | - P T S S E S ST S S NI ST
0 2 7 6 8 1 0005 1 2 3 2
Q* [GeV?] Q* [GeV?]

o GE suppression at higher Q? due to inclusion of quark orbital
angular momentum
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Novel DSE/Fadeev q(gqg) ANL Calculation

@ Poincare covariant model based on QCD’s Dyson-Schwinger
equations to describe dressed quark propagator

@ Uses model where two of three quarks are in diquark state
@ Bethe-Salpeter equation describes diquark boundstate
@ Fadeev amplitudes describe quark interchanges
@ Few free parameters tuned to nucleon properties such as mass
and magnetic moments
, 0.10 T
10 T " T L *  Passchier ]
— [ —— — 4@ DSE- C. Roberts, AL (2008) M g::::l’(“ ]
T 0.08— A Madey =
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@ Bhagwat et. al. arXiv:nucl-th/0610080 Q@ [Gev?]

@ Cloét et. al. arXiv:nucl-th/0804.3118
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@ Can treat with pQCD for large Q2

@ Log order calculations for F1, F, by Belitsky et al. (including
hadron helicity non-conservation through quark OAM) makes
prediction that as Q2 — o

03 + /\:4(‘)0Mev
2 LLH i;‘u’: VeV
Q F2 < /\ZDl:MeV
— 5y = — const = 02 = co
log?(Q?/A2) Fi < e
N
g . LI ) . i
N\ parameter related to size of 2 01 L e
=
the nucleon S mgER® onome s 00

@ Published proton data fits very well at early Q?
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@ Can treat with pQCD for large Q2

@ Log order calculations for F1, F, by Belitsky et al. (including
hadron helicity non-conservation through quark OAM) makes
prediction that as Q2 — o

From DSE approach:

2
F
L £ = const
log*(Q?/A?) Fy

N\ parameter related to size of
the nucleon
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@ Published proton data fits very well at early Q2 e
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@ Can treat with pQCD for large Q2

@ Log order calculations for F1, F, by Belitsky et al. (including
hadron helicity non-conservation through quark OAM) makes
prediction that as Q2 — o
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@ Published proton data fits very well at early Q?
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Form Factor Interpretations and Models

@ Impact parameter densities in infinite momentum frame
LY bixi =0

Unpolarized and Transversely Polarized:

o) = [ Saeu(b)F(@?) P
pr(b) = po(b)—sin(@ —@s)
X/O d—QQ—Jl(bQ)Fz(Q) q

Carlson and Vanderhaeghen, Phys. Rev. Lett. 100, 032004, (2008)
G. Miller, Phys. Rev. C 78, 032201(R) (2008)
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@ b is NOT radial quantity, is taken wrt momentum weighted
distribution of all partons in IMF

Unpolarized, polarized @= 90°
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@ b is NOT radial quantity, is taken wrt momentum weighted
distribution of all partons in IMF

Unpolarized, polarized @= 90°

o' pr® ) P pr Ll fn)

I 04 \
Ntl’on i \ | Proton
= by [fm]

= by [fm]
-15 -1 -05 05 1 15

1

@ Neutron has negative density
atb=0

Neutron u/d

@ Large X, d quarks dominate in
neutron
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Transversely Polarized Transverse Density

Transversely Polarized

15

Spin dly LAl

p!
= Orientation

Tis 1 —os o0 os 1 N5 UM s P 3
L e
Momentum Y. s = 5

Direction Vi

@ In IMF quarks which are rotating towards/away from photon are
enhanced across polarization-q plane

@ Suggestive of orbital angular momentum (M. Burkardt)
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GPD Parameterization - Diehl et al.

@ Non-skewed moments of GPDs yield form factors

1 2 1
= [ (Breee=ot) - Iee =)

1 2 1
= [ (G- onid) - et —oid)

@ Form factors can be used to constrain GPD models
@ Parameterization from Diehl et al:

a(o)
HI(x,t) = ();—0> exp [(O('Iog);—o—f—bo) t}
EJ(X,t) = NgKqx %(1—x)Pax

1
exp {t(x’(l —x)%log - Dq(1—x)3+Cqx(1 —x)z]
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Quark Flavor Decomposition
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@ High Q? for Gg data allows for quark
decomposition

@ GPDs formulated for quark flavors

@ Lattice is better suited for isovector
FF, scaling behavior

Lattice: Bratt et al., arXiv:1001.3620, my; = 140 MeV
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Quark Flavor Decomposition

@ Up and down quark F2/F1 distributions do not appear to follow
1/Q?
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@ Gg data with Kelly paramterization for remaining FFs

@ Curve - Kelly parameterization
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Extending G? to Q2 = 10 GeV - Spin Observables

@ Akhiezer and Rekalo (1968) - Polarization experiments offer a
better way to obtain Gg than Rosenbluth separation

@ Polarization observable measurements generally have fewer
systematic contributions from nuclear structure and radiative
effects

_— Electron scattering plane

Polarization Transfer

Secondary
scattering
plane

GE o P[ (Ee+Ee/)tanee/2

Gu Py 2M \\
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Polarized Target Measurements

Long. polarized beam/polarized target transverse to g in scattering
plane

polarization axis

momentum
transfer

Helicity-dependent asymmetry roughly proportional to Gg /Gy

o, —0 2\/1(T+ 1)tan(8/2)Ge /Gy

oo T T (Ge/ou) (12Tt Dyan(6/2))
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Gg Measurements at JLab

@ G least well measured range of Q2
@ More difficult to measure relative to other FFs since

¢ G{ is intrinsically small compared to Gy,

@ Neutron is not stable outside nucleus, use targets 2H and 3He
@ Four experiments done at JLab:

o Hall C - E93-026 - Zhu et al., Warren et al. - d(&,e'n)p,
Q2=0.5,1.0 Ge\?
@ Hall C - E93-038 - Madey et al. - d(&,e'R)p, Q% = 0.4 — 1.5 Ge\?
— —
o Hall A - E02-013 - *He(8,e'n)pp, Q% = 1.2 — 3.4 Ge\?
—>
@ Hall A - E05-102 - *He(8,e'n)pp, Q% = 0.4 — 1.0 Ge\?
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Goals

@ Bring G up to similar range as GE

@ Challenges:
@ Cross section falls with Q2, factor of ~ 100 Q2 = 3.4 — 10Ge\?
@ Polarization transfer difficult with high nucleon momentum

@ Strategy:

Measure polarized target asymmetry

Increase luminosity - upgrade detectors/target

Increase target polarization - narrow width laser, hybrid alkalai
Improve PID from electron and nucleon arm

©

¢ ¢ ¢
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High Q2 G2 Experimental Layout

GEM Veto

48D48
(Not to scale) Magnet

HCAL

. 17m Path
Polarized

3He Target

BigBite w/
upgraded
detectors

@ Upgraded Bigbite detector stack for higher rates, better PID

@ Hadron calorimeter at 17 m, additional GEM veto

@ Place magnet B-dl = 1.7 T-min front to deflect protons -
reduces background by factor of 5
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Upgraded 3He Target

Laser light for 5 ﬂCombina':ior:
optical pumping | oven and “magnet box
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Upgraded BigBite Components

@ Estimated rates are 60 kHz/cn¥ - current drift chambers
replaced by GEM chambers

@ GEM detectors shown to work up to 2500 kHz/cn? at CERN
@ Momentum resolution of , /p ~ 0.5% for e~ of 3 —4 GeV

@ BigBite Cerenkov+preshower pushes pion contributions < 0.1%

&M
GEM 500x2000
500x2000 \

GEM
1500
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400x Cal ori L ©
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Gas ©
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Hadron Calorimeter, HCAL

o

©

HCAL based on COMPASS design

Threshold can be set dramatically higher than original neutron
arm, 50 kHz with 50 MeV threshold

High detection efficiency, > 95%

Acceptance can be configured to match QE nucleon profile
Time-of-flight resolution comparable to neutron arm with
optimized readout scheme (300 pswas achieved with E864
calorimeter at AGS)
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Quasielastic Selection and Backgrounds

@ Cuts on missing momenta, invariant mass allow for suppression
of inelastic events

@ Inelastics can be corrected using Monte Carlo with MAID or
sideband subtraction

0.1 [ -

F _ 0.003 Ebeam =8.8GeV n
q C Epeam=8-8 GeV ®He(e.e'n(p) ™)
$0.075 [ BigBite & BigHAND 5 cuts:
= r 8 W2 <15 GeV?
S L Py<0.15Ggvic g 0002 1 soroiins
S 0.05 - 2 q,<0.1 GeVic
T
S [ 2 0.001 f
<0.025 | g

[ Y p

[ o ||

O 1 i1 1 0 1 n 1 1
-2 0 2 4 6 5 10 15 20
W2 Gev? particle ID
@ With bending magnet and GEM veto, proton contamination will be
negligable
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FSI Contributions

@ Nuclear effects evaluated through

. < 105
GEA by M. Sargsian g Lo
. o . 5 3
@ Effective polarization highly 2
dependent on missing %0.975
momentum cuts " oss
@ Different from 86% inclusive 0925
assumption 09
0875
@ For our detector acceptances and
cuts, effective polarization 0ss |
90 — 100% 08 ‘ ‘ ‘ ‘ ‘
T 0 0.2 04 0.6 0.8 1
Prmax » GEV/C
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Anticipated Results

Brings GE up to similar level as other form factors in 50 days beamtime
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@ Strong divergence between different model predictions
@ DSE predicts zero crossing
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Extending GJ) to Q2 = 14 GeV?

Ratio technique to extract Gy, from relative differential cross section to

Gy
O'Mo n n\2
R" — dQ|d(ee’n) dg|n(e,e’) l+$ <(G ) (GM))
ldeer)  Sloee) 38 lp(ee)
2
. HOMonfﬁ(G&) _R
de‘p(e,e’)

—E'/E,& = (1+32/Q%tan?(8/2)) *

@ Not as sensitive for corrections for nuclear structure (< 1%)
@ Not very sensitive to G¢
@ Need to know nucleon detection efficiencies, calibrate on H,

@ Need for extracting GE from measured ratio G¢ /Gy,
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@ 7 Q2 points ranging from 3.5 Ge\? to 13.5 Ge\?
@ Setup similar to G with LD, target

48D48

(Not to scale) Magnet

LD, Target

BigBite w/
upgraded
detectors
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Antipated Results

@ Approved beam of 25 days
@ Total error on G, ~ 4% at Q2 = 13.5 Ge\?
@ Gy calculated using conservative Bodek parameterization
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@ CLAS12 Gy, points shown for 56 days proposed (30 approved)
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Conclusion

@ Measuring the electric and magnetic form factors of the neutron
to high Q? helps “complete” our picture of the nucleon

@ Super Bigbite allows us to take form factor measurements to very
high Q2 with relative errors comparable to previous
measurements

@ Will allow for differentiation between several popular form factor
models
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