The Study of Excited Baryons: What is next?

Volker Credé
Florida State University, Tallahassee, FL

Future Directions in Spectroscopy Analysis
Jefferson Laboratory
11/20/2014
Outline

1. The Spectrum of Baryons
 - Lattice Calculations
 - The Experimental Spectrum

2. Are we there yet?
 - Complete Experiments
 - Observables in Photoproduction
 - How do we publish and archive these data?

3. Spectroscopy of Cascade Baryons
 - Cascades at GlueX

4. Summary and Outlook
Outline

1. The Spectrum of Baryons
 - Lattice Calculations
 - The Experimental Spectrum

2. Are we there yet?
 - Complete Experiments
 - Observables in Photoproduction
 - How do we publish and archive these data?

3. Spectroscopy of Cascade Baryons
 - Cascades at GlueX

4. Summary and Outlook
Baryon Spectroscopy from Lattice QCD

Exhibits broad features expected of $SU(6) \otimes O(3)$ symmetry

- Counting of levels consistent with non-rel. quark model, no parity doubling

$m_\pi = 396$ MeV

$N(938)$ $\Delta(1232)$ $\Delta(1620)$ $\Delta(1700)$

Missing states?
Evidence for *Missing* Strange Baryons

Comparison with two hadron resonance gas models:
- PDG-HRG
- QM-HRG

“These results do provide evidence for the existence of additional strange baryons and their thermodynamic importance.”

The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

Lattice Calculations
The Experimental Spectrum

Spectrum of N^* Resonances (PDG < 2012)

1. Excitation Band: (70, 1^{-})

2. Excitation Band:
 - $(56, 0^+_2)$, $(56, 2^+_2)$
 - $(70, 0^+_2)$, $(70, 2^+_2)$
 - $(20, 1^+_2)$

V. Credé
The Study of Excited Baryons: What is next?
Spectrum of N^* Resonances

<table>
<thead>
<tr>
<th>Mass [MeV]</th>
<th>Jπ</th>
<th>1/2+</th>
<th>3/2+</th>
<th>5/2+</th>
<th>7/2+</th>
<th>9/2+</th>
<th>11/2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N^*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1440)</td>
<td>1/2+</td>
<td>(P$_{11}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1520)</td>
<td>3/2−</td>
<td>(D$_{13}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1535)</td>
<td>1/2−</td>
<td>(S$_{11}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1650)</td>
<td>1/2−</td>
<td>(S$_{11}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1675)</td>
<td>5/2−</td>
<td>(D$_{15}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1680)</td>
<td>5/2+</td>
<td>(F$_{15}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1685)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1700)</td>
<td>3/2−</td>
<td>(D$_{13}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1710)</td>
<td>1/2+</td>
<td>(P$_{11}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1720)</td>
<td>3/2+</td>
<td>(P$_{13}$)</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>N(1860)</td>
<td>5/2+</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(1875)</td>
<td>3/2−</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(1880)</td>
<td>1/2+</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(1895)</td>
<td>1/2−</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(1900)</td>
<td>3/2+</td>
<td>(P$_{13}$)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(1990)</td>
<td>7/2+</td>
<td>(F$_{17}$)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2000)</td>
<td>5/2+</td>
<td>(F$_{15}$)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2080)</td>
<td>D$_{13}$</td>
<td></td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>N(2090)</td>
<td>S$_{11}$</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>N(2080)</td>
<td>D$_{13}$</td>
<td></td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>N(2090)</td>
<td>S$_{11}$</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>N(2040)</td>
<td>3/2+</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2060)</td>
<td>5/2−</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2100)</td>
<td>1/2+</td>
<td>(P$_{11}$)</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>N(2120)</td>
<td>3/2−</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2190)</td>
<td>7/2−</td>
<td>(G$_{17}$)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2200)</td>
<td>D$_{15}$</td>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>N(2210)</td>
<td>9/2+</td>
<td>(H$_{19}$)</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

V. Credé

The Study of Excited Baryons: What is next?
The Experimental N^* Spectrum: Recent Changes

Mass [GeV/c²]

PDG 2010 PDG 2014

J^p

1/2+ 3/2+ 5/2+ 7/2+ 9/2+ 11/2+ 1/2- 3/2- 5/2- 7/2- 9/2- 11/2-

939 1440 1680 1860 1900 1990 2040 2080 2090 2100 2120 2190 2200 2250 2300 2570 2600

PDG 2010
PDG 2014

Courtesy of Andrew Wilson, FSU & U. of Bonn (HISKP)
The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

Lattice Calculations
The Experimental Spectrum

Spectrum of Δ^* Resonances

<table>
<thead>
<tr>
<th>Δ^*</th>
<th>$J^P (L_{2l}, 2J)$</th>
<th>2010</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta(1232)$</td>
<td>$3/2^+$ (P_{33})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1600)$</td>
<td>$3/2^+$ (P_{33})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1620)$</td>
<td>$1/2^-$ (S_{31})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1700)$</td>
<td>$3/2^-$ (D_{33})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1750)$</td>
<td>$1/2^+$ (P_{31})</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$\Delta(1900)$</td>
<td>$1/2^-$ (S_{31})</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>$\Delta(1905)$</td>
<td>$5/2^+$ (F_{35})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1910)$</td>
<td>$1/2^+$ (P_{31})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1920)$</td>
<td>$3/2^+$ (P_{33})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1930)$</td>
<td>$5/2^-$ (D_{35})</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>$\Delta(1940)$</td>
<td>$3/2^-$ (D_{33})</td>
<td>*</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(1950)$</td>
<td>$7/2^+$ (F_{37})</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(2000)$</td>
<td>$5/2^+$ (F_{35})</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>$\Delta(2150)$</td>
<td>$1/2^-$ (S_{31})</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$\Delta(2200)$</td>
<td>$7/2^-$ (G_{37})</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$\Delta(2300)$</td>
<td>$9/2^+$ (H_{39})</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>$\Delta(2350)$</td>
<td>$5/2^-$ (D_{35})</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$\Delta(2390)$</td>
<td>$7/2^+$ (F_{37})</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$\Delta(2400)$</td>
<td>$9/2^-$ (G_{39})</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>$\Delta(2420)$</td>
<td>$11/2^+$ ($H_{3,11}$)</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$\Delta(2750)$</td>
<td>$13/2^-$ ($I_{3,13}$)</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>$\Delta(2950)$</td>
<td>$15/2^+$ ($K_{3,15}$)</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

Reactions can serve as isospin filter:

$\gamma p \rightarrow \Delta \eta \rightarrow p \pi^0 \eta$

$\gamma p \rightarrow \Delta \omega \rightarrow p \pi^0 \omega$
Outline

1. The Spectrum of Baryons
 - Lattice Calculations
 - The Experimental Spectrum

2. Are we there yet?
 - Complete Experiments
 - Observables in Photoproduction
 - How do we publish and archive these data?

3. Spectroscopy of Cascade Baryons
 - Cascades at GlueX

4. Summary and Outlook

V. Credé
The Study of Excited Baryons: What is next?
For single-meson production:

$$\frac{d\sigma}{d\Omega} = \sigma_0 \left\{ 1 - \delta_1 \Sigma \cos 2\phi
ight. \\
+ \Lambda_x \left(-\delta_1 H \sin 2\phi + \delta \odot F \right) \\
- \Lambda_y \left(-T + \delta_1 P \cos 2\phi \right) \\
- \Lambda_z \left(-\delta_1 G \sin 2\phi + \delta \odot E \right) \left\} \right.$$

In order to determine the full scattering amplitude without ambiguities, one has to carry out eight carefully selected measurements: four double-spin observables along with four single-spin observables.

Eight well-chosen measurements are needed to fully determine production amplitudes F_1, F_2, F_3, and F_4.

The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

Complete Experiments
Observables in Photoproduction
How do we publish and archive these data?

Table representing CLAS@JLab measurements.

<table>
<thead>
<tr>
<th>Observables</th>
<th>σ</th>
<th>Σ</th>
<th>T</th>
<th>P</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>T_x</th>
<th>T_z</th>
<th>L_x</th>
<th>L_z</th>
<th>O_x</th>
<th>O_z</th>
<th>C_x</th>
<th>C_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p\pi^0$</td>
<td>✓</td>
</tr>
<tr>
<td>$n\pi^+$</td>
<td>✓</td>
</tr>
<tr>
<td>$p\eta$</td>
<td>✓</td>
</tr>
<tr>
<td>$p\eta'$</td>
<td>✓</td>
</tr>
<tr>
<td>$p\omega/\phi$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^+\Lambda$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^+\Sigma^0$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^0\Sigma^+$</td>
<td>✓</td>
</tr>
<tr>
<td>$p\pi^-$</td>
<td>✓</td>
</tr>
<tr>
<td>$p\rho^-$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^+\Sigma^+$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^0\Lambda$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^0\Sigma^0$</td>
<td>✓</td>
</tr>
<tr>
<td>$K^0\Sigma^+$</td>
<td>✓</td>
</tr>
</tbody>
</table>

Need more observables on:

$\gamma p \rightarrow p \pi\pi, p \pi\eta$

$\gamma p \rightarrow p \pi\omega, ...$
Observable F in $\vec{\gamma} \vec{p} \rightarrow n \pi^+$ (CLAS FROST-g9b)

- MAID 07
- SAID 12
- BoGa not shown

$$
\frac{d\sigma}{d\Omega} = \sigma_0 \left\{ 1 - \delta_I \Sigma \cos 2\phi \\
+ \Lambda_x (-\delta_I H \sin 2\phi + \delta_\odot F) \\
- \Lambda_y (-T + \delta_I P \cos 2\phi) \\
- \Lambda_z (-\delta_I G \sin 2\phi + \delta_\odot E) \right\}
$$

Transv. target pol. & circ. beam pol.
- Early-stage analysis
- Reasonable agreement among predictions for $W < 1.7$ GeV
 \rightarrow Much to learn at the higher energies

M. Dugger (ASU), CLAS g9b run group
Complete Experiment in $\gamma p \rightarrow p \omega$

$\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0_{\text{miss}}$ ⇒ same final state as $\gamma p \rightarrow p \pi^+ \pi^-$

Analysis in basically three steps:

- Kinematics & Event Selection ($p \pi^+ \pi^-$)
 - lin. pol.: USC (✓)
 - circ. pol.: FSU ✓, CU (✓)

- Event-based background subtraction
 - $p \pi^+ (\pi^-)$, $p (\pi^+)\pi^-$, $p \pi^+ \pi^-$ ✓
 - $p \pi^+ \pi^- (\pi^0)$ ✓ $p \pi^+ \pi^- (\eta)$?

- Physics:
 \[
 \frac{d\sigma}{d\Omega} = \sigma_0 \left\{ 1 - \delta_1 \Sigma \cos 2\phi + \Lambda_x (-\delta_1 H \sin 2\phi + \delta \odot F) - \Lambda_y (-T + \delta_1 P \cos 2\phi) - \Lambda_z (-\delta_1 G \sin 2\phi + \delta \odot E) \right\}
 \]

 published (+ SDME’s)

 in progress

 $E_\gamma \in [1.4, 1.5]$ GeV

 g9a: ω

 Courtesy of Priyashree Roy (FSU)
Observation of new decay modes in the decay of N^* resonances; weak at most in Δ^* decays.

Bonn-Gatchina PWA
V. Sokhoyan, E. Gutz, V.C. et al. @ELSA

Cross Section and Polarization Observables
(W. Roberts et al., PRC 71, 055201 (2005))

\[
I = I_0 \left\{ \left(1 + \vec{\Lambda}_i \cdot \vec{P} \right) + \delta_\circ \left(I^\circ + \vec{\Lambda}_i \cdot \vec{P}^\circ \right) + \delta_1 \left[\sin 2\beta \left(I^s + \vec{\Lambda}_i \cdot \vec{P}^s \right) + \cos 2\beta \left(I^c + \vec{\Lambda}_i \cdot \vec{P}^c \right) \right] \right\}
\]

Search for states in decay cascades!
Observation of Decay Cascades in $\gamma p \rightarrow p \pi^0 \pi^0$

F. Zehr et al., Eur. Phys. J. A 48, 98 (2012) @MAMI

Observation of new decay modes in the decay of N^* resonances; weak at most in Δ^* decays.

Bonn-Gatchina PWA

V. Sokhoyan, E. Gutz, V.C. et al. @ELSA

Search for states in decay cascades!
The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

Observation of Decay Cascades in $\gamma p \rightarrow p \pi^0 \pi^0$

Nucleon states with $S = \frac{3}{2}$ require spatial wave functions of mixed symmetry. For $L = 2$ the wave functions do have equal admixtures of M_S and

$$M_A = [\phi_0 p(\vec{\rho}) \times \phi_0 p(\vec{\lambda})]^{(L=2)},$$

a component in which both the ρ and the λ oscillator are excited simultaneously.

Observation of new decay modes in the decay of N^* resonances; weak at most in Δ^* decays.

____ Bonn-Gatchina PWA

V. Sokhoyan, E. Gutz, V. C. et al. @ELSA
The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

High Statistics Study of the Reaction $\gamma p \rightarrow p \pi^0 \eta$

Dominant Isobars
$\Delta(1232)\eta, N(1535) \frac{1}{2}^- \pi, pa_0(980)$

Observation of some
$\Delta^* \rightarrow N(1535) \frac{1}{2}^- \pi \rightarrow p \pi \eta$

Bonn-Gatchina
$\Delta(1700) \frac{3}{2}^-$
$\Delta(1600) \frac{3}{2}^+$
$\Delta(1920) \frac{3}{2}^+$
$\Delta(1940) \frac{3}{2}^-$
$\Delta(1905) \frac{5}{2}^+$
$\Delta(2360) \frac{3}{2}^-$
$N(1880) \frac{1}{2}^+$
$N(2200) \frac{3}{2}^+$

V. L. Kashevarov et al., EPJ A 42, 141 (2009) @MAMI

V. Credé
The Study of Excited Baryons: What is next?
High Statistics Study of the Reaction $\gamma p \rightarrow p \pi^0 \eta$

Linear Beam Polarization

Bonn-Gatchina
A. Fix et al.
M. Döring et al.
Isospin Filter: \(\gamma p \rightarrow \Delta^* (I = 3/2) \rightarrow \Delta \omega \rightarrow p \pi^0 \omega \)

Preliminary Differential Cross Sections for \(\gamma p \rightarrow p \pi^0 \omega \)**

<table>
<thead>
<tr>
<th>Inv Mass [MeV]</th>
<th>Preliminary Differential Cross Sections</th>
<th>(\omega \rightarrow \pi^0 \gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300-1350</td>
<td></td>
<td>(\sim 18,000) events</td>
</tr>
<tr>
<td>1500-1550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1550-1600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600-1650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1650-1700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700-1750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750-1800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800-1850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1850-1900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900-1950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-2050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050-2100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2100-2150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2150-2200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2200-2250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250-2300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2300-2350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2350-2400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2400-2450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2450-2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2500-2550</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Wilson, Florida State University, PhD thesis (2013)
The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

Complete Experiments
Observables in Photoproduction
How do we publish and archive these data?

$W \in [1.74; 1.77] \text{ GeV}, \cos \Theta_{\text{c.m.}}^\rho > 0.5$

$\gamma p \rightarrow p \pi^+ \pi^-$

Data of unprecedented statistical quality

$$I = I_0 \left\{ (1 + \vec{\Lambda}_i \cdot \vec{P}) + \delta_\odot (I^\odot + \vec{\Lambda}_i \cdot \vec{P}^\odot) \right. + \delta_I \left[\sin 2\beta (I^s + \vec{\Lambda}_i \cdot \vec{P}^s) + \cos 2\beta (I^c + \vec{\Lambda}_i \cdot \vec{P}^c) \right] \right\}$$

Charles Hanretty (FSU), approved by CLAS collaboration

V. Credé

The Study of Excited Baryons: What is next?
The Spectrum of Baryons
Are we there yet?
Spectroscopy of Cascade Baryons
Summary and Outlook

Complete Experiments
Observables in Photoproduction
How do we publish and archive these data?

Priyashree Roy (Florida State), CLAS g9b (FROST)
How do we publish these results?

The interpretation of many observables is far behind the experimental analysis, in particular for 2-meson reactions. How do we proceed?

- Wait?
- Publish results without any direct physics conclusion? Reviewers usually ask what the impact of the new data is.

How do we preserve the data for future analysis?

- Events? Simple projections are not suitable for $p\pi\pi$, $p\pi\eta$ (5-dim.)

What else is needed for future analyses?

- Polarized cross sections? Requires Monte Carlo simulations (also for event-based PWA), which is not a standard tool for the people doing “baryon” polarization experiments.
How do we publish these results?

The interpretation of many observables is far behind the experimental analysis, in particular for 2-meson reactions. How do we proceed?

- Wait?
- Publish results without any direct physics conclusion? Reviewers usually ask what the impact of the new data is.

How do we preserve the data for future analysis?

- Events? Simple projections are not suitable for $p \pi\pi$, $p \pi\eta$ (5-dim.)

What else is needed for future analyses?

- Polarized cross sections? Requires Monte Carlo simulations (also for event-based PWA), which is not a standard tool for the people doing “baryon” polarization experiments.
How do we publish these results?

The interpretation of many observables is far behind the experimental analysis, in particular for 2-meson reactions. How do we proceed?

- Wait?
- Publish results without any direct physics conclusion? Reviewers usually ask what the impact of the new data is.

How do we preserve the data for future analysis?

- Events? Simple projections are not suitable for $p\pi\pi$, $p\pi\eta$ (5-dim.)

What else is needed for future analyses?

- Polarized cross sections? Requires Monte Carlo simulations (also for event-based PWA), which is not a standard tool for the people doing “baryon” polarization experiments.
Outline

1. The Spectrum of Baryons
 - Lattice Calculations
 - The Experimental Spectrum

2. Are we there yet?
 - Complete Experiments
 - Observables in Photoproduction
 - How do we publish and archive these data?

3. Spectroscopy of Cascade Baryons
 - Cascades at GlueX

4. Summary and Outlook
Cascade Resonances: Status of 2001

Many predicted states missing

Instanton Model: residual short-range interaction based on instanton interactions
CLAS g12 (prel.): Total Cross Section of Ξ^{-}

Johann Goetz (CLAS Collaboration), UCLA, Ph.D. Thesis

Upper Limits (integrated over 3.5-5.4 GeV):

1. $\Xi(1620)$: 0.78 nb
2. $\Xi(1690)$: 0.97 nb
3. $\Xi(1820)$: 1.09 nb
1. Only $\Xi(1530)$ statistically significant

2. $\Xi(1620)$ signal "plausible", but simulated K^{*0} events also peak in 1600 MeV/c^2 region ($\gamma p \rightarrow K^+ K^{*0} \Xi^0, \ K^{*0} \rightarrow K^+ \pi^-$)

"... it is not possible to determine its exact nature without a full PWA."

Need high-statistics, high-energy data from an experiment designed to see Ξ states

- 3- or 4-track trigger
- Reconstruction of full decay chain
- Higher photon energy
- Improved detectors

\rightarrow GlueX, CLAS12, ...
Possible Production Mechanisms

a) $K^+(\Xi^- K^+), \ K^+(\Xi^0 K^0), \ K^0(\Xi^0 K^+)$$

→ Cross sections, beam asymmetries
(similar to $p\pi\pi$ & pKK^*)

Production of excited states via a

1. forward-going K^0 meson
 → $K^0(\Xi^- \pi^+) K^+$, etc.

2. forward-going K^+ meson
 → $K^+(\Xi^- \pi^+) K^0$, $K^+(\Xi^0 \pi^-) K^+$, etc.

Efficiency should be adequate for conducting a study of excited Ξ states with the baseline detector:

- Detailed studies of the production, especially of the ground state Ξ's, and a parity measurement \(^*\) will likely require enhanced kaon identification in the forward direction \(\Rightarrow\) Components of the BaBar DIRC for GlueX.

\(^*\) e.g. Nakayama et al., Phys. Rev. C 85, 042201 (2012)
Outline

1. The Spectrum of Baryons
 - Lattice Calculations
 - The Experimental Spectrum

2. Are we there yet?
 - Complete Experiments
 - Observables in Photoproduction
 - How do we publish and archive these data?

3. Spectroscopy of Cascade Baryons
 - Cascades at GlueX

4. Summary and Outlook
Baryon Spectroscopy: Are we there, yet? Certainly not ...

Data-taking in low-energy photoproduction is almost over
(polarization experiments for “complete experiments”)

- The job to extract (and study) baryon resonances has only just begun.
- The experimental (data analysis) community slowly moves on.
 How do we archive the data for later analysis?

Example 2-meson channels: Extraction of observables is happening now, but the extraction of physics will likely happen years later.

New era in the spectroscopy of strange baryons (GlueX, LHCb, PANDA, ...)

- Mapping out the spectrum of Ξ baryons is the primary motivation (including parity measurements); some hope for peak hunting.
- Ground-state Ξ in $\gamma p \rightarrow KK\Xi$ will allow the spectroscopy of Σ^* / Λ^* states.