

Paving to Way for $\gamma p \rightarrow K^+K^-p$: KN Scattering

César Fernández-Ramírez Jefferson Lab

(Joint Physic Analysis Center)

FDSA Workshop, 20 November 2014, JLab

Table of Contents

- Motivation
- γp→K+K-p
- KN Scattering (πN as playground)
- KN Scattering in the Resonance Region
- Poles

Error-bars

Motivation

For two kaon photo production

- Map strangeonia spectrum
- Hybrids/exotics search

For KN scattering Next slides

A Model for $\gamma p \rightarrow K^+ K^- p$

 $K^- p \to K^- p$

Low energy fit FR et al., (in preparation) $K^- p \to K^- p$

High energy fit Mathieu et al., (in preparation)

A Model for $\gamma p \rightarrow K^+ K^- p$

 $K^- p \to K^- p$

Low energy fit FR et al., (in preparation) $K^-p \to K^-p$

High energy fit Mathieu et al., (in preparation)

Analytical continuation between the two regions via dispersion relations (FESR)

A Model for $\gamma p \rightarrow K^+ K^- p$

 $K^- p \to K^- p$

Low energy fit FR et al., (in preparation) $K^- p \to K^- p$

High energy fit Mathieu et al., (in preparation)

Analytical continuation between the two regions via dispersion relations (FESR)

We feed amplitudes to experimentalists and they isolate mesons through PWA

Finite Energy Sum Rules πN (playground)

 Discuss resonances together with Reggeons

 $\pi N \to \pi N$

- Construct Im(amplitude) from 0 to infinity via FESR
- Reconstruct Re(amplitude) from a dispersion relation

Re
$$\nu B^{(+)}(\nu,t) = \frac{g_r^2}{2m} \frac{2\nu^2}{\nu_m^2 - \nu^2} + \frac{2\nu^2}{\pi} P \int_{\nu_0}^{\infty} \frac{\text{Im } B^{(+)}(\nu',t)}{\nu'^2 - \nu^2} d\nu'$$

$\bar{K}N \to \bar{K}N, \pi\Sigma, \pi\Lambda$ in the Resonance Region

Coupled channels, analytical and unitary

We can use partial waves

Resonances are incorporated employing relativistic Breit-Wigner

- Variation of Zhang et al., PRC 88 (2013) 035205 incorporating analyticity to the amplitudes and adapting for extension to two kaon photo production
- Single-energy partial waves from KSU analysis (Manley et al.) are fitted independently
- A lot of parameters but also a lot of data points

We can go to the unphysical sheets and get the poles

Scattering Matrix (p.w.)

$$S = I + 2i T$$
$$T = T_B + B^T T_R B$$
$$S_R = I + 2i T_R$$
$$S_B = B^T B = I + 2i T_B$$

 $\bar{K}N, \pi\Sigma, \pi\Lambda, \eta\Lambda, \eta\Sigma, \pi\Sigma(1385), \pi\Lambda(1520), \bar{K}\Delta(1232), \bar{K}^*N, \sigma\Lambda, \sigma\Sigma$

Resonant Part: Single Resonance

$$[K_a(s)]_{jk} = \tan \delta_a(s) \ \frac{\phi_{\ell,j}(s)\phi_{\ell,k}(s)}{\Gamma_a(s)} \ x_j^a x_k^a$$

$$T_a(s) = K_a(s) [I - iK_a(s)]^{-1}$$

$$[T_a(s)]_{jk} = \frac{M_a}{M_a^2 - s - iM_a\Gamma_a(s)} \phi_{\ell,j}(s)\phi_{\ell,k}(s) x_j^a x_k^a$$

 $\phi_{\ell,j}(s)$ has the angular momentum barrier $\Gamma_a(s) = \sum_{j}^{n_c} \phi_{\ell,j}^2(s) x_j^a$ is the total width

Resonant Part: Two Resonances

$$[K_{ab}]_{jk} = \tan \delta_a(s) \,\phi_{\ell,j}(s) \,\phi_{\ell,k}(s) \,x_j^a x_k^a + \tan \delta_b(s) \,\phi_{\ell,j}(s) \,\phi_{\ell,k}(s) \,x_j^b x_k^b$$

$$[T_{ab}]_{jk} = c_{aa}(s) \phi_{\ell,j}(s) \phi_{\ell,k}(s) x_j^a x_k^a + c_{ab}(s) \phi_{\ell,j}(s) \phi_{\ell,k}(s) x_j^a x_k^b + c_{ba}(s) \phi_{\ell,j}(s) \phi_{\ell,k}(s) x_j^b x_k^a + c_{bb}(s) \phi_{\ell,j}(s) \phi_{\ell,k}(s) x_j^b x_k^b$$

$$c_{aa}(s) = \frac{1}{\mathcal{C}(s)} \frac{M_a}{M_a^2 - s - iM\Gamma_a(s)}$$
$$c_{bb}(s) = \frac{1}{\mathcal{C}(s)} \frac{M_b}{M_b^2 - s - iM\Gamma_b(s)}$$
$$c_{ab}(s) = c_{ba}(s) = \frac{i\varepsilon_{ab}(s)}{\mathcal{C}(s)} \frac{M_a}{M_a^2 - s - iM\Gamma_a(s)} \frac{M_b}{M_b^2 - s - iM\Gamma_b(s)}$$
$$\mathcal{C}(s) = 1 + [\varepsilon_{ab}(s)]^2 \frac{M_a}{M_a^2 - s - iM\Gamma_a(s)} \frac{M_b}{M_b^2 - s - iM\Gamma_b(s)}$$
$$\varepsilon_{ab}(s) = \sum_{j}^{n_c} \phi_{\ell,j}^2(s) x_j^a x_j^b$$

Energy Dependence

$$\phi_{\ell,j}^2(s) = \frac{\bar{q}_k(s, m_1, m_2)}{w_0} \mathcal{B}_{\ell}^2 \left[\bar{q}_k^2(s, m_1, m_2) r^2 \right]$$

$$\bar{q}_k(s, m_1, m_2) = \frac{m_1 m_2}{(m_1 + m_2)^2} \left[s - (m_1 + m_2)^2 \right]$$

$$\phi_{\ell,j}^2(s) = \frac{\Gamma_2}{2\pi w_0} \int_{m_3+m_4}^{\Lambda} dx \, \frac{\bar{q}_k(s,m_1,x)\mathcal{B}_\ell^2\left[\bar{q}_k^2(s,m_1,x)r^2\right]}{(x-m_2)^2 + (\Gamma_2/2)^2}$$

Background

$$\left[T_p^B\right]_{jk} = \frac{\epsilon_p M_p}{M_p^2 + s - i\epsilon M_p \Gamma_p(s)} \phi_{\ell,j}(s) \phi_{\ell,k}(s) y_j^p y_k^p$$

$$T_p^B = (B_p^T B_p - I)/2i$$

$$B = \prod_{j} B_{p}$$

$$T_p^B = (B_p^T B_p - I)/2i$$

Summary of fits (current version)

Fit single energy partial waves from Kent State University analysis of:

- ~8000 exp. data for $\bar{K}N \rightarrow \bar{K}N$
- ~4500 exp. data for $\bar{K}N \to \pi \Lambda$
- ~5000 exp. data for $\bar{K}N \to \pi\Sigma$

TABLE I. Summary of the fitted single-energy partial waves. Notation: n_R : number of resonances; n_B : number of backgrounds; n_C : number of channels; N: number of fitted singleenergy points; $dof = N - n_p$: degrees of freedom.

L_{IJ}	n_R	n_B	n_C	N	n_P	dof	χ^2/N	χ^2/dof
S_{01}	4	2	7	360	41	319	2.09	2.36
P_{01}	4	2	6	358	42	316	4.70	5.33
P_{03}	2	2	8	508	36	472	1.45	1.56
D_{03}	3	1	6	372	28	344	1.83	1.98
D_{05}	2	1	5	302	18	284	0.64	0.68
F_{05}	2	1	8	460	27	433	2.14	2.27
F_{07}	1	1	4	208	10	198	0.08	0.09
G_{07}	1	1	6	350	14	336	0.65	0.68
S_{11}	4	3	10	546	77	469	3.08	3.59
P_{11}	2	3	9	546	50	496	1.48	1.63
P_{13}	2	2	11	722	60	662	0.55	0.60
D_{13}	1	2	13	814	42	772	0.77	0.81
D_{15}	2	1	11	714	36	678	1.52	1.60
F_{15}	2	2	12	782	52	730	0.11	0.12
F_{17}	1	1	11	704	24	680	0.37	0.38
G_{17}	1	1	10	580	22	558	0.09	0.09

Some Fits: $\bar{K}N \to \bar{K}N$

Some Fits: $\bar{K}N \to \pi\Sigma$

Unphysical Sheets

2^N Riemann Sheets

Poles, isospin 0

Poles, isospin 1

1. Randomize the experimental data

Randomize the experimental data Fit them

- 1. Randomize the experimental data
- 2. Fit them
- 3. Get a set of parameters

- 1. Randomize the experimental data
- 2. Fit them
- 3. Get a set of parameters
- 4. Repeat $1 \rightarrow 3$ until I have enough statistics

- 1. Randomize the experimental data
- 2. Fit them
- 3. Get a set of parameters
- 4. Repeat $1 \rightarrow 3$ until I have enough statistics
- 5. Compute observables, poles, ...

- 1. Randomize the experimental data
- 2. Fit them
- 3. Get a set of parameters
- 4. Repeat $1 \rightarrow 3$ until I have enough statistics
- 5. Compute observables, poles, ...
- 6. Apply standard statistical methods

Summary and Future Directions

- Reasonable model for KN amplitude
- Poles obtained as a by-product (not main objective)
- Finalize analyticity implementation
- Refit single-energy partial waves
- Error calculations
- Observables
- Finite Energy Sum Rules
- Reggeization of incoming kaon
- Photon-Reggeon-Kaon vertex

