GENIE – past, present, and future

Steve Dytman, Univ. of Pittsburgh FUNFACT at JLab 15 May, 2015

- broad goals
- evolution in last 2 years
- detailed look at FSI, pi prod
- a look to the future

Role in experiments

- Every MC run is event generator + detector simulation
 - Design experiments establish ability to get to goals
 - Design cuts to get close to final spectra
 - Provide estimates of background, means for subtraction
 - Provide estimate of important sources of systematic error
- Many neutrino experiments have incomplete coverage of final state, so Monte Carlo is very important.
- Serious problem when event generator prediction doesn't match data.

GENIE is designed for all accelerator based neutrino expts (universal)

Why?

- Because the experiments asked for it
- Uses on last slide really matter!
- GENIE has become an interpolator between experiments

Characteristics

- Strong ties to Root experiment geometry, calcs, histograms...
- Events thrown according to geometry
- Free from HepForge [<u>www.genie-mc.org</u>] (MCNet guidelines)
- Growing set of physics models
- Strong ties to experiments of many types (p decay, p interactions)
- workshops to introduce code to young people

How we do it

- ▶ There is *very little* vA data, *models required*
- Reaction model is Intranuclear Cascade (INC) (nucleons~free)
- Venerable models for qe (Llewellyn-Smith) and pion production (Rein & Sehgal) on p,n - updates? new data!
- Fit to vN Deep Inelastic Scattering data used for models.
- Nuclear model is relativistic Fermi Gas (old!) from (e,e')
- Final state interaction (FSI) comes from fits to πA , NA data

cross sections in GENIE

- GENIE has complete kinematics for all cross sections at all energies.
- Here, we show v_{μ} Carbon:
 - qe
 - All resonances
 - All coherent
 - DIS of all flavors
- Input spline functions used to generate events.

FUNFACT

Works because models are simple.

Electron-, hadron-nucleus important

Electron data provide all nuclear structure models

- Large body of (e,e') data with excellent theory interpretations
- v reactions need both axial and vector response, (e,e') only needs vector. Is axial nuclear response same as vector?
- Right now, v data isn't able to distinguish.
- Hadron data provide all FSI models
 - Large body of π , p, n data central to models (less for K)
 - (γ, π) data central to π propagation, nominally same as π reactions
 - Does π produced in nucleus have same properties as π beam?
 - Yes? If density dependence handled correctly?
 - Do we understand π^0 interactions?

Organizational issues

Transition to much larger collaboration in progress

GENIE has by-laws and core group of authors

- Costas Andreopoulous (Liverpool/RAL), Hugh Gallagher (Tufts), Gabe Perdue (FNAL), and SD (many years of effort)
- Policies set by this group (Exec Comm, can be expanded)
- Models introduced through physics working groups (HG, SD) and monitored by technical working group (CA, GP, R. Hatcher (FNAL))

Definite release schedule

- Desire 1 model introduction and 1 physics release per year
- Already abandoned due to insufficient manpower
- 2.10.0 model introduction in 1-2 weeks, beta release now (7 additions)
- 2.12.0 model introduction summer, 2015 (another 8 anticipated)
- Develops' Workshop at FNAL March, 2013 was important for getting help from experiments

Upcoming release highlights

Quasielastic

- 4 new nuclear/QE models (AF, effective SF, local FG, z expansion)
- New MEC (Valencia)

Pion production

- 3 new coherent models (BS, Alvarez-Ruso, Paschos/Schalla, +correct Rein-Seghal)
- Improved Resonance form factors (vector, axial)

FSI

- Better A dependence in hA
- Salcedo, Oset model in hN (density dependent medium corrections)
- Pandharipande, Pieper nucleon FSI (effective mass)
- Develop new default physics model, syst errors 2015-6. (now called v3.0)

FUNFACT

Some important comparisons - QE

- QE interpretations dominated by gap between Llwellyn-Smith and MiniBooNE data recently.
- Present theoretical preference is for MEC/npnh.
- (e,e') experiments have studied this since 1970's.
- Coming soon to GENIE

Quasielastic (QE)

- Synergy between (e,e') and v interactions important to GENIE
- (e,e') gives vector response, many very accurate expts.
- Because E_e fixed, scattered lepton spectrum separates channels.
- Fix part of v prediction, get axial from v data

π Production – emphasis on 1π through Δ

- Historical problem $\sigma_{ANL} < \sigma_{BNL}$ for nucleon targets.
- Many generators take average, assign systematic error.
- Recent paper by Wilkinson, et al. prefers ANL.

Sometimes generators disagree with (e,e') data

- Peaks in (e,e') data due to resonances, left peak is Δ .
- > Plot at right is for $Q^2 = .09 \text{ GeV}^2$, take.
- ratio Data:GENIE (left) shows vector form factor is wrong, very Q² dependent

Focus on FSI - how generators do it

- Strong interactions complicated→ nonperturbative, many channels, no clever approximations to QCD available.
- No quantum mechanical model available (eikonal)
- Best approximation is Intranuclear Cascade (INC)
 - Interactions with nucleons in medium same as for free nucleons
 - Interactions far enough apart that particles stay on-shell
 - Nuclear effects, e.g. binding energy and Fermi momentum, added

Models of today

- Mashnik extensive history, excellent low energy nucleon, poor for resonant pions, not freely available.
- PEANUT FLUKA, add 'quantum' corrections, applies to all energies, not freely available.
- GiBUU Mosel (Giessen), applied in HI's, hadrons, elec; good success with v, medium corrections, slow.
- Salcedo, Oset PR 1981, medium corrections give success for resonant pions, used in NEUT, NuWro.
- GENIE Intranuke default is effective INC, no medium corrections, Oset INC nearly done.
- All are able to fit wide variety of hadron-nucleus data

General Characteristics of GENIE FSI models Intranuclear Cascade (INC), real and inspired.

hN is straightforward INC

- Uses free 2- and 3-particle free cross sections + Fermi motion
- Success comes from importance of quasielastic reaction mechanism in nuclear physics *and* existence of SAID PWA data.

hA is schematic, data-driven INC

- Construct models of full chain of events
- Uses simple representations of hN code and data.
- Easily reweighted (exact) because each particle has 0 or 1 interactions as it propagates through residual nucleus.

Basic outline

FUNFACT

INC models common in hadronic physics

- Inelastic reactions, esp. particle production processes.
- Only pion induced reactions shown here, but still some impressive examples. (GEANT, FLUKA...) Harp (74)

Fraenkel (82)

Mashnik (95)

Total reaction xs in GENIE, GEANT (broad picture)

GENIE success

- Good for all processes pions, kaons[◊], protons, neutrons
- Absorption data best interpreted by statistical model (Ransome, INT workshop, Dec 2014) such as hA uses.
- Exactly reweightable important for experiments
- Approximations best suited for light nuclei but also works for heavy nuclei (e.g. lead).

Can GENIE predict Argon?

 $\pi^+ N \rightarrow \pi^+ N \qquad \pi^+ N N \rightarrow N N$

- Why do we do well despite lack of tuning?
- Hadron total cross sections all scale by powers of A
 - Power~2/3 for absorption,
 0.8 for total
- In light nuclei, predominance of single nucleon processes obvious. Signs still there in heavier nuclei.

Pion propagation in nucleus through KE_{π}

- MINERvA ($E_v \sim 4$ GeV, left) and MiniBooNE ($E_v \sim 1$, right) ~similar
- No calculation can describe both data sets.
- FSI? π production from N? Medium effects?

How well do MiniBooNE and MINERvA agree?

- Tension with models is shifted
- MiniBooNE $< E_v > ~1 \text{ GeV}$
 - Best models (GiBUU, Valencia) strongly disagree in shape
 - Event generators have shape right, but problems in detail
- MINERvA $\langle E_v \rangle = 4 \text{ GeV}$
 - Dominantly ∆ resonance formation, decay in nucleus, very similar to MiniBooNE
 - Event generators have shape, magnitude
 - GiBUU has shape right, but wrong magnitude
- No calculation describes both data sets well
 - Energy dependence difficult for all calcs.
 - Does this mean a normalization problem?
- W cuts are different, covered in calcs

FUNFACT at JLab

Q2 distributions are similar (Tzanov-CETUP)

FUNFACT

Sobczyk & Zmuda (Phys Rev C (2014))

> They note similar disagreement in magnitude as GENIE.

24

Sensitivities other than FSI

- Nucleon production
 - ~10% difference between NEUT and GENIE for nucleon
 - ▶ GiBUU chose BNL for a while, they are ~15% high (abs, not shape)
- Lalakulich&Mosel paper nuclear medium corrections don't affect shape, ~10% in magnitude.

FIG. 13. (Color online) Kinetic energy distribution of π^+ produced in neutrino scattering off carbon through the weak production of the Δ resonance and its following decay. The neutrino energy is $E_{\nu} = 1$ GeV. The curves labeled OS were obtained using the in-medium collisional width of the Δ from [28].

25

Dig deeper into FSI (MINERVA)

- Data are sensitive to pion prod xs, medium effects; however, FSI is largest effect.
- Data for π^+ dominated by Δ , less so for π^0 .

Next steps (GENIE and MINERvA)

- Use reweighting in GENIE to adjust FSI
 - Looks like more INEL and less ABS
 - Pitt summer student getting started
 - Can FSI be adjusted to fit MiniBooNE and MINERvA data?
 - Are those changes consistent with π scattering data?
 - Use newer GENIE models to adjust nucleon, nuclear model
- This is one in a series of adjustments in GENIE to match modern v data.
- ME data will have much better statistics, flux normalization – work already underway
- ND280 will have independent data

Conclusions

- Event generators important for neutrino experiments
- GENIE is the Universal event generator (needed for expt analysis and interpolation between expts.)
- vA theory in event generators getting better, still incomplete. Lack of good vN data is a problem!
- FSI through INC is state of art, but is it appropriate?
- P production experiments are great test of FSI
- Data for π production coming quickly, need some more analysis.

Comparison of event generators (apologies for errors in fact, judgment)

NEUT

- Good Excellent job for T2K through NIWG, systematic evaluation against MiniBooNE data, very good use of collaborators
- Room for improvement tied to T2K, how do we use their work?

NuWro

- Good close attention to theory, great advice to expts
- Room for improvement code linkage to expt (e.g. releases)

► GENIE

- Good excellent code for expts, excellent organization in development, good ties to theory/FNAL.
- Room for improvement ties to theory and expt should be improved, need more dedicated workers
- Unexpected surprise we are all training young people

Pion absorption at low A

- New tune (red) does much better
- This has few percent change in neutrino pion production xs.

