Nucleon Pairs from Light to Heavy Nuclei

Douglas W. Higinbotham

Quasi-Elastic Scattering Kinematics

Energy transfer: $\omega = e - e'$ Four-momentum transfer: $Q^2 \equiv -q_{\mu}q^{\mu} = q^2 - \omega^2$ Missing momentum: $p_m = q - p = p_{A-1}$

 $x_{B} = Q^{2}/2m\omega$ (just kinematics!)

FUNFACT 2015

Bjorken x:

Electron Scattering from Nucleons in the Nucleus

FUNFACT 2015

Jefferson Lab

Classic (e,e'p) Results

L. Lapikas, Nucl. Phys. A553 (1993) 297.

Independent-Particle Shell-Model is based upon the assumption that each nucleon moves independently in an average potential (mean field) induced by the surrounding nucleons

The (e,e'p) data for knockout of valence and deeply bound orbits in nuclei gives spectroscopic factors that are 60 – 70% of the mean field prediction.

Classic Momentum Distribution

O. Benhar et al., Phys. Lett. **B** 177 (1986) 135.

Jefferson Lab

Modern AV18 and Urbana-X Results

R. Wiringa, R. Schiavilla, S. Pieper, and J. Carlson, Phys. Rev. C89 (2014) 024305.

Deuteron Asymmetry Data

I. Passchier et al., Phys. Rev. Lett. 88 (2002)102302.

Nuclear Scaling Plateaus from CLAS

K. Sh. Egiyan et al., Phys. Rev. C 68 (2003) 014313.

Originally done with SLAC data by Frankfurt et al., Phys. Rev. C 48 (1993) 2451.

Coincidence (e,e'pN) Measurement

To study nucleon pairs and the fraction that contribute to momentum tail.

x > 1, $Q^2 = 1.5$ [GeV/c]² and missing momentum of 500 MeV/c

High p_m (e,e'p) events have recoiling neutrons.

R. Subedi et al., Science 320 (2008) 1476.

Importance of Correlations

- R. Schiavilla et al., Phys. Rev. Lett. 98 (2007) 132501.
- M. Sargsian *et al.*, Phys. Rev. C (2005) 044615.
- M. Alvioli et al., Phys. Rev. Lett. 100 (2008) 162503.

2nd Generation ⁴He(e,e'pN) Results

I. Korover et al., Phys. Rev. Lett. 113 (2014) 022501.

Large E_{miss} ¹²C(e,e'p) Events

R. Shneor *et al*. Phys. Rev. Lett. **99** (2007) 072501.

FUNFACT 2015

Jefferson Lab

CEBAF Large Acceptance Spectrometer [CLAS]

Open (e,e') trigger, Large-Acceptance, Low luminosity (~10³⁴ cm⁻² sec⁻¹)

Mining CLAS Data for SRCs

 θ_{pq} [degrees]

Reanalyzed existing CLAS data via a data-mining initiative

5 GeV electrons on ¹²C, ²⁷Al, ⁵⁶Fe, and ²⁰⁸Pb:

- Cut (e,e'p) kinematics to simulate previous measurements*.
- 2. Look for a correlated recoil proton.

O. Hen et al. (CLAS Collaboration), Phys. Lett. B **772**, 63 (2013) *Quasielstic knockout of high-initial-momentum protons

Opening angle

np-pairs also dominate SRC in *heavy* (asymmetric) nuclei

O. Hen et al., Science 346 (2014) 614.

Modern AV18 and Urbana-X Results

R. Wiringa, R. Schiavilla, S. Pieper, and J. Carlson, Phys. Rev. C89 (2014) 024305.

Kinetic Energy Sharing in Asymmetric Nuclei

Upcoming 3He/3H Experiments

Target Designed by David Meekins

³He(e,e'p)/³H(e,e'p) Ratio

FUNFACT 2015

Jefferson Lab

Correlations in Heavy Nuclei

Three Nucleon Correlations

K. Sh. Egiyan *et al.*, Phys. Rev. Lett. **96** (2006) 082501.

BUT Hall B x>2 doesn't agree with Hall C

- Excellent agreement for $x \le 2$
- Very different shape and error bars in the x>2 region
- Time for a third measurement!

Plotting Egiyan et al. Results vs. E'

D. Higinbotham and O. Hen, Accepted by Phys. Rev. Lett. April 2015

Preliminary Hall A Data with B & C

Analysis by Zhihong Ye.

NOTE: CLAS x>2.4 errors are small compared to the Hall C x>2.4 errors.

Jefferson Lab

Summary

- Independent particle model over predicts A(e,e'p)A-1 cross sections and pointed to the need for high momentum particles in the initialstate.
- BUT one cannot directly measure initial-states, so the electron community problem was how see the effect without getting dominated by reaction mechanisms (MEC, FSI, etc.)
- Many Jefferson Lab experiments, (e,e') ratios as well as (e,e'pN), have clearly shown evidence of high momentum initial-states via x>1 scaling plateaus as well as proton-neutron dominance above the Fermi momentum.
- Simple signature of three nucleon-correlations is proving elusive.
- Many New Nuclear Structure Experiments and Results Coming, including ³H & ³He, ⁴⁰Ca & ⁴⁸Ca and ⁴⁰Ar(e,e'p).

EMC-SRC Correlation

L. B. Weinstein, E. Piasetzky, D.W.H., J. Gomez, O. Hen, R. Shneor, Phys. Rev. Lett. 106 (2011) 052301.