Systematic uncertainty considerations for long baseline experiments

K. Mahn Michigan State University

Rates to oscillation probabilities...

MICHIGAN STATE

Event rates are used to infer the oscillation probability and mixing parameters

- Understanding δ_{CP} currently requires information about θ_{23} (and mass hierarchy)
- Comparisons between neutrino/antineutrino appearance oscillation probabilities will be used to also infer δ_{CP} , mass hierarchy and θ_{23} octant

Data from T2K:

Appearance channel:

- T2K: 28 candidate v_e events
 - Phys. Rev. Lett. 112, 061802 (2014)

MICHIGAN STATE

• Transition depends on all mixing parameters (Δm_{32}^2 , θ_{23} , θ_{13} , δ_{CP} , mass hierarchy and Δm_{21}^2 , θ_{12})

Disappearance channel:

- T2K: 120 candidate v_{μ} events
- Determine Δm_{32}^2 , $\sin^2 \theta_{23}$ from distortion to estimated neutrino energy spectrum
 - Phys. Rev. Lett. 112, 181801 (2014)

Data from T2K:

Neutrino source: accelerator-driven

MICHIGAN STATE

Accelerator based sources also are tunable as the neutrino energy spectrum depends on:

- Proton beam energy
- Position of the detector relative to the proton beam direction
- T2K uses an "off axis" (2.5°) beam, peaked at E_v~0.6 GeV to maximize the oscillation probability

Neutrino source: uncertainties

TABLE III. Contributions to the systematic uncertainties for the unoscillated ν_{μ} and ν_{e} flux prediction at SK, near the peak energy and without the use of near detector data. The values are shown for the ν_{μ} (ν_{e}) energy bin 0.6 GeV < E_{ν} < 0.7 GeV (0.5 GeV < E_{ν} < 0.7 GeV).

	Uncertainty in SK flux near peak (%)		
Error source	$ u_{\mu}$	ν_e	
Beam current normalization	2.6	2.6	
Proton beam properties	0.3	0.2	
Off-axis angle	1.0	0.2	
Horn current	1.0	0.1	
Horn field	0.2	0.8	
Horn misalignment	0.4	2.5	
Target misalignment	0.0	2.0	
MC statistics	0.1	0.5	
Hadron production			
Pion multiplicities	5.5	4.7	
Kaon multiplicities	0.5	3.2	
Secondary nucleon multiplicities	6.9	7.6	
Hadronic interaction lengths	6.7	6.9	
Total hadron production	11.1	11.7	
Total	11.5	12.4	

Uncertainties on the flux prediction come from in-situ or external (e.g. NA61) measurements

Neutrino interaction models on T2K

 $\widehat{}_{\geq}$ NEUT model (5.1.4.2) for 2013 earlier $\stackrel{\circ}{\geq}$ analyses:

- CCQE : Relativistic * Global * Fermi Gas model. Axial vector mass = 1.2GeV/c.
- No "Multinucleon" CCQE like interaction
- 1pi (NC and CC) production model: Rein-Sehgal, Simple pion-less delta decay. MARES, NCpi0 and CCpi+ normalizations tuned based on fits to external 1pi samples.

E, (GeV

NEUT model (5.3.2+) for 2015 (antineutrino, neutrino+antineutrino) analyses:

- CCQE : Spectral function model (Benhar et al.) Axial vector mass = 1.2GeV/c2.
 - RFG+RPA (Nieves et. al)
- "Meson exchange current" (MEC) CCQE like scattering (Nieves et al.)
- 1pi (NC and CC) production model: Rein-Sehgal with modified form factor for Delta. No pion-less delta decay.

Neutrino interaction models on T2K

NEUT model (5.3.2+) for 2015 (antineutrino, neutrino+antineutrino) analyses:

- CCQE : Spectral function model (Benhar et al.) Axial vector mass = 1.2GeV/c2.
 - RFG+RPA (Nieves et. al)
- "Meson exchange current" (MEC) CCQE like scattering (Nieves et al.)
- 1pi (NC and CC) production model: Rein-Sehgal with modified form factor for Delta. No pion-less delta decay.

 E_v (GeV)

T2K near detectors

Select CC v_{μ} candidates prior to oscillations in an off-axis tracking detector (ND280)

- Neutrino interacts on scintillator tracking detector, muon tracked through scintillator and TPCs
- Muon momentum from curvature in magnetic field
- Events separated based on presence of charged pion in final state

Challenges of use of ND data

Flux at near detector and far detector are not the same, so validation of models requires multiple beam energies

Use of external data in fits as well as near detector

Need to consider how phase space (both acceptance and flux differences) may affect alternate models not used in the analysis

Incomplete data: MiniBooNE

MICHIGAN STATE

MiniBooNE data is critical due to 4π acceptance... but...

one example: Lalakulich, Gallmeister, Mosel PRC 86, 014614 (2012)

S. Zeller, JLAB Workshop, May 2015

No offdiagonal correlations for MiniBooNE data releases

- First round of fits got an "extra crazy" value of MAQE, not alleviated by masking low Q² bins
- Internal studies indicate this gives a flawed statistic for estimating uncertainty
 - Working now with MiniBooNE to secure needed information
 - Useful to understand background subtraction

No correlations between samples

- Comparing CC to NC in single model
- Neutrino to antineutrino

QE model comparisons

MINERvA provides neutrino and antineutrino datasets and correlations

Compare T2K ND, MINERvA and MiniBooNE fit results with a Parameter Goodness of Fit (PGoF) statistic

- Tensions in data mean inflating associated uncertainties to cover these differences
- Is disagreement 2p2h, nuclear effects? Different effect in osc analysis
- Parameterization probably still incomplete, revisit theoretical errors
- Which experiment is sensitive to which effects and where in the phase space?

Multinucleon effect on T2K analysis

Tested possible bias on 2013/2014 T2K disappearance measurement

- Generate fake data under flux, detector, cross section variations, and perform full oscillation analysis including ND constraint
- For each fake data set, compare fitted θ_{23} with and without a 2p2h model present

Nieves et al model: 0.3% mean, 3.2% RMS "increased Nieves" = Martini model: -2.9% mean, 3.2% RMS

Significant relative to current systematic uncertainty on disappearance analysis (vs. 5.0% non-cancelling cross section uncertainty, 7.7% total)

Also a part of non-cancelling cross section uncertainty– effect of alternate model on 1p1h kinematics

Multinucleon effect on T2K analysis

1200 800 1000 J. Nieves, I. Ruiz M. Martini, M. Ericson, 600 ⁸⁰⁰ Simo, and M. J. G. Chanfray, and 600 Vicente Vacas, J. Marteau, PRC 80 400 PRC 83 045501 265501(2000)2011 200 Studies of nuPRISM demonstrate that sampling a -0 1 different fluxes in the same detector circumvent this bias in much the same way as a mono-energetic neutrino Tested pos beam would (LOI: arxiv:1412.3086) Generat oscillatio For eac ٦t Provides a novel, unique probe of the axial current with comparable uncertainties to the current neutrino Nieves et a scattering program "increased Significant relative to current systematic uncertainty on disappearance analysis (vs. 5.0% non-cancelling cross section uncertainty, 7.7% total)

Also a part of non-cancelling cross section uncertainty– effect of alternate model on 1p1h kinematics

Single pion production

Incomplete parameterization, difficult to reproduce rate, shape of pions

- π^0 spectrum for MiniBooNE NC π^0 is harder than NEUT, NUANCE
- Added empirical parameter to alter relative contribution of high W to low W contributions. Disagreement could also be due to in-medium treatment

2015: Updated RS form factors from K. M. Graczyk and J. T. Sobczyk. Phys. Rev. D, 77:053001 (2008)

Fit neutrino deuterium channels:

- C^A₅ (0) driven by ANL/BNL disagreement
- MARES (axial form factor mass)
- Non-resonant background scale factor

Results of resonance model retune

- Reasonable agreement Q² (and reco. E assuming pion)
- Fixing remaining difference in Q² doesn't resolve other kinematic variable differences, such as pion momentum (pion angle OK)

MICHIGAN STAT

Results of resonance model retune

 Fitting MiniBooNE data is possible, but requires significant suppression of absorption

MICHIGAN STATE

Need to revisit FSI + in medium treatment

New T2K near detector measurements of pion production coming soon

Final state interaction model

NEUT FSI model is a cascade model tuned on ``free-range'' π +N data

- ~3% error in disappearance analysis at far detector
- New data (DUET) and consideration of correlations between points
- Do we represent angular distributions of scattered pions?
- Model uncertainty: Would GiBUU (transport model) give a different answer?
- Relationship to Enu: Are models representative of $\Delta \rightarrow \pi$ in medium?
 - Data Mining collaboration for comparable Q² as neutrino probe

Related: pion interactions in detector

Pion scattering in the detector is a background to cross section understanding of what comes out of the nucleus (``secondary interactions")

- Consistent treatment within same model at far detector
- Significant detector uncertainty for near detectors

TABLE XI: Minimum and maximum fractional errors among all the $(p_{\mu}, \cos \theta_{\mu})$ bins, including the largest error sources. The last column shows the fractional error on the total number of events, taking into account the correlations between the $(p_{\mu}, \cos \theta_{\mu})$ bins.

Systematic error	Error Size (%)		
	Minimum and	Total fractional	
	maximum fractional	error	
	error		
B -Field Distortions	0.3 - 6.9	0.3	
Momentum Scale	0.1 - 2.1	0.1	
Out of FV	0 - 8.9	1.6	
Pion Interactions	0.5 - 4.7	0.5	
All Others	1.2 - 3.4	0.4	
Total	2.1 - 9.7	2.5	

v_e/v_μ cross section, NC1 γ

NC single photon production is difficult to isolate due to statistics, intrinsic v_e events and photon backgrounds, may also be significant for future.

- Mimics v_e appearance, recent improvements further reject NC π^0
- How can we use information from CC, NC resonance production to constrain this background?

T2K: indirect 2p2h probes

Martini and Ericson, Phys.Rev. C90 (2014) 2, 025501 T2K inclusive data: Phys.Rev. D87 (2013) 9, 092003

Indirect probe of multinucleon interactions through muon kinematics

- Peak at 0.6 GeV, off-axis detectors are as close to monochromatic as we currently make. On-axis (and detectors, INGRID) at ~1-2 GeV energy.
- Upcoming analyses looking at muon, muon+proton, both with no pion and no kinematic cuts for comparison to new QE, MEC models
- Taking data with predominantly antineutrino beam

T2K direct 2p2h probes?

Challenges to ``direct" measurement of multinucleon (2p2h) interactions:

- Minimal theoretical insight to final state kinematics, multiplicity of protons
- Models are also limited to certain ranges of validity
- 2p2h "hides" under the flux peak, where nuclear effects also modify CCQE

Approach:

- Follow ArgoNEUT, MINERvA, report proton multiplicity, proton and proton-muon kinematics
- Iterate with CC1π measurements and model development for backgrounds

T2K as a cross section experiment MICHIGAN STATE

Gaseous TPCs (3 in total) are predominantly Ar gas:

- Proton threshold is lower than LAr
- New reconstruction, search underway for such events

Summary

Future long baseline programs require tight control of systematics (~1%) on few GeV neutrino beams

- T2K currently has <10% uncertainties, thanks to a enormous work of the flux prediction, near detector data, and updates to cross section model
- Near detectors are enormously helpful, however, near detector measures unoscillated flux. Predicting oscillated flux relies on the cross section model

Source of uncertainty	$\nu_{\mu} \ { m CC}$	$\nu_e \text{ CC}$
Flux and common cross sections		
(w/o ND280 constraint)	21.7%	26.0%
(w ND280 constraint)	2.7%	3.2%
Independent cross sections	5.0%	4.7%
SK	4.0%	2.7%
FSI+SI(+PN)	3.0%	2.5%
Total		
(w/o ND280 constraint)	23.5%	26.8%
(w ND280 constraint)	7.7%	6.8%

 Data sets with multiple beam energies (T2K, MINERvA, NOvA, MiniBooNE on C, ArgoNEUT, CAPTAIN-MINERvA, MicroBooNE on Ar) are important to break the degeneracies of 1p1h, 2p2h and resonance contributions

MICHIGAN STAT

 An alternate approach is the nuPRISM ``mono-energetic" beam.

Personal thoughts on next steps

Electron scattering data (Data Mining collaboration) can help:

 Alternate probe to validate in-medium and final state effects in generators, like GENIE

Theory can help:

- Where is there consensus on a particular theoretical approach? What are the differences? (Marco Martini, INT 2013)
- What are uncertainties in each model? (theory or data driven) M.
 Valverde, J.E. Amaro, J. Nieves, PLB638 (2006) 325-332
- What about harder to measure sources of uncertainty like $\nu_e/\nu_\mu\,$ and NC1 $\gamma?$

Experiment can help:

 Steve Dytman: apply similar selections on MINERvA to mimic MiniBooNE 1π, and vice versa

Thank you for your attention. Thank you for the invitation!

Backup slides