Low-Energy Neutrino Interactions

Kate Scholberg, Duke University Final State Nucleons for Neutrino-Nucleus Interactions Jefferson Lab, May 15, 2015

Moving to a (somewhat) gentler regime...

~GeV+ neutrinos can create a quite a mess ...

~tens of MeV neutrinos are not as disruptive, but still leave non-trivial debris ...

OUTLINE

Low-energy cross sections overview: physics motivation

Supernova-neutrino-relevant cross sections: water, argon, lead ...

Measurements with a π decay-at-rest ν sources

Coherent elastic neutrino-nucleus scattering (CEvNS)

Work underway and prospects

Neutrino interactions in the few-100 MeV range are relevant for:

solar neutrinos

supernova neutrinos,

burst & relic

10 dN/dE_{e} [(22.5 kton) yr MeV]⁻¹ Reactor v 10 Supernova \overline{v} 10 (DSNB) Atmospheric 10 10 10 $\begin{array}{c|cccc} 15 & \overline{20} & 25 \\ Measured E_{e} & [MeV] \end{array}$ 0 5 10 30 35 40

low energy atmospheric neutrinos

Physics: oscillation, SM tests, astrophysics

	Electrons	
	Elastic scattering	
Charged	$\nu + e^- \to \nu + e^-$	
current	^[¬] _{ve} ·····► ▼e [−]	
Neutral current	ν e	
	Useful for pointing	

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
Charged current	^[−] _{ve} ····· v e [−]	$\overline{v}_{e}^{+} \gamma$	
Neutral current	ν e		
	Useful for pointing		

	Electrons	Protons	
	Elastic scattering	Inverse beta decay	
Charged	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \to e^+ + n$	
current	[[] ¬] _{ve} ·····► ▼e ⁻	\vec{v}_{e}^{+} \vec{v}_{e}^{-}	
	e	Elastic scattering	
Neutral current	√►	ν ρ	
	Useful for pointing	very low energy recoils	

	Electrons	Protons	Nuclei		
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $		
Charged current	e [−]	\vec{v}_{e}^{+} \vec{v}_{e}^{+} \vec{v}_{e}^{-} \vec{n}	Various possible ejecta and deexcitation products		
Neutral current	ν e	Elastic scattering v			
	Useful for pointing	very low energy recoils			

	Electrons	Protons	Nuclei		
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $		
Charged current	^[¬] _{ve} ·····► ▼e [−]	\overline{v}_{e}^{+}	$rac{1}{v_e}$ $rac{1}{v_e}$ $e^{+/-}$ $rac{Various}{v_e +/-}$ $rac{Various}{v_e +/-}$ $rac{Various}{v_e +/-}$ $rac{Various}{v_e +/-}$		
Neutral current	ν e	Elastic scattering vp	$ \nu + A \rightarrow \nu + A^* $ $ \nu + A \rightarrow \nu + A^* $ $ \nu + A^* $ $ \nu + A^* $ $ \nu + A^* $ $ \nu + A^* $		
	Useful for pointing	very low energy recoils			

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	^[¬] _{ve} ·····► v e [−]	$\overline{v}_{e}^{+} \gamma$	N N N P N N N N N N N N N N N N N N N N
Neutral current	ν e	Elastic scattering	$ \nu + A \rightarrow \nu + A^* $ deexcitation products $ \nu + A \rightarrow \nu + A^* $
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A \qquad \begin{array}{c} \nu \cdots & \bullet \\ $

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $	
Charged current	^[−] _{ve} ·····► √ e [−]	$\overline{v_{e}}^{\prime}$	v _e ····· · · · · · · · · · · · · · · · ·	
Neutral current	ν e	Elastic scattering	$\nu + A \rightarrow \nu + A^*$ products	
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A \qquad \begin{array}{c} \nu \cdots & \bullet \\ $	

IBD & ES well understood... interactions w/nuclei less well understood

Nuclei of particular interest:

carbon oxygen argon lead

detector materials for current and future supernova neutrino detectors

(These are not the only nuclei: additional nuclei are of interest for other detectors; supernova explosion physics, supernova nucleosynthesis)

Cross-sections in this energy range

Of these, IBD and ES on electrons well understood...

.. but so far ¹²C is the only heavy nucleus with v interaction x-sections well (~10%) measured in the tens of MeV regime

Need: oxygen (water), lead, argon, ...

Example 1: interactions on oxygen nuclei

CC interactions

Kolbe, Langanke, Vogel: PRD 66, (2002) 013007

TABLE III. Partial cross sections for charged-current neutrinoinduced reactions on ¹⁶O. Fermi-Dirac distributions with T = 4 MeV and T = 8 MeV and zero chemical potential have been assumed. The cross sections are given in units of 10^{-42} cm², exponents are given in parentheses.

Neutrino reaction	$\sigma,T=4$ MeV	$\sigma,T=8$ MeV
total	1.91 (-1)	1.37 (+1)
${}^{16}O(\nu_e, e^-p){}^{15}O(g.s.)$	1.21(-1)	6.37 (+0)
${}^{16}O(\nu_{e}, e^{-}p\gamma){}^{15}O^{*}$	4.07 (-2)	3.19 (+0)
$^{16}O(\nu_{e},e^{-}np)^{14}O^{*}$	3.92 (-4)	1.76 (-1)
${}^{16}O(\nu_e, e^-pp){}^{14}N^*$	2.61 (-2)	3.26 (+0)
${}^{16}O(\nu_{e},e^{-}\alpha){}^{12}N^{*}$	1.16 (-3)	1.31 (-1)
${}^{16}O(\nu_{e}, e^{-}p\alpha)^{11}C^{*}$	2.17 (-3)	5.66 (-1)
${}^{16}O(\nu_e, e^-n\alpha){}^{11}N(p){}^{10}C^*$	1.11 (-6)	3.28 (-3)

TABLE IV. Partial cross sections for charged-current antineutrino-induced reactions on ¹⁶O. Fermi-Dirac distributions with T=5 MeV and T=8 MeV and zero chemical potential have been assumed. The cross sections are given in units of 10^{-42} cm², exponents are given in parentheses.

Neutrino reaction	$\sigma,T=5$ MeV	$\sigma,T=8$ MeV
total	1.05 (+0)	9.63 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}){}^{16}N(g.s.)$	3.47 (-1)	2.15 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}n){}^{15}N(g.s.)$	5.24 (-1)	4.81 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}n\gamma){}^{15}N^{*}$	1.47 (-1)	1.90 (+0)
${}^{16}O(\bar{\nu}_{e}, e^{+}np){}^{14}C^{*}$	4.56 (-3)	1.38 (-1)
${}^{16}O(\bar{\nu}_{e}, e^{+}nn){}^{14}N^{*}$	5.50 (-3)	1.81 (-1)
${}^{16}O(\bar{\nu}_{e}, e^{+}\alpha){}^{12}B^{*}$	1.07 (-2)	1.91 (-1)
$^{16}\text{O}(\overline{\nu}_e, e^+n\alpha)^{11}\text{B*}$	6.20 (-3)	2.16 (-1)

NC interactions on oxygen nuclei

Example 2: interactions on argon nuclei

Charged-current absorption

$$v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$$
 Dominant
 $\bar{v}_e + {}^{40}\text{Ar} \rightarrow e^+ + {}^{40}\text{Cl}^*$

Neutral-current excitation $v_x + {}^{40}\text{Ar} \rightarrow v_x + {}^{40}\text{Ar}^*$ Not much information in literature

Elastic scattering

$$v_{e,x} + e^- \rightarrow v_{e,x} + e^- - Can use for pointing$$

In principle can tag modes with deexcitation gammas (or lack thereof)...

20 MeV v_e , 14.1 MeV e⁻, simple model based on R. Raghavan, PRD 34 (1986) 2088 Improved modeling based on ⁴⁰Ti (⁴⁰K mirror) β decay measurements possible **Direct measurements (and theory) needed!**

Need to understand efficiency for given technology

... in fact there can be transitions to intermediate states, adding to the cross section (and complicating the γ -tag)

VOLUME 58, NUMBER 6

DECEMBER 1998

Neutrino absorption efficiency of an ⁴⁰Ar detector from the β decay of ⁴⁰Ti

HALO at SNOLAB

SNO ³He counters + 79 tons of Pb: ~40 events @ 10 kpc

How can we *measure* these cross sections?

Stopped-Pion (πDAR) Neutrinos

Good overlap w/ SN spectrum

Far-off-axis neutrinos at the FNAL Booster Neutrino Beam could be used for this:

CAPTAIN-BNB experiment (5-ton LAr TPC) proposed to measure v-Ar x-scns

Spallation Neutron Source

Oak Ridge National Laboratory, TN

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

1552

Time structure of the SNS source

60 Hz *pulsed* source

Background rejection factor ~few x 10⁻⁴

Comparison of pion decay-at-rest v sources

The SNS has large, extremely clean DAR v flux

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

- Important in SN processes & detection
- Well-calculable cross-section in SM: SM test, probe of neutrino NSI
- Dark matter direct detection background
- Possible applications (reactor monitoring)

$$\frac{d\sigma}{d\Omega} = \frac{G^2}{4\pi^2} k^2 (1 + \cos\theta) \frac{(N - (1 - 4\sin^2\theta_W)Z)^2}{4} F^2(Q^2)$$

The cross-section is *large*

Large cross section, but never observed due to tiny nuclear recoil energies:

to ~ keV to 10's of keV recoils

Why use the 10's of MeV neutrinos from π decay at rest? →higher-energy neutrinos are advantageous, because both cross-section and maximum recoil energy increase with v energy

Two collaborations aiming to use πDAR for CEvNS measurement:

CENNS @ FNAL BNB: single-phase LAr

PHYSICAL REVIEW D 89, 072004 (2014)

A method for measuring coherent elastic neutrino-nucleus scattering at a far off-axis high-energy neutrino beam target

COHERENT @ ORNL SNS: Csl, Ge, LXe, ...

arXiv.org > hep-ex > arXiv:1310.0125

High Energy Physics - Experiment

Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper

COHERENT at the Spallation Neutron Source

fsnutown.phy.ornl.gov/fsnufiles/positionpapers/Coherent_PositionPaper.pdf

COHERENT detector subsystems

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	((COPHERENT
Csl[Na]	Scintillating Crystal	14	20	6.5	
Ge	HPGe PPC	10-20	20	5	
Xe	Two-phase LXe TPC	100	32	4	

NIN measurement in basement

- Scintillator inside CsI detector lead shield (now)
- Liquid scintillator surrounded by lead (swappable for other NIN targets) inside water shield

Summary

Cross sections on nuclei in the few tens-of-MeV regime are very poorly understood (theoretically and experimentally) ... especially relevant for SN neutrinos

Stopped-pion v sources

offer opportunities for these measurements

CEvNS also never before measured (SM test, DM bg); now within reach with WIMP detector technology

COHERENT@ SNS and CENNS@BNB going after this ... next measurement may be NINs on lead (bg for CEvNS and of SN relevance in itself)