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INntroduction

* The electroweak response is a fundamental
ingredient to describe neutrino - '2C
scattering.

- EXcess, at relatively low energy, of measured
cross section relative to oversimplified
theoretical calculations.

Neutrino experimental communities need
accurate theoretical calculations

« We have first studied the electromagnetic
response of “He and '°C for which precise
experimental data are available.

A model unable to describe electron-nucleus
scattering is unlikely to describe neutrino-
nucleus scattering.




Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the

energy loss.
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e Elastic scattering and
inelastic excitation of
discrete nuclear states.

* Broad peak due to
quasi-elastic electron-
nucleon scattering.

e Excitation of the nucleon
to distinct resonances
(like the A) and pion
production.



Electron-nucleus scattering

The electromagnetic inclusive cross section of the process

et+2C s+ X

where the target final state is undetected, can be written as

d20- _ ()f_2 Eef LEM W'L“/
dQe/ dEe/ q4 Ee Ry TEM
The leptonic tensor is fully specified by the measured e/

electron kinematic variables

LiAZ = 2[]6“]6,// + k,,k; — g/u/(kk,)]

The Hadronic tensor contains all the information on
target structure.

Wiy = (Wl JH WX ) (W |.JY[W0) 6™ (po + ¢ — px)
X




Neutrino-nucleus scattering

The neutral current inclusive cross section of the process

v+ A— vy + X

where the target final state is undetected, can be written as

2o G K

= LS Wi
dQV/dEV/ 47‘(‘2 |k| H

The leptonic tensor is fully specified by the measured Ve
neutrino kinematic variables

The Hadronic tensor contains all the information on
target structure.

Wi = (Wol Ji W x ) (U x| W0) 6" (po + ¢ — px) o’
X




Neutrino-nucleus scattering

The neutral current operator can be written as
= _2 (1 — 2sin’ 9W+@

« Weinberg angle sin® Oy = 0.2312

 |soscalar and isovector terms of the electromagnetic current.
po_ H p
JEM_ ‘]’y,S + ‘]%z

* |sovector term of the axial current, the one-body contributions of which are
proportional to the axial form factor, often written in the simple dipole form

The value of the axial mass obtained on neutrino-deuteron and neutrino-proton
scattering datais Ag ~ 1.03 GeV .



Neutrino-nucleus scattering

Because neutrino beams are always produced as secondary decay products, their
energy is not sharply defined, but broadly distributed.
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The problem

Relativistic Fermi gas calculations require an artificially large nucleon axial mass to
reproduce the data.
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Towards a unified approach

Moderate momentum transfer regime

e Ab initio Green’s Function Monte Carlo calculation of the nuclear response from
threshold up to the quasielastic region, initially for nuclei as large as °C
(extension to larger nuclei requires further development of our AFDMC method)

Large momentum transfer regime

e Development and implementation of the factorization approximation, in which
the hadronic final state is written as a product of a state representing the high-
momentum particles produced in the interaction process, and a state
representing the spectator nucleons, described by spectral functions.

Both approaches are based on the same dynamical framework!

* The nucleus consists of a collection of A nucleons whose dynamics are
described by the nonrelativistic Hamiltonian

H———ZVQ—FZ%]—FZVZJk

1<jJ 17k



Nuclear hamiltonian

* Argonne Vvig two-body potential reproduces the ~4300 np and pp scattering data
below 350 MeV of the Nijmegen database with x° ~ 1 .

e [llinois 7 three-body potential is needed to accurately describe the spectrum of

light nuclei
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Green’s Function Monte Carlo

Solving the many body Schrodinger equation is made particularly difficult by the
complexity of the interaction, which is spin-isospin dependent and contains strong
tensor terms

[A{\IJO(.Tl .. ..CCA) — EO\Ifo(ZUl .. .$A)
The wave function can be expressed as a sum over spin-isospin states

Ug(zy...2a) = Y _ Wo(ry...ra)la)
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Moderate momentum transfer regime
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Moderate momentum-transfer regime

At moderate momentum transfer, the inclusive cross section of the process
¢ +12C — ¢ + X can be written in terms of the response functions

Rag(q,w) = ) (WolJ"*(q,w)|¥s)(¥s]J7(q,w)|¥o)d(w + Ep — Ey),
f

Nuclear current includes one-and two-nucleon contributions

I = ity I

1<J
.a " " ] ] [] ]
 Ji describes interactions involving a single nucleon,

* (X . .
 Ji; accounts for processes in which the vector boson couples to the currents
arisina from meson exchanae between two interactina nucleons.

] z =



Moderate momentum-transfer regime

* At moderate momentum transfer, both initial and final states are eigenstates of
the nonrelativistic nuclear hamiltonian

H|Uy) = Ex|T) H|Us) = E¢|Ty)

* As for the electron scattering on '°C, among the possible states there are
Us) ="' B,p),|"'C,n), |'" B, pn), |'"” Be, pp)

* Relativistic corrections are included in the current operators and in the nucleon
form factors.

« GFMC allows for “exactly” solving the nonrelativistic many-body Schrédinger
equation for nuclei as large as 2C.

* GFMC also allows for extracting dynamical observables from ground-state
properties.




Euclidean response function

The Euclidean response at finite imaginary time
> (Wl i (q)e” TP Tg(q) | o)

Eos(T,q) ZCaB(Q)/ dwe™™" Rap(q,w) = (Wole=(H=Eo)T )

very quickly suppresses the contribution from large energy transfer.
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12C electromagnetic Euclidean response

In the electromagnetic longitudinal case, destructive interference between the
matrix elements of the one- and two-body charge operators reduces, albeit
slightly, the one-body response.
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12C electromagnetic Euclidean response

In the electromagnetic transverse case, two-body current contributions substantially
iIncrease the one-body response. This enhancement is effective over the whole
iImaginary-time region we have considered.
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12C neutral-current Euclidean response

Both the vector neutral current and the axial neutral current transverse responses
are substantially enhanced over the entire imaginary-time region we considered.
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Inversion of the Euclidean response

The Euclidean response formalism allows one to extract dynamical properties of
the system from its ground-state.

e Best suited for Quantum Monte Carlo approaches

* Wide range of applicability: atomic physics, cold atoms, neutrino scattering,
neutron star cooling...

Inverting the Euclidean response is an ill posed problem: any set of observations is
limited and noisy and the situation is even worse since the kernel is a smoothing

operator.

¢

\

We found historic maximum entropy to be simple to implement and adequate
for our purposes.

Eozﬁ (7-: q) —) RozB (w7 q)



*He electromagnetic response

Preliminary results indicate that the two-body currents do not provide significant
changes in the longitudinal response.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents do not provide significant changes in the longitudinal response.
The agreement with experimental data appears to be remarkably good.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

Two-body currents significantly enhance the transverse response function, not only
In the dip region, but also in the quasielastic peak and threshold regions.
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*He electromagnetic response

A direct consequence of nucleon-nucleon correlations is the large positive
contribution of the interference term which peaks at energy loss w < wgE.
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Large momentum-transfer regime
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L arge momentum-transfer regime

The nuclear current operator and the nuclear final state depend on momentum
transfer. At large momentum transfer non relativistic approximations become

iInadequate.
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|A: Spectral function approach

At large momentum transfer, scattering off a nuclear target reduces to the
iIncoherent sum of scattering processes involving individual bound nucleons

2

J“—>Zj§‘

Vx) = |p) ®[na)

do
— | &#pdE P(p.E) |70
f @p dE P(p.E) |7 005

The spectral function yields the probabillity of removing a nucleon with
momentum p from the target ground state leaving the residual system with
excitation energy E .



|A: Spectral function approach
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Neutrino-nucleus scattering

The observed excess of CCQE cross section may be traced back to the occurrence of
events with 2p2h final states.

- Initial State Correlations (ISC) - Final State Interactions (FSI):

/

« Meson Exchange Currents (MEC)

(b)




Neutrino-nucleus scattering

Using relativistic MEC and realistic description of the nuclear ground state requires the
extension of the factorization scheme to two-nucleon emission amplitude

 Rewrite the hadronic final state in the factorized form

Ux) = [pp') ® [na—2)
where [na—_2) is the state of the spectator (A — 2)-nucleon system carrying

momentum Py, .
* The two-nucleon current simplifies to

(Ux|Jf|To) — /d?’/fd?’/f’Mn(k, k')(pp’| Jf;|kk)o(k + k' — p,)

» The nuclear amplitude My, (k, k') is independent on ¢ and can be obtained within
nonrelativistic many-body theory.



Two-body currents within SF approach

Using relativistic MEC and realistic description of the nuclear ground state requires
the extension of the factorization scheme to two-nucleon emission amplitude

Preliminary '°C calculations show a significant enhancement of the total cross
section.
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Constraining the spectral function with QMC

The sum rule of the spectral function corresponds to the momentum distribution

/ dEP(k, E) = (¥g|al ai|¥)

10°

« Within cluster variational Monte

Carlo, we have already computed
the momentum distribution of 10
nuclei as large as 0O and 4°Ca.
o 107 ¢
e :
« The energy weighted sum rules of f:: 03 |
the spectral function can also be :
computed within CVMC
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Conclusions

 For relatively large momentum transfer, the two-body currents enhancement is
effective in the entire energy transfer domain.

* We have computed the electromagnetic and neutral-current Euclidean response
of 12C. The agreement of the former with experimental data is remarkably good.

* “He results for the electromagnetic response obtained using Maximum Entropy
technique are in very good agreement with experimental data.

* The extension of the factorization scheme underlying the IA is a viable option for
the development of a unified treatment of processes involving one- and two-
nucleon currents in the region of large momentum transfer.

* We have computed the momentum distribution of 1°0 and 4°Ca: these results
will be used to constrain the spectral function of these nuclei
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Future plans - moderate momentum transfer

* We are implementing charged-current transition transition operator in GFMGC;
the corresponding Euclidean response will be computed before the end of 2015.

* Preliminary results on the inversion of the °C Euclidean response are promising.
Need for more statistic (and computing time) and improved inversion techniques.
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Future plans - moderate momentum transfer

* The recently improved version of the auxiliary-field diffusion Monte Carlo
method (AFDMC) has allowed us to compute the ground-state energies of nuclei
as large as '°0O and 4°Ca.

*Unconstrained evolution allows for the calculation of Euclidean response
functions for larger nuclei and stellar matter. Possible impact on neutron star

cooling and supernovae explosion!
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Future plans - large momentum transfer

* We are implementing fully-relativistic MEC currents in the spectral function
approach. The interference between one- and two- body current will be fully
accounted for.

e Cluster variational Monte Carlo calculations of the energy weighted sum rules
of the spectral function for nuclei as large as #4°Ca will be carried out. Crucial
interplay with (e,e’) experiment on Argon at JLab.

* We plan to compute the Laplace transform of the spectral function using both
GFMC and AFDMC. Maximum-entropy technique may well be used to obtain the
real spectral function.

P (k, ) = (0]at (k)e= H=E)7 4 (k)|0)
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Thank you



