FunFACT! May 2015 JLAB

v-int NEEDS OF WATER CHERENKOV DETECTORS

H. A. TANAKA (UBC/IPP)

OVERVIEW

- Introduction to Water Cherenkov (WČ) technique
- "Classic" analysis with single ring/CCQE events
- Selected extensions to the technique:
 - reconstruction
 - enhancements (neutron capture, scintillator)
- *v*-int/FSI issues, opportunities

THE WATER CHERENKOV METHOD

- Light emission by $\beta > c_n$ particles
- Ring provides track information
 - vertex, direction, momentum,
- Ring topology provides particle identification information

SOME EXAMPLES:

MiniBooNE Detector

- Enormous success ~MeV, >PeV
 - resolve solar neutrino problem
 - discover neutrino oscillations
 - precision oscillation measurements
 - discover astrophysical neutrinos
- Focus today on ~GeV physics

EXAMPLE: T2K

$$\nu_{\ell} + n \to \ell^- + p \qquad \bar{\nu}_{\ell} + p \to \ell^+ + n$$

Backgrounds

- Appears as single μ /e-like ring
- E_v by energy/direction of ring relative to beam
 - assumes CCQE kinematics

 $\nu_{\ell} + (n/p) \rightarrow \nu_{\ell} + (n/p) + \pi^{0}$ $\nu_{\ell} + (n/p) \rightarrow \ell^{-} + (n/p) + \pi$

• $\pi^0 \rightarrow \gamma + \gamma$: ring counting, 2-ring reconstruction

- γ misidentified as e from v_e CCQE
- μ/π^+ : ring counting, decay electron cut

PERFORMANCE:

- Excellent particle identification
 - ~1% $\mu \leftrightarrow e$ misidentification
 - negligible background in v_e selection
- Recent advances in π^0 rejection
 - achieve ~2% π^0 misidentification
- Dominant background is intrinsically irreducible beam v_e contribution

OBSERVATIONS

- WČ detectors are ideally suited to ~1 GeV energy region
 - clean selection of single ring topologies
- CCQE is dominant at ~1 GeV
 - results in single ring events
- High purity and efficiency selection of CCQE events
- Detailed nuclear final state largely invisible to WČ
 - "insensitive" to details but cannot separate different channels.
 - new ideas (WbLS, neutron tagging, etc.)
- Multi-ring topologies (non-CCQE) have been a frontier for some time
 - continuous improvement over time
 - will discuss one of the many tools that have developed . . .

OTHER TOPOLOGIES

- WČ detectors have powerful multi-ring reconstruction capabilities
 - pattern recognition based on Hough transform to "count" rings.
 - particle identification on "brightest" ring
- Charged pions:
 - sometimes MIP like, sometimes "shower"-like
 - can we do more to identify these particles?

GENERALIZATION

- General framework ("fiTQun") for fitting arbitrary ring hypotheses
 - "any" number of rings
 - specific ring particle hypotheses
 - variable geometric configurations
 - e.g. photon conversion
 - Kinematic/geometric constraints
 - e.g. invariant mass

*Cuts applied: fiTQun-based FCFV, μ -like(vs. e), p_{μ} >200MeV/c, n_{dcy} <=I

MULTI RING RECONSTRUCTION

- $\mathbf{v}_{\mu} \operatorname{CC} \pi^{0}$ reconstruction
 - 3 ring $\mu + \gamma + \gamma$ topology
 - Pioneered on MiniBooNE in Mineral Oil
 - Now applied to SK detector H_2O :
 - ~70(90)% purity for ν_µ CC π⁰ (+N π[±]) i multi-GeV region

$IGeV < E_{vis} < 3.16GeV$

$v_e \ C \ C \ \pi^0 \ R \ E \ C \ O \ N \ S \ T \ R \ U \ C \ T \ O \ N$

- Extension to $v_e CC \pi^0$ reconstruction
 - 3 ring $e + \gamma + \gamma$ topology

NC multi- π^0 NC $1\pi^0$ $n\pi^{\pm}$

NC $1\pi^0 0\pi^{\pm}$ NC $0\pi^0 n\pi^{\pm}$ NC $0\pi^0 0\pi^{\pm}$

 ν_{μ} CC multi- π^{0} ν_{μ} CC $1\pi^{0}$ $n\pi^{\pm}$ ν_{μ} CC $1\pi^{0}$ $0\pi^{\pm}$

 $v_{\mu} CC 0\pi^0 n\pi^{\pm}$ $v_{\mu} CC 0\pi^0 0\pi^{\pm}$ $v_{\mu} CC multi-\pi^0$

 $v_e CC \ 1\pi^0 \ n\pi^{\pm}$ $v_e CC \ 1\pi^0 \ 0\pi^{\pm}$ $v_e CC \ 0\pi^0 \ n\pi^{\pm}$ $v_e CC \ 0\pi^0 \ n\pi^{\pm}$

- "Messier" than v_{μ} channel due to electron shower
- Now developed for SK detector
 - π^0 mass peak clearly visible even at high energy.
 - ~60(75)% purity for $v_e CC \pi^0$ (+N π^{\pm}) in multi-GeV region

APPLICATION:

~Several GeV region is where matter effects (core/mantle) impact $P(v_{\mu} \rightarrow v_{e})$ significantly

Identifying and cleanly reconstructing v_e events at high energy is critical

NEUTRON RECONSTRUCTION

H. Zhang ICRC

- Neutron detection via capture:n + p → d + γ (2.2 MeV) can be observed in SK
 - checked with neutron source (Am/Be)
- Applications:
 - \overline{v}_l tagging ($\overline{v}_l + p \rightarrow l^+ + n$)
 - background reduction in proton decay (ANNIE)
 - enhance neutron capture signal with Gd-doping (GADZOOKS)

WATER-BASED SCINTILLATOR

Potential uses:

- "calorimetric" measurement of E_v in CCQE (measure p energy)
- tagging sub-Č K⁺ in proton decay ($p \rightarrow K^+ + v$)
- Many exciting possibilities!

- New development in dissolving LAB-based scintillator in water with surfactants (M. Yeh, BNL)
- Many possible applications!
- For WČ detectors:
 - Obtain signal from both Cherenkov radiation and scintillation.
 - Delayed and isotropic scintillation from sub-Č particles!
 - Utilized in some analysis at MiniBooNE (scintillation+ Č from pure mineral oil)

NOW THE FUN

NEUTRINO ENERGY RECONSTRUCTION

- Neutrino energy reconstruction critical for neutrino oscillations studies
- Extensive discussion in literature (e.g.):
 - A. Butkevich, PRC78 (2008) 015501
 - T. Leitner *et al.*, PRC81 (2010) 064614
 - M. Martini *et al.*, PRD87 (2013) 1, 013009
 - U. Mosel *et al.*, PRL112 (2014) 151802
- Neutrino energy is based on kinematic assumptions
 - quasi-two body CCQE process: v_l + n $\rightarrow l$ + p
 - Single e/ μ Č ring identified, proton below threshold (invisible)
 - use outgoing lepton momentum to determine E_{v}
- Other mechanisms can give rise indistinguishable topologies in WČ
 - Δ production: absorption of pion, pionless Δ de-excitation
 - multi-nucleon interactions (M. Martini, the MiniBooNE CCQE "excess")
- FSI critical to correctly modelling this!

IMPACT ON T2K θ_{23} MEASUREMENT

- Biases arising from multinucleon effects studied
 - introducing these interactions into the MC samples
 - fit without their contribution (model mismatch)
- RMS and bias of few %.
- Does not impact current results significantly
 - results limited by statistical uncertainty
 - important source for more precise measurements.

NEEDS FOR "CCOP"

- In selecting "CCQE" WČ detectors select an effective final state:
 - e/μ + (no π^{\pm} above Č or decay electron) + nucleons
 - we need the following relation from our model:

$$\frac{d^2\sigma}{dE_\ell \ d\Omega_\ell}(E_\nu)$$

- i.e. the outgoing lepton momentum/angular distribution for a neutrino with energy E_{ν} interacting to give the "CC0 π " final state
- This allows us to:
 - predict the outgoing lepton spectrum given a predicted flux
 - correctly apply oscillation probabilities $P(v_{\alpha} \rightarrow v_{\beta}; E_{\nu})$
- For me, this is the most pressing issue for the LBL program where kinematic reconstruction of this type is used (not just WČ).
 - FSI plays a critical role in determining the final state.
 - Need to confront with multi-nucleon effects (Martini, et al.)

BYPASSING THE MODEL? vPRISM

- 160 Entries 300 Mean -0.0002917RMS 0.005395 -0.1 -0.05 0.05 0.1 Nominal $\sin^2\theta_{23}$ - Nieves $\sin^2\theta_{23}$ 180 160 Entries 300 -0.000475 Mean RMS 0.006014 -0.05 0.05 0.1 Nominal $\sin^2\theta_{23}$ - Martini $\sin^2\theta_2$
- Exploit variation of E_v with angle to beam axis
 "off-axis effect", requires well-known flux
- Simulate detector response (e.g. lepton kinematics) from narrow band of E_{ν}
- Potential to greatly reduce uncertainties from underlying mechanisms contributing to CC0π sample in WČ detectors

BEYOND CCQE/0 π

Lalakulich and Mosel PRC 87, 014602

- Modelling of CC1π is important in order to utilize these channels at the same level as CCQE
 - misidentified backgrounds in CC0π selection
 - Extending to using $CC1\pi$ channels in T2K
 - High energy analyses e.g. SK atmospheric analysis
- FSI significantly impacts the properties of the outgoing pions
 - e.g. how many π^+ are above Č threshold and reconstructable.

NEUTRON CAPTURE

Prompt muon tracks through water volume, ranges in MRD

neutrons thermalize and stop in water

neutrons capture on Gd, flashes of light are detected

- Reduction of atmospheric neutrino backgrounds has potential to significantly improve proton decay sensitivity in WC
 - need to understand neutron emission in atmospheric neutrino interactions
- Extra neutrons expected in v̄ vs v interactions due to p→n transition
 - statistical separation of v/\bar{v} interactions in WC

CONCLUSIONS:

- WČ detectors have/will continue to play a critical role in studying neutrinos
 - a program next generation of experiments is in the works (Hyper-Kamiokande, PINGU, ORKA, etc.)
- The method is particularly well matched to neutrino interactions ~1 GeV where CCQE/0 π interactions are dominant
 - more ambitious goals in the study of neutrino oscillations means more demands on modelling and FSI.
 - "Energy reconstruction" issue
- Continuous improvement of the method has been underway
 - Utilize a broader sample of events beyond CCQE(0π)
 - New techniques: neutron tagging, scintillation, etc.
 - Additional frontiers for FSI and FUN!