Nucleon and Nuclear Structure from the DSEs

Ian Cloët
Argonne National Laboratory

A New Era for Hadro-Particle Physics

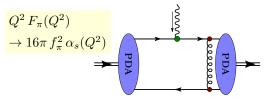
Jefferson Lab, 23–24 June 2016

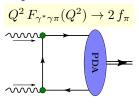
Nucleon Electromagnetic Form Factors

Nucleon electromagnetic current

$$\langle J^{\mu} \rangle = \bar{u}(p') \left[\gamma^{\mu} F_1(Q^2) + \frac{i \sigma^{\mu\nu} q_{\nu}}{2 M} F_2(Q^2) \right] u(p)$$
Dirac

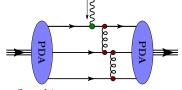
Pauli


Provide vital information on the distribution of


- charge and magnetization within hadrons and nuclei
- form factors also directly probe confinement at all energy scales
- Today accurate form factor measurements are creating a paradigm shift in our understanding of nucleon structure:
 - proton radius puzzle
 - $\mu_p G_{Ep}/G_{Mp}$ ratio and a possible zero-crossing
 - flavour decomposition and evidence for diquark correlations
 - meson-cloud effects
 - seeking verification of perturbative QCD scaling predictions & scaling violations

Form Factors in Conformal Limit $(Q^2 \to \infty)$

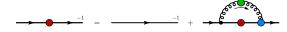
- At asymptotic energies hadron form factors factorize into parton distribution amplitudes & a hard scattering kernel [Farrar, Jackson; Lepage, Brodsky]
 - only the valence Fock state $(\bar{q}q \text{ or } qqq)$ can contribute as $Q^2 \to \infty$
 - both confinement and asymptotic freedom in QCD are important in this limit
- Most is known about $\bar{q}q$ bound states, e.g., for the pion:



For the nucleon, normalization is not known

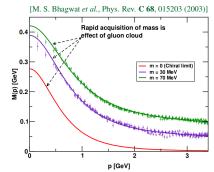
$$G_{E,M}(Q^2 \to \infty) \propto \alpha_s^2(Q^2)/Q^4$$

• orbital angular momentum effects approach



● Gluons play a critical role – formalism must reflex this

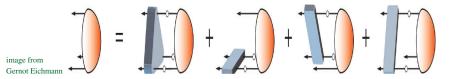
QCD's Dyson-Schwinger Equations


- lacktriangle The equations of motion of QCD \Longleftrightarrow QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - tractability \Longrightarrow must implement a symmetry preserving truncation
- lacktriangle The most important DSE is QCD's gap equation \Longrightarrow quark propagator

ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p) = \frac{Z(p^2)}{i \not p + M(p^2)}$$

- mass function, $M(p^2)$, exhibits dynamical mass generation
- complex conjugate poles
 - no real mass shell ⇒ confinement

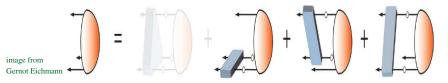


Nucleon Structure

5 / 28

- A robust description of the nucleon as a bound state of 3 dressed-quarks can only be obtained within an approach that respects Poincaré covariance
- Such a framework is provided by the Poincaré covariant Faddeev equation

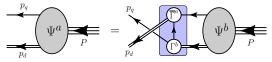
- sums all possible interactions between three dressed-quarks
- much of 3-body interaction can be absorbed into effecive 2-body interactions
- Faddeev eq. has solutions at discrete values of $p^2 (= M^2) \implies$ baryon spectrum
- A prediction of these approaches is that owing to DCSB in QCD strong non-pointlike diquark correlations exist within baryons
 - any interaction that describes colour-singlet mesons also generates *non-pointlike* diquark correlations in the colour-\$\bar{3}\$ channel
- where $scalar(0^+)$ & axial-vector (1^+) diquarks most important for the nucleon table of contents


 Jefferson Lab 23–24 June 2016

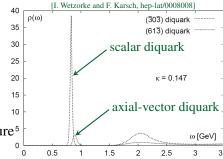
Nucleon Structure

5 / 28

- A robust description of the nucleon as a bound state of 3 dressed-quarks can only be obtained within an approach that respects Poincaré covariance
- Such a framework is provided by the Poincaré covariant Faddeev equation

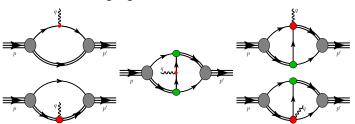

- sums all possible interactions between three dressed-quarks
- much of 3-body interaction can be absorbed into effecive 2-body interactions
- Faddeev eq. has solutions at discrete values of $p^2 (= M^2) \implies$ baryon spectrum
- A prediction of these approaches is that owing to DCSB in QCD strong non-pointlike diquark correlations exist within baryons
 - any interaction that describes colour-singlet mesons also generates *non-pointlike* diquark correlations in the colour- $\bar{3}$ channel
- where $scalar(0^+)$ & axial-vector (1^+) diquarks most important for the nucleon table of contents

 Jefferson Lab 23–24 June 2016


Diquarks

 Diquarks are dynamically generated correlations between quarks inside baryons

- typically diquark sizes are similar to analogous mesons: $r_{0^+} \sim r_{\pi}, \; r_{1^+} \sim r_{\rho}$
- lacktriangle These dynamic qq correlations are not the static diquarks of old
 - all quarks participate in all diquark correlations
 - in a given baryon the Faddeev equation predicts a probability for each diquark cluster
 - for the nucleon: scalar $(0^+) \sim 70\%$ axial-vector $(1^+) \sim 30\%$
- Faddeev equation spectrum has significant overlap with constituent quark model and limited relation to Lichtenberg's quark+diquark model
- Mounting evidence from hadron structure⁵
 (e.g. PDFs, form factors) and lattice


Nucleon EM Form Factors from DSEs

- A robust description of form factors is only possible if electromagnetic gauge invariance is respected; equivalently all relevant Ward-Takahashi identities (WTIs) must be satisfied

$$q_{\mu} \Gamma^{\mu}_{\gamma qq}(p',p) = \hat{Q}_q \left[S_q^{-1}(p') - S_q^{-1}(p) \right]$$

- transverse structure unconstrained
- Diagrams needed for a gauge invariant nucleon EM current in (our) DSEs

Feedback with experiment can shed light on elements of QCD via DSEs

Beyond Rainbow Ladder Truncation

● Include "anomalous chromomagnetic" term in quark-gluon vertex

$$\frac{1}{4\pi} g^2 D_{\mu\nu}(\ell) \Gamma_{\nu}(p',p) \rightarrow \alpha_{\text{eff}}(\ell) D_{\mu\nu}^{\text{free}}(\ell) \left[\gamma_{\nu} + i \sigma^{\mu\nu} q_{\nu} \tau_{5}(p',p) + \ldots \right]$$

- In chiral limit anomalous chromomagnetic term can only appear through
 DCSB not chirally symmetric and flips quark helicity
- lacktriangle EM properties of a spin- $\frac{1}{2}$ point particle are characterized by two quantities:
 - ullet charge: e & magnetic moment: μ
- Expect strong gluon dressing to produce ^{0.6}
 non-trivial electromagnetic structure
 for a dressed quark
 - recall dressing produces from massless quark a $M \sim 400 \, \text{MeV}$ dressed quark
- Large anomalous chromomagnetic moment in the quark-gluon vertex – produces a large quark anomalous electromagnetic moment
 - dressed quarks are not point particles!

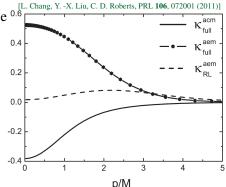
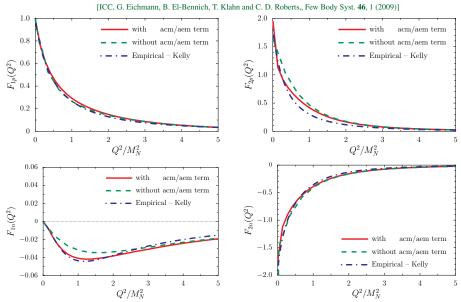
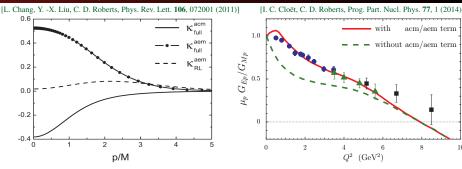



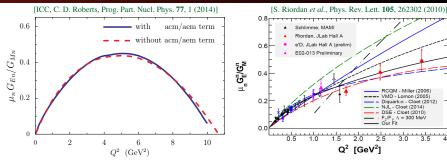
table of contents Jefferson Lab 23-24 June 2016 8/28

Nucleon Dirac & Pauli form factors



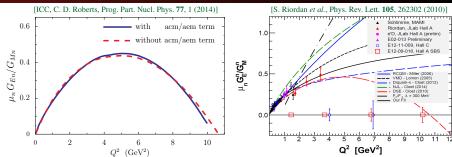
lacktriangle quark aem term has important influence on Pauli form factors at low Q^2

Proton G_E/G_M **Ratio**


- Quark anomalous magnetic moment required for good agreement with data
 - important for low to moderate Q^2
 - ullet power law suppressed at large Q^2

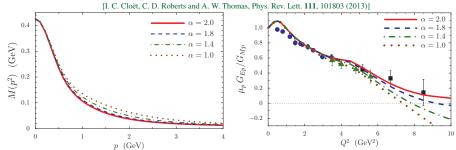
- Illustrates how feedback with EM *form factor measurements* can help constrain the *quark-photon vertex* and therefore the *quark-gluon vertex* within the DSE framework
 - \bullet knowledge of quark–gluon vertex provides $\alpha_s(Q^2)$ within DSEs \Leftrightarrow confinement

Neutron G_E/G_M **Ratio**



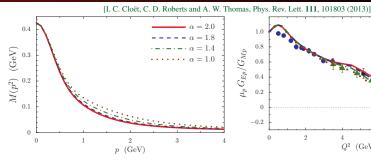
- Quark anomalous chromomagnetic moment which drives the large anomalous electromagnetic moment – has only a minor impact on neutron Sachs form factor ratio
- Predict a zero-crossing in G_{En}/G_{Mn} at $Q^2 \sim 11 \, \text{GeV}^2$
- Turn over in G_{En}/G_{Mn} will be tested at Jefferson Lab
- DSE *predictions* were confirmed on domain $1.5 \lesssim Q^2 \lesssim 3.5 \, \text{GeV}^2$

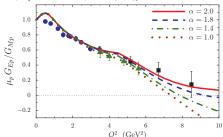
Neutron G_E/G_M **Ratio**

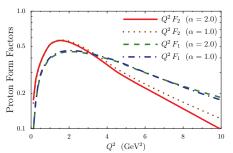


- Quark anomalous chromomagnetic moment which drives the large anomalous electromagnetic moment – has only a minor impact on neutron Sachs form factor ratio
- Predict a zero-crossing in G_{En}/G_{Mn} at $Q^2 \sim 11 \, \text{GeV}^2$
- Turn over in G_{En}/G_{Mn} will be tested at Jefferson Lab
- DSE *predictions* were confirmed on domain $1.5 \lesssim Q^2 \lesssim 3.5 \, \text{GeV}^2$

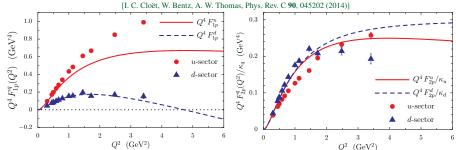
Proton G_E **form factor** and **DCSB**





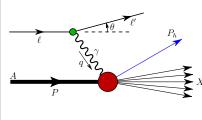

- Find that slight changes in $M(p^2)$ on the domain $1 \lesssim p \lesssim 3 \, \text{GeV}$ have a striking effect on the G_E/G_M proton form factor ratio
 - indication that position of a zero is very sensitive to underlying dynamics and the nature of the transition from nonperturbative to perturbative QCD
- Zero in $G_E = F_1 \frac{Q^2}{4 M_N^2} F_2$ largely determined by evolution of $Q^2 F_2$
 - \bullet F_2 is sensitive to DCSB through the dynamically generated quark anomalous electromagnetic moment vanishes in perturbative limit
 - ullet the quicker the perturbative regime is reached the quicker $F_2 o 0$

Proton G_E form factor and DCSB



- Recall: $G_E = F_1 \frac{Q^2}{4 M_*^2} F_2$
- \bullet Only G_E is senitive to these small changes in the mass function
- Accurate determination of zero crossing would put important contraints on quark-gluon dynamics within DSE framework

Flavour separated proton form factors

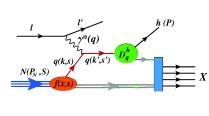


- Prima facie, these experimental results are remarkable
 - ullet u and d quark sector form factors have very different scaling behaviour
- However, when viewed in context of diquark correlations results are straightforward to understand
 - in proton (uud) the d quark is "bound" inside a scalar diquark [ud] 70% of the time; u[ud] diquark $\implies 1/Q^2$
- lacktriangle Zero in F_{1p}^d a result of interference between scalar and axial-vector diquarks
 - location of zero indicates relative strengths correlated with d/u ratio as $x \to 1$

Probing Transverse Momentum with SIDIS

leading		quark polarization			
tw	ist	unpolarized [U] longitudinal [L]		transverse [T]	
tion	U	$f_1 = igodots_{ ext{unpolarized}}$		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc$ Boer-Mulders	
polarization	L		$g_1 = \bigcirc \rightarrow \bigcirc \bigcirc$	$h_{1L}^{\perp} = $	
nucleon po	т	$f_{1T}^{\perp} = \bigodot$ Sivers	$g_{1T}^{\perp} = \bigodot_{\text{worm gear 2}}^{\spadesuit} - \bigodot_{\text{gear 2}}^{\spadesuit}$	$h_{1T} = $	

- The new frontier in hadron physics is the 3D imaging of the quarks & gluons
- SIDIS cross-section on nucleon has 18 structure functions factorize as:


$$F(x, z, P_{h\perp}^2, Q^2) \propto \sum f^q(x, k_T^2) \otimes D_q^h(z, p_T^2) \otimes H(Q^2)$$

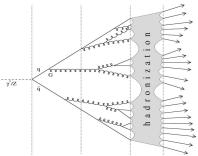
- reveals correlations between parton transverse momentum, its spin & nucleon spin
- Parametrization of these functions is not sufficient must calculate in a framework with a well defined connection to QCD
- Fragmentation functions are particularly challenging & therefore interesting

Probing Transverse Momentum with SIDIS

leading		quark polarization			
tw	ist	unpolarized [U]	zed [U] longitudinal [L] transverse [
tion	U	$f_1 = igodots_{ ext{unpolarized}}$		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc$ Boer-Mulders	
polarization	L		$g_1 = \longrightarrow - \longrightarrow$ helicity	$h_{1L}^{\perp} = $	
nucleon po	т	$f_{1T}^{\perp} = \bigodot$ Sivers	$g_{1T}^\perp = \bigodot_{\text{worm gear 2}}^\blacktriangle - \bigodot_{\text{worm gear 2}}^\blacktriangle$	$h_{1T} = $ $h_{1T} = $ transversity $h_{1T}^{\perp} = $ pretzelosity	

- The new frontier in hadron physics is the 3D imaging of the quarks & gluons
- SIDIS cross-section on nucleon has 18 structure functions factorize as:

$$F(x, z, P_{h\perp}^2, Q^2) \propto \sum f^q(x, k_T^2) \otimes D_q^h(z, p_T^2) \otimes H(Q^2)$$


- reveals correlations between parton transverse momentum, its spin & nucleon spin
- Parametrization of these functions is not sufficient must calculate in a framework with a well defined connection to QCD
- Fragmentation functions are particularly challenging & therefore interesting

Probing Transverse Momentum with SIDIS

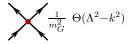
15 / 28

leading twist		ling	quark polarization				
		ist	unpolarized [U]	longitudinal [L]	transverse [T]		
	tion	U	$f_1 = igodots$ unpolarized		$h_1^{\perp} = $ 0 0 Boer-Mulders	γ //Z	q 86 G
	polarization	L		$g_1 = \bigcirc \rightarrow \bigcirc \bigcirc$	$h_{1L}^{\perp} = $		
nucleon pc		т	$f_{1T}^{\perp} = \bigodot$ Sivers	$g_{1T}^{\perp} = \bigodot_{\text{worm gear 2}}^{\bullet} - \bigodot_{\text{gear 2}}^{\bullet}$	$h_{1T} = $		

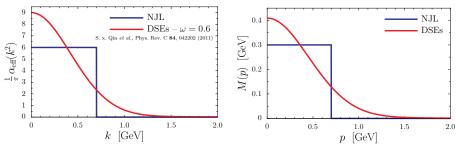
- The new frontier in hadron physics is the 3D imaging of the quarks & gluons
- SIDIS cross-section on nucleon has 18 structure functions factorize as:

$$F(x, z, P_{h\perp}^2, Q^2) \propto \sum f^q(x, k_T^2) \otimes D_q^h(z, p_T^2) \otimes H(Q^2)$$

table of contents


- reveals correlations between parton transverse momentum, its spin & nucleon spin
- Parametrization of these functions is not sufficient must calculate in a framework with a well defined connection to QCD
- Fragmentation functions are particularly challenging & therefore interesting Jefferson Lab 23-24 June 2016

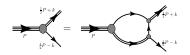
Nambu-Jona-Lasinio model

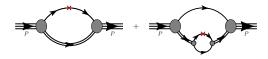


Continuum QCD

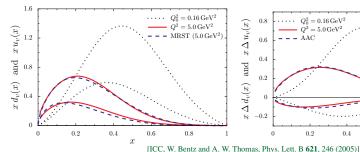
"integrate out gluons"

- this is just a modern interpretation of the Nambu–Jona-Lasinio (NJL) model
- model is a Lagrangian based covariant QFT which exhibits dynamical chiral symmetry breaking & it elements can be QCD motivated via the DSEs




- The NJL model is very successful provides a good description of numerous hadron properties: form factors, PDFs, in-medium properties, etc
 - however the NJL model has no direct link to QCD
 - in general NJL has no confinement but can be implemented with proper-time RS

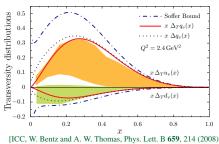
Nucleon quark distributions

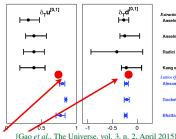

- Nucleon = quark+diquark
- PDFs given by Feynman diagrams: $\langle \gamma^+ \rangle$

Covariant, correct support; satisfies sum rules, Soffer bound & positivity

$$\langle q(x) - \bar{q}(x) \rangle = N_q, \ \langle x u(x) + x d(x) + \ldots \rangle = 1, \ |\Delta q(x)|, \ |\Delta_T q(x)| \leqslant q(x)$$

0.40.6 0.8


Nucleon transversity quark distributions



Tensor charge given by

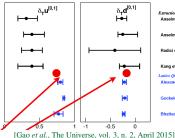
$$g_T = \int dx \left[\Delta_T u(x) - \Delta_T d(x) \right]$$

- quarks in eigenstates of $\gamma^{\perp} \gamma_5$
- Non-relativistically: $\Delta_T q(x) = \Delta q(x)$ a measure of relativistic effects
- Helicity conservation: no mixing bet'n $\Delta_T q \& \Delta_T g$: $J \leqslant \frac{1}{2} \Rightarrow \Delta_T g(x) = 0$
- Therefore for the nucleon $\Delta_T q(x)$ is valence quark dominated
- At model scale we find: $g_T = 1.28$ compare $g_A = 1.267$ (input)

Radici et al. (2015)

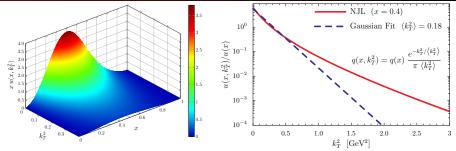
Nucleon transversity quark distributions




$$\Delta_T q(x) = \begin{array}{c} & & \\ & \\ & \end{array} - \begin{array}{c} & \\ & \\ & \end{array}$$

Tensor charge given by

$$g_T = \int dx \left[\Delta_T u(x) - \Delta_T d(x) \right]$$


- quarks in eigenstates of $\gamma^{\perp} \gamma_5$
- Non-relativistically: $\Delta_T q(x) = \Delta q(x)$ a measure of relativistic effects
- Helicity conservation: no mixing bet'n $\Delta_T q \& \Delta_T g$: $J \leqslant \frac{1}{2} \Rightarrow \Delta_T g(x) = 0$
- Therefore for the nucleon $\Delta_T q(x)$ is valence quark dominated
- At model scale we find: $g_T = 1.28$ compare $g_A = 1.267$ (input)

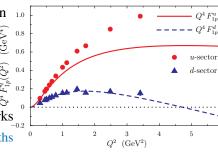
Transverse Momentum Dependent PDFs

- So far only considered the simplest spin-averaged TMDs $-q(x, k_T^2)$
- Rigorously included transverse momentum of diquark correlations in TMDs

$$q_{(D)N}(x, k_T^2) = \int_0^1 dy \int_0^1 dz \int d^2 \vec{q}_{\perp} \int d^2 \vec{\ell}_{\perp}$$

$$\delta(x - yz) \ \delta(\vec{\ell}_{\perp} - \vec{k}_{\perp} - z\vec{q}_{\perp}) \ f_{D/N}(y, \vec{q}_{\perp}) \ f_{q/D}(z, \vec{\ell}_{\perp})$$

lacktriangle Scalar diquark correlations greatly increase $\left\langle k_T^2 \right\rangle$


$$\langle k_T^2 \rangle_u^{Q^2 = Q_0^2} = 0.43 \, \mathrm{GeV}^2$$
 $\langle k_T^2 \rangle = 0.31 \, \mathrm{GeV}^2$ [HERMES], $0.41 \, \mathrm{GeV}^2$ [EMC]

Flavour Dependence & Diquarks

- Scalar diquark correlations give sizable flavour dependence in $\langle k_T^2 \rangle$
 - 70% of proton (uud) WF contains a scalar diquark [ud]; $M_s \simeq 650$ MeV, with $M \simeq 400$ MeV difficult for d-quark to be at large x
- Scalar diquark correlations also explain the very different scaling behaviour of the quark sector form factors
 - u[ud] diquark \Longrightarrow extra $1/Q^2$ for d
- Zero in F_{1p}^d a result of interference $\overset{\sim}{\triangleright}$ between scalar and axial-vector diquarks
 - location of zero indicates relative strengths correlated with d/u ratio as $x \to 1$

[ICC, Bentz, Thomas, PRC 90, 045202 (2014)]

23-24 June 2016

Nucleon in Medium

Quasi-elastic scattering

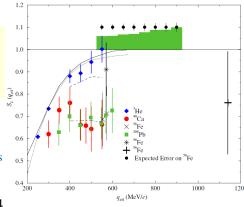
Quasi-elastic scattering is used to study nucleon properties in a nucleus: $q^2 = \omega^2 - |q|^2$ Quasi-elastic scattering is used to study nucleon properties in a nucleus: $q^2 = \omega^2 - |q|^2$ Giant Resonance

Proton Elastic $u = Q^2/2Mn$ Deep Inelastic $u = Q^2/2Mn$ Lepton scattering $u = Q^2/2Mn$ Resonance

The cross-section for this process reads

$$\frac{d^{2}\sigma}{d\Omega d\omega} = \sigma_{\text{Mott}} \left[\frac{q^{4}}{\left| \boldsymbol{q} \right|^{4}} R_{L}(\omega, \left| \boldsymbol{q} \right|) + \left(\frac{q^{2}}{2\left| \boldsymbol{q} \right|^{2}} + \tan^{2} \frac{\theta}{2} \right) R_{T}(\omega, \left| \boldsymbol{q} \right|) \right]$$

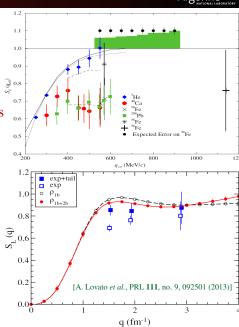
- response functions are accessed via Rosenbluth separation
- In the DIS regime $Q^2, \omega \to \infty$ $x = Q^2/(2 M_N \omega) = \text{constant}$ response functions are proportional to the structure functions $F_1(x, Q^2)$ and $F_2(x, Q^2)$


Coulomb Sum Rule

The "Coulomb Sum Rule" reads

$$S_L(|\boldsymbol{q}|) = \int_{\omega^+}^{|\boldsymbol{q}|} d\omega \; \frac{R_L(\omega, |\boldsymbol{q}|)}{\tilde{G}_E^2(Q^2)}$$
$$\tilde{G}_E^2 = Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2)$$

- Non-relativistic expectation as |q| becomes large $S_L(|q|\gg p_F)\to 1$
- CSR counts number of charge carriers
- The CSR was first measured at MIT Bates in 1980 then at Saclay in 1984



- both experiments observed significant quenching of the CSR
- Two plausible explanations: 1) nucleon structure is modified in the nuclear medium; 2) experiment/analysis is flawed e.g. Coulomb corrections
- A number of influential physicists have argued very strongly for the latter

Coulomb Sum Rule Today

- No new data on the CSR since SLAC data from early 1990s
- The quenching of the CSR has become one of the most contentious observations in all of nuclear physics
- Experiment E05-110 was performed at Jefferson Lab in 2005 – should settle controversy of CSR quenching once and for all
 - publication of results expected soon
- State-of-the-art traditional nuclear physics (GFMC) calculations find no quenching in ¹²C

Longitudinal Response Function

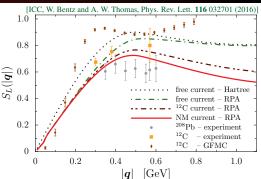


 In nuclear matter response function given by

$$\omega, q)$$
 + ω σ, ω, ρ

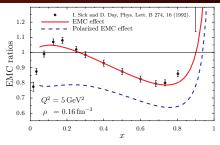
$$R_L(\omega, \boldsymbol{q}) = -rac{2 Z}{\pi \,
ho_B} \, ext{Im} \, \Pi_L \left(\omega, \boldsymbol{q}
ight)$$

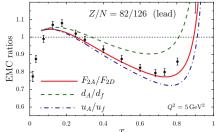
- Longitudinal polarization Π_L is obtained by solving a Dyson equation
- We consider two cases: (1) the electromagnetic current is that if a free nucleon; (2) the current is modified by the nuclear medium
- The in-medium nucleon current causes a sizeable quenching of the longitudinal response
 - driver of this effect is modification of the proton Dirac form factor
- Nucleon RPA correlations play almost no role for $|q| \ge 0.7 \,\text{GeV}$



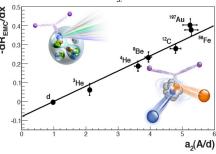
Coulomb Sum Rule

$$\begin{split} S_L(|\boldsymbol{q}|) &= \int_{\omega^+}^{|\boldsymbol{q}|} d\omega \; \frac{R_L(\omega,|\boldsymbol{q}|)}{\tilde{G}_E^2(Q^2)} \\ \tilde{G}_E^2 &= Z \, G_{Ep}^2(Q^2) + N \, G_{En}^2(Q^2) \end{split}$$

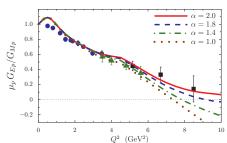

- Recall that the non-relativistic expectation is unity for $|q| \gg p_F$
- GFMC ¹²C results are consistent with this expectation

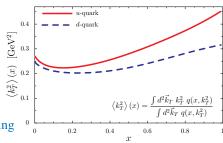


- ullet For a free nucleon current find relativistic corrections of 20% at $|q| \simeq 1 \, {\rm GeV}$
 - in the non-relativistic limit our CSR result does saturate at unity
- An *in-medium nucleon current* induces a further 20% correction to the CSR
 - good agreement with exisiting ²⁰⁸Pb data although this data is contested
- Our ¹²C result is in stark contrast to the corresponding GFMC prediction
 - forthcoming Jefferson Lab should break this impasse


Understanding the EMC effect

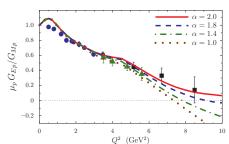
- Puzzle posed by the EMC effect will only be solved by conducting new experiments that expose novel aspects of the EMC effect
- Measurements should help distinguish between explanations of EMC effect e.g. whether all nucleons are modified by the medium or only those in SRCs

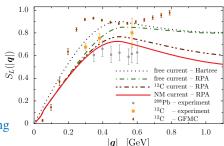



• Examples: Polarized and flavour dependence, spectator tagging, etc

Conclusion

- Using the DSEs we find that DCSB drives numerous effects in QCD, e.g., hadron masses, confinement and many aspects of hadron structure
 - e.g. location of zero's in form factors
 -G_{Ep}, F^d_{1p}, etc provide
 tight constraints on QCD dynamics
 - predict zero in G_{En}/G_{Mn} independent rate of change of DCSB with scale
- Progress toward nucleon TMD results
 - diquark correlations result in a dramatic increase in $\left\langle k_T^2 \right\rangle$ and a significant flavour dependence
- New Jefferson Lab results for the CSR are expected soon
 - confirmation or otherwise of the quenching of the CSR will have a dramatic impact





Conclusion

- Using the DSEs we find that DCSB drives numerous effects in QCD, e.g., hadron masses, confinement and many aspects of hadron structure
 - e.g. location of zero's in form factors
 -G_{Ep}, F^d_{1p}, etc provide
 tight constraints on QCD dynamics
 - predict zero in G_{En}/G_{Mn} independent rate of change of DCSB with scale
- Progress toward nucleon TMD results
 - diquark correlations result in a dramatic increase in $\left\langle k_T^2 \right\rangle$ and a significant flavour dependence
- New Jefferson Lab results for the CSR are expected soon
 - confirmation or otherwise of the quenching of the CSR will have a dramatic impact

Congratulations Mike

& All The Best