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Motivations

@ Electrons in QED are real particles. = Well-defined spectral functions
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Motivations

@ Electrons in QED are real particles. = Well-defined spectral functions
@ Dirac structure of fermions Sg(p) = pS1(p?) + S2(p?)
= Two spectral functions p1(s) and p»(s);

@ Dynamic of QED is embedded in the vertex fermion-photon T'* (k, p).
Se(k)TH(k,p)Se(p) is natural to have its own spectral representations. =
Incorporating dynamics into spectral representations
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= Two spectral functions p1(s) and p»(s);
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Incorporating dynamics into spectral representations

) P p k P

Figure : Diagrammatic representations of fermion propagator DSE in propagator
form (above) and spectral form (below).
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Spectral Representation for Propagator Functions

spectral function p(W)

+o0
s = [ aws L p(W) = S Wps (W) + po (W)
\ Im(2)
o 419 pls) (1)
0 Re(z)

D(pZ) — f+oo ds p(S)

>m2 p2—3+ie

1 .
p(s) = —;Im (D(s +ie)} Figure : the analytic structure of propagator function for

massive particles
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Spectral Representation for Sg(k)I'*(k, p)Se(p)

The original Gauge Technique

SEOT* (k.p)Se(p) = [ dWp(w) v s

satisfies longitudinal Ward-Takahashi identity.

Delbourgo and West [1977 J. Phys. A: Math. Gen. 10

1049(1977)]

1= szde(W), mZpy, = szdW Wo(W).

p(W) =6(W-m) +r(W), a=3a/(4n)

—2a
W) = —sign(W)e(W2 — m?) 22 (W2 _ mz) o

X
w iz W2 — m?2

w2\ w w2
{ 2F1 (—a,—a; -2a;1- —2) + — 2F1 (—a,l -a,—2a,1 - —) } (2)
m m

m?2
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Fermion Propagator DSE

Unrenormalized DSE for fermion propagator

1= (p=m)Se(p) +ie” [ dk [ dwy' =K ()2 D (@ (W). @)

KH = yH recovers the original Gauge Technique.
Define o1 2(p?) linear in p,

)+ pralp?) = €2 [ ke [ AWy e K )= 0 (@)W,

Eq (3) rewritten as two coupled equations

1+ mSy(p?) = p?S1(p?) + or1(p?) 4)
mS1(p%) = S2(p?) + o2(p?). (%)
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Renormalizability Requirements

Loop-Renormalizability

Divergences from integral over loop momentum k should be removable after
renormalization conditions.

o1(p?) = p?Z1(p?) S1(p?) + Z2(p?) S2(p?) = %Zz‘ L+ 7P, (6)
o2(p?) = Z1(p?)S2(p%) + Z2(p?) S1(p?) = T2(p?). ©)

where Z; 1 = [ dspi(s), Z1(p?)p + Z2(p?) = (o1 + po2)SF*.

Renormalized equations become

Aa _ _
(1— m)zzhrmzmsz =p?S1 + o1 (8)
mZnSy, = Sy + 0. 9)
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At quenched approximation,

2
al(p)__Sc;fds% (s) + ffds(cd,v+1+|n pz)pl(s)

(10)
3a K(p?,s) s
2y _
oae?) = 5 [ asT D pa(s) + 5 [ (<14 S o)
(11)
where
4 V2 s s 1
2 _ . -
K(p ,S) = Cd,v+§+|ns_—p2—?|n S_—pz, Cd,v— Z—’)/E+In4ﬂ'. (12)

Modification to the original gauge technique

S S S

K(p?s) = = In -—=In——

(13)

such that loop divergence for fermion propagator DSE can be removed.
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On-Shell Renormalization

On-shell renormalization conditions

lim (2 -m?)Si(u®) =1, lim (4% — m*)Sy(u®) = m. (14)
p2—m? u2—m?
Equivalently,
S1(p?) = + P1(p?). S2(p?) = + P2 (p?), (15)

p2 — m2 p2 — m2

with
lim (4 = m?*)P1(47) =0, lim_(u? — m?)Py(u?) = 0.

HE—M HE—m

On-Shell renormalization conditions indicate

p1(s) = 6(s — m?) + 11(s),  pa(s) = mé(s — m*) + r(s). (16)
with ry »(s) regular at s = m?.
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Reparameterization of Kernel Functions

Fermion DSE is an elegant system because spectral representation can be
used consistently on both propagator functions and kernel functions.

s’K(s,s’) ¢ (4 2) s’ s’

4
—+In—|+—1n
s—¢s s—s’\3 s’ s s -s

To find out the imaginary part of o (p?),

7'm{m} =5(s—5) (17)

-1 { ’ V2 ’

—Im fds (Cdiv+1+|n —,)pl(s )}:0. (18)

n s

s’ s 1 1 106 -1)

Bl K e &
s .1 -6(-1)

Ins'—s_lnl—z_fdgz—g—kie' (20)

»
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After on-shell renormalization, DSE for r1(s) and r»(s) becomes

(1 - g) [s2r1(s) — msra(s)] + 3—a [m29(5 -m?) + fj d5’5’r1(s’)}

_B-8a_

= [59(5 m?) + Sf ds’ri (s’ )]

(1 - g) [-msry(s) + sra(s)] + 3—a [mH(S - m?) + fi ds'fz(s')}

m

= Zi [ m?) + = f ds’s’ rz(s’)} . (22)
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DSE for r1 5 in the Landau Gauge

Define coupling parameter

_ 3a/(4n)
a= T_ajn’ (22)
After taking the derivative on s, eq (21) becomes
s -ms\ d a+1l -m sri(s)\ _ (2a
[(—m s )£+( 0 a+1)](rz(s) o) (23)

When decoupled

sr1(8) = GRS, 12(8) = G2()(s).
2 a+t+1l 2 a
gl<s)=( m ) , 92(5)=( m )T

s —m? s-m?2) s
d a 2a (s-m?\°
Efl(s) + gfz(s) ~ R (T) (24)
d (a+1)m? 2a  (s-m?\*
f 7f = — | — . 25
PO+ T EEh(s) _mz( _ (25)
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Taking another derivative with respect to s yields

2a(a+1) (s - mz)a
2

d d a(a+ 1)m?
GRS f(s) = 5
m

E&l()_—( 22

(26)

Solutions depend on parameter a. Because @« > 0, a > 0 or a < -3/4.

For a > 0 or equivalently a < n,

2a a2 s — m?
1 F 1 1;:2 2; —
{rl(s) (a+1>s[ TRarn? 1(‘” Atk e )]
2a? s—m?
(s — R lat+la+22a+2,—
2(8) = “@a+1ym? 1( that * m? )

(27)

Another linearly independent solution for ry(s)
_2a
(a+1)s

happens to agree with Delbourgo and West [1977 J. Phys. A: Math. Gen. 10
1049(1977)]
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Figure : Complex conjugate pole fits to ry »(s) with @ = 0.5
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Figure : Complex conjugate pole fits to ry »(s) with @ = 1.0
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rfit(S) =

Fitting Parameters for ry(s)

X+ iy
s—(§+10)

+ (c.c.)

a X1 n & {1
0.5 | 0.1242 | -0.0280 | 0.0028 | 0.1418
1 | 0.2597 | -0.1282 | 0.0142 | 0.1746
2 | 0.56555 | -6.7860 | 0.1380 | 0.0218
3 | 0.5134 | 0.1682 | 0.9700 | 0.0237
Fitting Parameters for r,(s)
a X2 Y2 &2 {2
0.5 | -0.0106 | 0.0321 | -0.3908 | 0.6673
1 |-0.0260 | 1.0371 | -0.7898 | 0.1726
2 | 0.0036 | 4.7054 | -0.2218 | 0.1537
3 | 0.0831 | 0.9964 | 0.9617 | 0.1185
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Summary and Outlook

Spectral Representation for Sg(p) and ST’ Sg
DSE for Fermion Propagator Spectral Functions
Loop-renormalizability

Exact Solutions in the Landau Gauge

Improvement to the original Gauge Technique
Consistency with LKFT
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