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There may be hadrons that look like …

…before we know these exist it is 
necessary to identify resonances



S-matrix principles: Crossing, Analyticity, Unitarity
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Analyticity

Resonances : bumps/
peaks on the real axis 

(experiment) come 
from singularities in 
unphysical sheets 

Al(s+ i✏) 6= Al(s� i✏)

s-plane

 Unitarity
These singularities 

come from QCD
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A(s,t) has singularities in s, t and u

but partial wave expansions selects a 
specific channel, e.g. the t-channel:

u

To do partial wave expansion or not ?

valid (convergent) in the t-channel 
physical region 

Lmax=∞ is needed to reproduce s and u 
channel singularities (e.g. resonance)  
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t� 4µ2
A(s, t) =

L
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QCD on the Lattice : simulated 
scattering experiment 

Z(Ei(L),L) = T(Ei)

Ei = discrete energy spectrum of states in the lattice 

 (known 
kinematical 

function) 

(infinite volume 
amplitude ) 

in general “solution” of the Luscher condition requires an 
analytical model for T 

D.Wilson et. al



XYZ 
“dynamics” 
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Z(4020)

Zb(10610)
Pc(4450)

O
(10) open flavor decay thresholds

Long time ago hadrons were made 
from valence quarks



3S (bound state  
deuteron) 

V(r)

r

3S
1S

II(-)
1S  

(virtual state) 

Singularities, is all that matters: cusps, poles and more cusps



3S (bound state  
deuteron) 

V(r)

r

3S
1S

II(-)
1S  

(virtual state) 

triangle singularity 
(log. branch point)

resonances (poles)

Singularities, is all that matters: cusps, poles and more cusps



 Model I Model II 
Y (4260) ! DD̄⇤⇡

Y (4260) ! ⇡⇡J/ 

Amplitude 
analysis has to 
be applied at 
the event-by-
event basis 

Fitting 
projection
may not be 
enough to 
discriminate 
between 
amplitude 
models/
dyamics

Y (4260) ! DD̄⇤⇡

Y (4260) ! ⇡⇡J/ 
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Reggeons vs Resonances

• Resonances are not constrained 
by S-matrix principles -> need 
priori knowledge  

• Resonates are poles in s at fixed 
L; Reggeons are poles in L at 
fixed s  

Re↵(s)

s

0

1

2

3

angular mom. 
overcomes binding  

e.g. Yukawa potential

confining 
interaction



Revival of “old” ideas e.g. dual models

dual model

J/ψdual model

ψ’

BESIII, Phys.Lett.  B710 (2012) 594-599 Based on M.R. Pennington, A.S  Phys.Lett. B737 (2014) 283

A(s, t) =
�(�J(s))�(�J(t))

�(�J(s)� J(t))

“standard”  
(isobar) 





• Duality:  resonances in direct channel dual to reggeons in 
cross channels and backgrounds are dual to the pomeron

• All resonances are “connected”: resonances belong to 
Regge trajectories (reggeons) 

• Asymptotics: determined by Regge poles

• Unitarity: imaginary parts determined by decay thresholds

Dynamical assumptions

Veneziano amplitude satisfies all of the above except 
unitarity. 



Veneziano amplitude:  “compact” expression for the full 
amplitude 

A(s,t) can be written as sum over resonances in ether 
channel.  

Note: in V-model resonance couplings, β, are fixed! 

resonance/reggeon in s=m122

β(t) 

[k - α(s)]

_______
~ B.W. propagator

resonance/reggeon in t=m232

β(s) 

[k - α(t)]

_______
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�(�↵(s)� ↵(t))

A(s, t) =
X
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�k(t)

k � ↵(s)
=

X
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�k(s)

k � ↵(t)

�k(t) / (1 + ↵(t))(2 + ↵(t)) · · · (k + ↵(t))

↵(s) = a+ bs



Resonances couplings, β, should depend on final state 
particles:  a linear superposition of Veneziano amplitudes can 

be used to suppress or enhance individual resonances or 
trajectories 
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FIG. 1: Spectrum in the s-channel of the generalized
Veneziano amplitude model of Eq. 1. The leading and daugh-
ter Regge trajectories are marked by thin solid lines and res-
onances by dots at integer values of spin (l). The dashed
and dotted thick lines illustrate resonance contributes to in-
dividual amplitudes, A2,1 and A4,3, respectively. All (infinite
number) of resonances on and to the right of the dashed line
contribute to A2,1, while resonances on and to the right of the
dotted line contribute to A4,3.

leading trajectory and from all subsequent daughter tra-
jectories. The amplitudes A

n,2 have poles originating
from the the 1st daughter and all subsequent daughters,
A

n,3 from the 2nd and all higher daughters, etc. Thus we
can use m to label Regge trajectories and define,

↵(m)(s) ⌘ ↵(s)� (m� 1) (6)

so that ↵(1)(s) ⌘ ↵(s) corresponds to the leading trajec-
tory, ↵(2) the 1st daughter and so on. The spectrum is
illustrated in Fig. 4. For fixed-t, the asymptotic behavior
of A

n,m

(s, t) at large-s reflects presence of resonances in
the crossed channel. Using Stirling’s formula one finds,

A
n,m

(s ! 1, t) / 1

s
�(n� ↵

t

)s↵
(m)(t) (7)

For large-s the tensor factor in Eq. 1 is proportional to s
and the full amplitude has the expected Regge limit,

A(s, t, u) / s↵(t) (8)

arising from the leading, m = 1 trajectory. The signature
factor will be discussed later.

III. REMOVAL OF POLES

As described in the preceding section, an amplitude
A

n,m

with fixed n and m contains an infinite number of
poles in a two-body channel it describes. Since produc-
tion of resonances is process dependent it is necessary to

find a generalization of the amplitude that allows for the
residues to be process dependent. One possibility is to
use a linear combination

A
n,m

(s, t) ! A(s, t) =
X

n�1,nm1

c
n,m

A
n,m

(s, t) (9)

The coe�cients c
n,m

need to be chosen in such a way
that A’s only couples to resonances that contribute to
the process in question. For example, in the case of an
isoscalar boson strongly coupled to three pions, isospin
conservation demands each pair of pions be produced in
isospin-1. Bose statistics then eliminates all spin-even
resonances in s t and u channels of this reaction.
One way to proceed is to construct linear combinations

of amplitudes A
n,m

that eliminate all, but selected par-
tial waves and then take linear combinations of partial
waves. Alternatively one can attempt data analysis with
a finite number of linear combinations of the A

n,m

’s and
let the fit to data determine coe�cients c

n,m

[? ]. We
find the former more appealing for several reasons. First
of all, when studying resonance properties one is forced
to work with partial waves. Proper description of reso-
nances, however, requires that unitarity is satisfied and
Regge trajectories are non-linear, while the Veneziano
model forces Regge trajectories to be real and linear.
Even though there are extensions of the Veneziano model
allowing for non-linear trajectories, implementation of
unitarity is much simpler at the level of partial waves.
We therefore need to be able to isolate partial waves.
Using the Veneziano amplitudes as building blocks, how-
ever, we will be able match the low-energy behavior of
partial waves with the asymptotic high-energy limit de-
termined by Regge poles. This is important as it provides
a constraint on data analysis that extends beyond what
resonances alone can fix.
Since each A

n,n

amplitude contains an infinite number
of poles, in order to cancel all, but a finite number of
poles an infinite number of coe�cients c

n,m

’s in Eq. 9
must be non vanishing. It is not di�cult to find a rela-
tion between the coe�cients, which decouples all, but a
finite number of poles. Consider, for example, keeping
only the pole at ↵(s) = 1 i.e. at s = s1. This pole is
only present in the amplitude A1,1 since amplitudes with
n > 1 have the lowest pole at s

n

> s1. There is only
one amplitude A1,m = A1,1 so a single coe�cient c1,1 de-
termines coupling to the pole at s = s1. The amplitude
A1,1, however, also has poles at higher masses located
at ↵

s

= 2, 3, · · · with residues that are polynomials in
t of the order of 1, 2, · · · , respectively. If we only want
to keep the pole at ↵(s) = 1, these higher mass poles
of A1,1 have to be canceled by similar poles present in
amplitudes with n > 1.
The pole in A1,1 at ↵

s

= 2 can only by canceled by the
same pole in the two amplitudes A2,m, m = 1, 2 since for
n > 2 no other A

n,m

has this pole. The amplitudes A2,1

and A2,2 are polynomials in t of the order of O(1) and
O(0) respectively. We can therefore uniquely determine
two coe�cients, c2,1 and c2,2 in terms of c1,1 so that the

s
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• even-spin ρ’s do not 
couple to π π and should 
decouple in J/ψ→3 π

• coupling of odd-spin ρ’s 
depend of can depend vary 
depending on trajectory



how to remove (infinite) number of poles? 

A1,1 =
�(1� ↵s)�(1� ↵t)

�(2� ↵s � ↵t)
has poles at αs=1,2,3,...

A2,1 =
�(2� ↵s)�(2� ↵t)

�(3� ↵s � ↵t)

have poles at αs=3,4,5,...

A2,2 =
�(2� ↵s)�(2� ↵t)

�(4� ↵s � ↵t)

have poles at αs=2,3,4,...

A3,1, A3,2, A3,3

A4,1, A4,2, A4,3, A4,4

s

t

have poles at αs=4,5,6,...

n ≥ m ≥ 1

Use a linear combination of A2,1 
and A2,2 to remove pole at αs =2 

Use a linear combination of A3,1, 
A3,2 ,A3,3,  to remove pole at αs =3, 

etc.

Veneziano Model Motivated Amplitudes for Dalitz Plot Analysis

A.P.Szczepaniak1

1
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I. INTRODUCTION

Unless partial waves can be related to the full ampli-
tude, partial waves, beyond the resonance contribution
partial waves are largely unconstrained. The Veneziano
model provides this connections.

II. GENERALIZED VENEZIANO AMPLITUDES

We consider the generalized Veneziano model in the
context of decays of mesons with heavy quarks to final
states with light quarks. Specifically we focus on the ap-
plication to decays of vector charmonia, e.g. J/ or  0 to
three pions. For simplicity we neglect pion messes and,
in units of GeV, use M2 = O(10) for the mass squared of
the decaying particle. The generalization to other chan-
nels is in principle straightforward.

The Veneziano model for the amplitude A describing
a decay of a vector meson with momentum p and helicity
� to three pions, V (p,�) ! ⇡i(p1)⇡j(p2)⇡k(p3) is given
by

A(s, t, u) = ✏
ijk

✏
µ⌫↵�

✏
µ

(p,�)p⌫1p
↵

2 p
�

3

⇥[A
n,m

(s, t) +A
n,m

(s, u) +A
n,m

(t, u)] (1)

with s + t + u = M2 and the scalar amplitudes A
n,m

’s
defined by

A
n,m

(s, t) ⌘ �(n� ↵
s

)�(n� ↵
t

)

�(n+m� ↵
s

� ↵
t

)
. (2)

Here n,m are positive integers, 1  m  n, and ↵
s

is a
shorthand for ↵(s), the leading Regge trajectory. We do
not use the Veneziano amplitude with n = 0 since with ↵
representing the leading meson trajectory it would pro-
duce a ghost pole. The lower limit on m, m = 1 guaran-
tees that A(s, t, u) has the expected high-energy behavior
(see below) and the upper limit, m = n guarantees ab-
sence of double poles in overlapping channels.

The Veneziano formula exhibits the behavior of A that
is expected in the large-N

c

limi of QCD. In this limit the
QCD boson spectrum is saturated by narrow resonances
and confinement produces linear Regge trajectories, i.e.
↵(s) = ↵0 + ↵0s. This spectrum is manifested in the
singularities of A

n,m

(s, t), which has simple poles in s
and t-channels and no double poles. For example the
s-channel poles are located at s = s

n+k

determined by

↵(s
n+k

) = n+ k (3)

with k being a nonnegative integer. The contribution of
a pole to the amplitude A

n,m

(s, t) is then given by

A(s ⇠ s
n+k

) =
�
n,m,k

(t)

s
n+k

� s
(4)

with the residue

�
n,m,k

(t) =
(�1)k

↵0k!

�(n� ↵
t

)

�(m� k � ↵
t

)
=

(�1)k

↵0k!
(m� k � ↵

t

)(m� k + 1� ↵
t

) · · · (m� k + L
max

� 1� ↵
t

)

being a polynomial in t of the order L
max

= L
max

(k) ⌘
k + n �m � 0. Thus in each channel s, t, or u, the full
amplitude given by Eq. 1 describes k, degenerate, narrow
(zero) width resonances with spins in the range,

1  l  L
max

(k) + 1. (5)

The additional factor of 1 originates from the tensor fac-
tor in front of the r.h.s of Eq. 1.

The integers n and m determine which resonances con-
tribute poles to the amplitude. It follows form Eqs. 3,5
that amplitudes with m = 1, A

n,1 have poles from the
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FIG. 1: Spectrum in the s-channel of the generalized
Veneziano amplitude model of Eq. 1. The leading and daugh-
ter Regge trajectories are marked by thin solid lines and res-
onances by dots at integer values of spin (l). The dashed
and dotted thick lines illustrate resonance contributes to in-
dividual amplitudes, A2,1 and A4,3, respectively. All (infinite
number) of resonances on and to the right of the dashed line
contribute to A2,1, while resonances on and to the right of the
dotted line contribute to A4,3.

leading trajectory and from all subsequent daughter tra-
jectories. The amplitudes A

n,2 have poles originating
from the the 1st daughter and all subsequent daughters,
A

n,3 from the 2nd and all higher daughters, etc. Thus we
can use m to label Regge trajectories and define,

↵(m)(s) ⌘ ↵(s)� (m� 1) (6)

so that ↵(1)(s) ⌘ ↵(s) corresponds to the leading trajec-
tory, ↵(2) the 1st daughter and so on. The spectrum is
illustrated in Fig. 4. For fixed-t, the asymptotic behavior
of A

n,m

(s, t) at large-s reflects presence of resonances in
the crossed channel. Using Stirling’s formula one finds,

A
n,m

(s ! 1, t) / 1

s
�(n� ↵

t

)s↵
(m)(t) (7)

For large-s the tensor factor in Eq. 1 is proportional to s
and the full amplitude has the expected Regge limit,

A(s, t, u) / s↵(t) (8)

arising from the leading, m = 1 trajectory. The signature
factor will be discussed later.

III. REMOVAL OF POLES

As described in the preceding section, an amplitude
A

n,m

with fixed n and m contains an infinite number of
poles in a two-body channel it describes. Since produc-
tion of resonances is process dependent it is necessary to

find a generalization of the amplitude that allows for the
residues to be process dependent. One possibility is to
use a linear combination

A
n,m

(s, t) ! A(s, t) =
X

n�1,nm1

c
n,m

A
n,m

(s, t) (9)

The coe�cients c
n,m

need to be chosen in such a way
that A’s only couples to resonances that contribute to
the process in question. For example, in the case of an
isoscalar boson strongly coupled to three pions, isospin
conservation demands each pair of pions be produced in
isospin-1. Bose statistics then eliminates all spin-even
resonances in s t and u channels of this reaction.
One way to proceed is to construct linear combinations

of amplitudes A
n,m

that eliminate all, but selected par-
tial waves and then take linear combinations of partial
waves. Alternatively one can attempt data analysis with
a finite number of linear combinations of the A

n,m

’s and
let the fit to data determine coe�cients c

n,m

[? ]. We
find the former more appealing for several reasons. First
of all, when studying resonance properties one is forced
to work with partial waves. Proper description of reso-
nances, however, requires that unitarity is satisfied and
Regge trajectories are non-linear, while the Veneziano
model forces Regge trajectories to be real and linear.
Even though there are extensions of the Veneziano model
allowing for non-linear trajectories, implementation of
unitarity is much simpler at the level of partial waves.
We therefore need to be able to isolate partial waves.
Using the Veneziano amplitudes as building blocks, how-
ever, we will be able match the low-energy behavior of
partial waves with the asymptotic high-energy limit de-
termined by Regge poles. This is important as it provides
a constraint on data analysis that extends beyond what
resonances alone can fix.
Since each A

n,n

amplitude contains an infinite number
of poles, in order to cancel all, but a finite number of
poles an infinite number of coe�cients c

n,m

’s in Eq. 9
must be non vanishing. It is not di�cult to find a rela-
tion between the coe�cients, which decouples all, but a
finite number of poles. Consider, for example, keeping
only the pole at ↵(s) = 1 i.e. at s = s1. This pole is
only present in the amplitude A1,1 since amplitudes with
n > 1 have the lowest pole at s

n

> s1. There is only
one amplitude A1,m = A1,1 so a single coe�cient c1,1 de-
termines coupling to the pole at s = s1. The amplitude
A1,1, however, also has poles at higher masses located
at ↵

s

= 2, 3, · · · with residues that are polynomials in
t of the order of 1, 2, · · · , respectively. If we only want
to keep the pole at ↵(s) = 1, these higher mass poles
of A1,1 have to be canceled by similar poles present in
amplitudes with n > 1.
The pole in A1,1 at ↵

s

= 2 can only by canceled by the
same pole in the two amplitudes A2,m, m = 1, 2 since for
n > 2 no other A

n,m

has this pole. The amplitudes A2,1

and A2,2 are polynomials in t of the order of O(1) and
O(0) respectively. We can therefore uniquely determine
two coe�cients, c2,1 and c2,2 in terms of c1,1 so that the

3

first order polynomial in t at the s = s2 pole of A1,1

matches the polynomial in t at the same pole of A2,1 and
A2,2 to produce a vanishing residue. Similarly, at the
↵
s

= 3 pole of A1,1, the residue is an O(2) polynomial
in t. This pole is present in A2,1 and A2,2 with residues
O(2) and O(1) polynomials, respectively, and it s also
present in A3, 1, A3,2 and A3,3 with residues of the order
of O(2), O(1) and O(0), respectively. With c2,1 and c2,2
already fixed, c3,1, c3,2 and c3,3 are now uniquely deter-
mined by c1,1 and by the requirement that the residue
of the ↵

s

= 3 pole, which is an O(2) polynomial in t,
vanishes. Continuing in this way all poles in s satisfying
↵(s) > 1 can be decoupled. Specifically we find

c
n,1 =

c1,1
�(n)

, c
n,2 = � c1,1

�(n� 1)
, c

n,m

= 0 for m > 2,

(10)
so that

A1(s, t) = c1,1
2� ↵

s

� ↵
t

(1� ↵
s

)(1� ↵
t

)
. (11)

This simple result could have been anticipated since
A(s, t) is symmetric in s and t and completely deter-
mined by the poles. It is worth noting, however, that
an infinite sum of the A

n,m

’s resulted in an amplitude
that has fixed poles in s and t and not Regge poles. We
will return to this point in the following subsection. The
procedure can be generalized to produce amplitudes with
isolated poles at any higher, integer value of ↵

s

and ↵
t

.
For example, to construct an amplitude with a single pole
in s at ↵(s) = 3, one starts with the three amplitudes
A3,m, m = 1, 2, 3 and determines the coe�cients c

n,m

for
n > 3 in terms of c3,1, c3,2 and c3,3 that remove all poles
at ↵(s) > 3. Since the residue of the ↵(s) = 3 pole is
a polynomial of O(2) in t having three parameters c3,m,
m = 1, 2, 3 determining the amplitude A(s, t) enables
to decompose the residue in terms of an arbitrary linear
combination of partial waves with l = 0, 1, 2. We note,
however, that once A is used in place of A

n,m

in the ex-
pression for the full amplitude in Eq. 1 the ↵(s) = 3 pole
will represent (narrow) resonances with spin increased by
one unit, i.e l = 1, 2, 3. The coe�cients c3,m, m = 1, 2, 3
can be therefore be chosen to decouple the l = 2 isobars
in the decay of an iso-scalar vector meson to three pions.
The amplitude with the ↵ = 3 poles is then given by

A3(s, t) = a3,0
(6� ↵

s

� ↵
t

)(a3,1 � ↵
s

� ↵
t

)(a3,2 � ↵
s

� ↵
t

)

(3� ↵
s

)(3� ↵
t

)
(12)

where the a’s are linear combinations of the c3.m’s. The
first factor in the numerator guarantees that A does not
have the double pole at ↵

s

= ↵
t

= 3. It is followed by
a product of two monomials in ↵

s

+ ↵
t

that all together
generate O(2) polynomial in s or t at the pole of ↵

t

= 3
or ↵

s

= 3 respectively.

A. Regge poles

After all but a finite number of poles have been re-
moved from, say the t-channel the resulting amplitude
at large values of the cross-channel energy, s, behaves as
sJ where J is the highest spin reached at poles in ↵

s

.
For example, for the amplitude in Eqs. 11, 12 J = 0 and
J = 2, respectively. The expected asymptotic behavior,
however, is s↵(t)�1 (cf. Eqs. 7,8). The Regge behavior
can only emerge from an infinite number of poles, there-
fore we need to modify the procedure outlined above and
allow for infinite number of poles to be present in A.
Since the location of the poles increases with energy, the
e↵ect of poles, located at n > N is small on amplitudes
for s << O(N). For example, with c’s given by Eq. 10
and the sum over n truncated at n = N we find that
instead of the amplitude with a single pole at ↵ = 1 we
obtain

A1(s, t;N) = c1,1
2� ↵

s

� ↵
t

(1� ↵
s

)(1� ↵
t

)

⇥ �(N + 1� ↵
s

)�(N + 1� ↵
t

)

�(N)�(N + 2� ↵
s

� ↵
t

)
(13)

which for s >> N has the desired Regge behavior /
s↵(t)�1. As expected, the amplitude is free from poles
in the range 1 < ↵(s)  N , and the same holds for the
t-channel. Furthermore, for N large enough i.e. N >>
M2 the contribution of the undesired, high-energy poles
at ↵ > N on the low-energy region, ↵ < M2 is power
suppressed

A1(s, t < M2;N) = c1,1
2� ↵

s

� ↵
t

(1� ↵
s

)(1� ↵
t

)


1 +O

✓
M2

N

◆�

(14)
and can be interpreted as background. The generaliza-
tion of Eq. 13 to a pole at ↵ = n is

A
n

(s, t;N) = a
n,0

2n� ↵
s

� ↵
t

(n� ↵
s

)(n� ↵
t

)

⇥
⇧n�1

i=1 (an,i � ↵
s

� ↵
t

)
⇤

⇥ �(N + 1� ↵
s

)�(N + 1� ↵
t

)

�(N + 1� n)�(N + n+ 1� ↵
s

� ↵
t

)

(15)

In the following we this set of amplitudes to describe J 
and  0, three pion decays.

IV. APPLICATION TO VECTOR
CHARMONIUM DECAYS

Decays of vector charmonia have been studied by
MARKII, CLEO, BaBar and BES, and more recently by
BESIII. One of the original motivation was the perturba-
tive QCD prediction. The QCD calculation is based on
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has Regge limit is for s > N



We do in a systematic way. In addition it allows for imaginary 
non-linear (and complex) trajectories without introducing 
“ancestors”

In the past this was done by choosing an arbitrary set of n,m 
and fitting c(n,m) to the data (e.g. Lovelace, Phys. Lett. B28, 265 (1968),Altarelli, 
Rubinstein, Phys. Rev. 183, 1469 (1969)) 

n: number of Regge trajectories
an,i: determine resonance couplings
N: determines the onset of Regge behavior
α(s), α(t) = Re α + i Im α:  with Im α related to resonance widths
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yield approximately 1% for this ratio. Our objective,
however, is not to discuss the origin of the discrepancy
with the predicted ⇢⇡ couplings but instead focus on the
analysis of the decay amplitude.

Both, the J/ and  0 decays show a clear signal of ⇢
production. In additional there is indication of resonance
being produced in the third and fifth resonance region,
i.e. ↵ ⇠ 3, 5. We will thus attempt to fit the di-pion mass
distribution with three amplitudes, A1, A3 and A5, re-
spectively. We take N = 20 which is above the available
phase space as as long as N > M2 we find very little
sensitivity to N In terms of the s-channel partial waves,
f
l

(s), the scalar amplitude in Eq. 1

F (s, t, u) ⌘
X

n=1,3,5

A
n
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n

(s, u;N)+A
n

(t, u;N)

(16)
is given by

F (s, t, u) =
X

l=odd

f
l

(s)P 0
l

(z) (17)

where, ignoring the pion mass, z = (t � u)/(M2 � s) is
the cosine of s-channel scattering angle and P

l

are the
Legendre polynomial. As discussed in the preceding sec-
tion, the pole at ↵

s

= 1 contributes only to the l = 1
wave. From A1(s, t, ;N) and A1(s, u;N) in F (s, t, u) for
the pole contribution to f1(s), one finds, (A1(t, u;N) does
not contribute to the pole term ↵

s

)
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g
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1 (M2)

1� ↵(s)
(18)

where g
(1)
1 (M2) = a1,0(M2) and a

n,i

are defined by
Eq. 15. At the ↵

s

= 3, 5 poles the amplitudes
A3(s, t;N), A5(s, u;N) contribute to l = 1, 3 and l =
1, 3, 5 partial waves, respectively

f
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1,3 (s) =

g
(3)
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(5)
1,3,5(s) =
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. (19)

The superscripts on f
(n)
l

denote the position of the poles
i.e. n = ↵

s

and the resonance couplings, g
n,l

are obtained
from,

g
n,l

=

Z 1

�1

dz

2
[P

l�1(z)�P
l+1(z)][ResAn

(n, t;N)+(t ! u)]

(20)
where Res refers to the residue of the amplitude of Eq. 15
at pole at ↵

s

= n.
For each, channel, J/ and  0 we fit nine real pa-

rameters, a1,0, a3,0, a3,1, a3,2, a5,0, · · · a5,4. In addition we
allow the trajectories to be imaginary when appearing in
the denominators of A

n

in order to be able to account
for the finite width of the resonances. The ⇢ trajectory
is expected to be approximately equal to

↵(s) = 1 + ↵0(s�m2
⇢

) + i↵0m
⇢

�
⇢

⇠ 0.47 + 0.9s+ 0.1i
p
s� 0.07 (21)
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FIG. 2: Dalitz plot projection of the di-pion mass distribution
from J/ decay. The solid is the result of the fit with three
amplitudes and the dashed line with the amplitude A1 alone.
The insert shows the mass region of the ⇢3 and its contribution
from the fit with the full set of amplitudes (solid line) as
compared. Absence of the structure at 1.7GeV from the fit
with the A1 amplitude is indicated by the dashed line.
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where we also included the phase space factor,
p
s� 4m2

⇡

in the imaginary part. With ↵(s) = 1, 3, 5 the six res-
onances corresponding to the amplitudes in Eqs. 18,19
can be assigned to ⇢(770) (↵ = 1), ⇢0(1700), ⇢3(1690),
(↵ = 3) and ⇢00(2150) ⇢3(2250), ⇢5(2350) for ↵ = 5, re-
spectively.

The data and results of the fit are shown in Figs. ??.
The data is taken from for the resent measurement by the
BESIII collaboration. Unfortunately having no access to
the Dalitz plot distribution we were able to analyze the
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yield approximately 1% for this ratio. Our objective,
however, is not to discuss the origin of the discrepancy
with the predicted ⇢⇡ couplings but instead focus on the
analysis of the decay amplitude.
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production. In additional there is indication of resonance
being produced in the third and fifth resonance region,
i.e. ↵ ⇠ 3, 5. We will thus attempt to fit the di-pion mass
distribution with three amplitudes, A1, A3 and A5, re-
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sensitivity to N In terms of the s-channel partial waves,
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(s), the scalar amplitude in Eq. 1
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where, ignoring the pion mass, z = (t � u)/(M2 � s) is
the cosine of s-channel scattering angle and P

l

are the
Legendre polynomial. As discussed in the preceding sec-
tion, the pole at ↵

s

= 1 contributes only to the l = 1
wave. From A1(s, t, ;N) and A1(s, u;N) in F (s, t, u) for
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where g
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n,i

are defined by
Eq. 15. At the ↵

s

= 3, 5 poles the amplitudes
A3(s, t;N), A5(s, u;N) contribute to l = 1, 3 and l =
1, 3, 5 partial waves, respectively
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The superscripts on f
(n)
l

denote the position of the poles
i.e. n = ↵

s

and the resonance couplings, g
n,l

are obtained
from,

g
n,l

=

Z 1

�1

dz

2
[P

l�1(z)�P
l+1(z)][ResAn

(n, t;N)+(t ! u)]

(20)
where Res refers to the residue of the amplitude of Eq. 15
at pole at ↵

s

= n.
For each, channel, J/ and  0 we fit nine real pa-

rameters, a1,0, a3,0, a3,1, a3,2, a5,0, · · · a5,4. In addition we
allow the trajectories to be imaginary when appearing in
the denominators of A

n

in order to be able to account
for the finite width of the resonances. The ⇢ trajectory
is expected to be approximately equal to

↵(s) = 1 + ↵0(s�m2
⇢

) + i↵0m
⇢

�
⇢

⇠ 0.47 + 0.9s+ 0.1i
p
s� 0.07 (21)
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from the fit with the full set of amplitudes (solid line) as
compared. Absence of the structure at 1.7GeV from the fit
with the A1 amplitude is indicated by the dashed line.
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in the imaginary part. With ↵(s) = 1, 3, 5 the six res-
onances corresponding to the amplitudes in Eqs. 18,19
can be assigned to ⇢(770) (↵ = 1), ⇢0(1700), ⇢3(1690),
(↵ = 3) and ⇢00(2150) ⇢3(2250), ⇢5(2350) for ↵ = 5, re-
spectively.

The data and results of the fit are shown in Figs. ??.
The data is taken from for the resent measurement by the
BESIII collaboration. Unfortunately having no access to
the Dalitz plot distribution we were able to analyze the



Ongoing analyses

J/ψ → 3π from BaBar (A.Palano) and BESIII (S.Fergan) 

ω  → 3π from CLAS (g11, A.Celentano, g8, C.Zeoli) 

φ → 3π from CLAS (GlueX, C.Salgado) 

f1 → 3π from CLAS (g11, A.Rizo)  
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑

ϵ

∣∣
∣∣
∑

L,M

A
ϵ
LMψ

ϵ
LM(τ )

∣∣
∣∣
2

+ non-η
(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψ
ϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{ sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Fig. 1. Invariant mass spectra (not acceptance corrected) for (a) ηπ− and (b) η′π− . Acceptances (continuous lines) refer to the kinematic ranges of the present analysis.

Fig. 2. Data (not acceptance corrected) as a function of the invariant ηπ− (a) and η′π− (b) masses and of the cosine of the decay angle in the respective Gottfried–Jackson 
frames where cosϑGJ = 1 corresponds η(′) emission in the beam direction. Two-dimensional acceptances can be found in Ref. [20].

indicates coherent contributions from larger angular momenta. 
Forward/backward asymmetries (only weakly affected by accep-
tance) occur for all masses in both channels, which indicates 
interference of odd and even partial waves. In the η′π− data, the 
a2(1320) is close to the threshold energy of this channel (1.1 GeV), 
and the signal is not dominant, see also Fig. 1 (b). A forward/back-
ward asymmetric interference pattern, indicating coherent D- and 
P -wave contributions with mass-dependent relative phase, gov-
erns the η′π− mass range up to 2 GeV/c2. In the a4(2040) region, 
well-localised interference is recognised. As for ηπ− , narrow for-
ward/backward peaking occurs at higher mass, but in this case the 
forward/backward asymmetry is visibly larger over the whole mass 
range of η′π− .

The data were subjected to a partial-wave analysis (PWA) using 
a program developed at Illinois and VES [21–23]. Independent fits 
were carried out in 40 MeV/c2 wide bins of the four-body mass 
from threshold up to 3 GeV/c2 (so-called mass-independent PWA). 
Momentum transfers were limited to the range given above.

An η(′)π− partial-wave is characterised by the angular mo-
mentum L, the absolute value of the magnetic quantum number 
M = |m| and the reflectivity ϵ = ±1, which is the eigenvalue of re-
flection about the production plane. Positive (negative) ϵ is chosen 
to correspond to natural (unnatural) spin-parity of the exchanged 
Reggeon with J P

tr = 1− or 2+ or 3− . . . (0− or 1+ or 2− . . . ) trans-
fer to the beam particle [18,24]. These two classes are incoherent.

In each mass bin, the differential cross section as a function of 
four-body kinematic variables τ is taken to be proportional to a 
model intensity I(τ ) which is expressed in terms of partial-wave 
amplitudes ψϵ

LM(τ ),

I(τ ) =
∑
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L,M
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LMψϵ
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∣∣∣∣
2

+ non-η(′) background. (1)

The magnitudes and phases of the complex numbers Aϵ
LM consti-

tute the free parameters of the fit. The expected number of events 
in a bin is

N̄ ∝
∫

I(τ )a(τ )dτ , (2)

where dτ is the four-body phase space element and a(τ ) desig-
nates the efficiency of detector and selection. Following the ex-
tended likelihood approach [25,24], fits are carried out maximis-
ing

ln L ∼ −N̄ +
n∑

k=1

ln I(τk), (3)

where the sum runs over all observed events in the mass bin. 
In this way, the acceptance-corrected model intensity is fit to the 
data.

The partial-wave amplitudes are composed of two parts: a fac-
tor fη ( fη′ ) that describes both the Dalitz plot distribution of the 
successive η (η′) decay [26] and the experimental peak shape, 
and a two-body partial-wave factor that depends on the primary 
η(′)π− decay angles. In this way, the four-body analysis is re-
duced to quasi-two-body. The partial-wave factor for the two spin-
less mesons is expressed by spherical harmonics. Thus, the full 
η(π−π+π0)π− partial-wave amplitudes read

ψϵ
LM(τ ) = fη(pπ− , pπ+ , pπ0) × Y M

L (ϑGJ,0)

×
{

sin MϕGJ for ϵ = +1

cos MϕGJ for ϵ = −1
(4)

and analogously for η′(π−π+η)π− . There are no M = 0, and 
therefore no L = 0 waves for ϵ = +1. The fits require a weak 
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Finite energy sum rules

s1 s1

t 1

t 2 t 2

rhslhs

high energy
low 

energy

s1 s1

t 1

t 2 t 2

s1 s1

t 1

t 2 t 2

p p

P

P

p p

f

P

p p

a

P

p p

J

P

2 2

p p

P

P

p p

f

P

p p

a

P

p p

J

P

2 2

at fixed t1,t2  

A(s1, t1, t2, s2/s) =
X
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first time (ever) to be applied in analysis of 2-to-3 reactions! 



Summary

• Precision in amplitude analysis is a key to a 
successful hadron spectroscopy program. 

• This requires close collaboration between theory, 
phenomenology and experiment practitioners.  

• Thanks to Mike’s vision the foundations for such an 
effort are now in place through JPAC.


