thinking <u>inside</u> the box hadron resonances from lattice QCD

Jozef Dudek

calculational results from the hadron spectrum collaboration

lattice QCD

- first-principles numerical approach to the field-theory
 - evaluate correlation functions

 $\int \mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,\mathcal{D}A_{\mu} \,f(\psi,\bar{\psi},A_{\mu}) \,e^{i\int d^{4}x \,\mathcal{L}(\psi,\bar{\psi},A_{\mu})}$

via Monte-Carlo sampling of path-integral on a finite cubic grid

CUBIC LATTICE

lattice QCD

- first-principles numerical approach to the field-theory
 - evaluate correlation functions

 $\int \mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,\mathcal{D}A_{\mu} \,f(\psi,\bar{\psi},A_{\mu}) \,e^{i\int d^{4}x \,\mathcal{L}(\psi,\bar{\psi},A_{\mu})}$

via Monte-Carlo sampling of path-integral on a finite cubic grid

» in principle recover physical QCD as

 $a \rightarrow 0 \quad L \rightarrow \infty$

» practical calculations often use

 $m_q^{\text{calc.}} > m_q^{\text{phys.}}$

Jefferson Lab

lattice QCD

OLD DOMINION UNIVERSITY

- first-principles numerical approach to the field-theory
 - evaluate correlation functions

 $\int \mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,\mathcal{D}A_{\mu} \,f(\psi,\bar{\psi},A_{\mu}) \,e^{i\int d^{4}x \,\mathcal{L}(\psi,\bar{\psi},A_{\mu})}$

via Monte-Carlo sampling of path-integral on a finite cubic grid

 - e.g. discrete spectrum from (euclidean) two-point correlation functions

$$\langle 0 | \mathcal{O}(t) \mathcal{O}(0) | 0 \rangle = \sum_{n} e^{-\mathbf{E}_{n}t} | \langle 0 | \mathcal{O} | n \rangle |^{2}$$

thinking inside the box | 6.23.2016 | a new era ...

- » in principle recover physical QCD as
 - $a \rightarrow 0 \quad L \rightarrow \infty$

 $m_q^{\text{calc.}} > m_q^{\text{phys.}}$

» practical calculations often use

the excited meson spectrum in QCD

- build a big basis of composite QCD operators $\, ar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi \,$
- compute & diagonalize matrix of correlation functions

the excited meson spectrum in QCD

• looks a lot like the "quark model" ($q\overline{q}$ plus hybrids)

(())

OLD DOMINION UNIVERSITY PRD88 094595 (2013)

the excited meson spectrum in QCD

- looks a lot like the "quark model" ($q\overline{q}$ plus hybrids)
- but we know that's not all there is ...

Au, Morgan and Pennington

Jefferson Lab

excited states are really resonances in the scattering of lighter hadrons

PHYSICAL REVIEW D VOLUME 7, NUMBER 5 1 MARCH 1973

 $\pi\pi$ Partial-Wave Analysis from Reactions $\pi^* p \to \pi^* \pi^- \Delta^{**}$ and $\pi^* p \to K^* K^- \Delta^{**}$ at 7.1 GeV/c⁺

S. D. Protopopescu,* M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté, 1 J. H. Friedman, § T. A. Lasinski, G. R. Lynch, M. S. Rabin, || and F. T. Solmitz Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 25 September 1972)

OLD DOMINION UNIVERSITY this **decay physics** should be captured in first-principles approaches to QCD

can this be achieved within lattice QCD ? (where the spectrum is discrete)

elastic scattering in quantum mechanics

• consider scattering of two identical bosons (in one space dimension)

outside the well

 $\psi(|z| > R) \sim \cos(p|z| + \delta(p))$

elastic scattering in quantum mechanics

• consider scattering of two identical bosons (in one space dimension)

thinking inside the box | 6.23.2016 | a new era ...

6

think outside the box ...

inside think outside the box ...

'scattering' in a finite-volume

• put the system in a **periodic box**

• apply periodic boundary conditions

(())

OLD DOMINION UNIVERSITY

$$\frac{\psi(-L/2) = \psi(L/2)}{\frac{d\psi}{dz}(-L/2) = \frac{d\psi}{dz}(L/2)} \left\{ \frac{pL}{2} + \delta(p) = n\pi \right\}$$

$$p = \frac{2\pi}{L}n - \frac{2}{L}\delta(p) \quad \text{discrete energy spectrum}$$

3+1 dim field theory version due to Lüscher

ρ resonance in $\pi\pi$ scattering

PHYSICAL REVIEW D

VOLUME 7, NUMBER 5

1 MARCH 1973

 $\pi\pi$ Partial-Wave Analysis from Reactions $\pi^* p \to \pi^* \pi^- \Delta^{**}$ and $\pi^* p \to K^* K^- \Delta^{**}$ at 7.1 GeV/c⁺

S. D. Protopopescu,* M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté,‡ J. H. Friedman,§ T. A. Lasinski, G. R. Lynch, M. S. Rabin, || and F. T. Solmitz Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 25 September 1972)

PARTIAL WAVE AMPLITUDE

$$f_{\ell}(E) = \frac{1}{2i} \left(e^{2i \delta_{\ell}(E)} - 1 \right)$$

Pennington and Protopopescu

ρ resonance in $\pi\pi$ scattering

• discrete spectrum in *L*×*L*×*L* lattice QCD boxes

(())

OLD DOMINION UNIVERSITY

thinking inside the box | 6.23.2016 | a new era ...

10

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

$\pi\pi P$ -wave phase-shift

• reducing the pion mass moves ρ mass, width in the right direction ...

coupled-channel resonances in QCD

but most excited resonances decay to more than one final state

coupled-channel resonances

Au, Morgan and Pennington

PHYSICAL REVIEW D	VOLUME 35, NUMBER 5	1 MARCH 1987
Meson dynamics beyond the quark model: Study of final-state interactions		

things get more interesting with strongly coupled channels ...

coupled-channel resonances in QCD

• first case calculated explicitly: $\pi K / \eta K$

(İ)

OLD DOMINION UNIVERSITY PRL113 182001 (2014) PRD91 054008 (2015)

but these channels not strongly coupled ...

$\pi \eta / K \overline{K}$ scattering and the a_0 (980)

15

Baru et. al.

• sharp experimental enhancement at $K\overline{K}$ threshold

• usually observed in 'less-simple' production processes

• amplitude models typically give $\frac{g^2}{g^2}$

$$\frac{g^2(K\overline{K})}{g^2(\pi\eta)} \sim 1$$

e.g. $p\overline{p} \rightarrow \pi \pi \eta$

 $\phi \rightarrow \gamma \pi \eta$

EPJA23 523 (2005) "KLOE" $-1\overline{00}$ -5050 100 0 $E - 2m_K$ "Bugg" $-1\overline{00}$ -5050 100 0 "Achasov" -100 -50 50 0 100 "E852" -50 50 -1000 100

Jefferson Lab

$\pi\eta/K\overline{K}$ scattering

• discrete spectrum in *L*×*L*×*L* boxes

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

PRD93 094506 (2016)

$\pi \eta / K\overline{K}$ scattering in $J^P = 0^+$

$\pi\eta/K\overline{K}$ scattering

• these amplitudes describe the calculated spectra

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

can you fit poles in your box ?

Morgan and **Pennington**

resonance
= a pole at complex s = s0

$$t_{ij}(s) \sim \frac{g_i g_j}{s_0 - s}$$

Re[$\int s_0$] ~ 'mass' 2·Im[$\int s_0$] ~ 'width'

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

• our amplitudes have a single dominant pole

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

PRD93 094506 (2016)

a single pole on sheet IV \Rightarrow a **molecular interpretation** ?

$\pi \eta / K\overline{K}$ scattering in $J^P = 0^+$

• our amplitudes have a single dominant pole

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

21

PRD93 094506 (2016)

a single pole on sheet IV \Rightarrow a **molecular interpretation** ?

Morgan and Pennington

• more to learn from couplings to external currents ...

de Fazio and Pennington

Physics Letters B 521 (2001) 15-21

Probing the structure of $f_0(980)$ through radiative ϕ decays

Morgan and Pennington

Zeitschrift für Physik C Particles and Fields September 1988, Volume 37, Issue 3, pp 431-447

What we can learn from $\gamma\gamma \rightarrow \pi\pi, K\bar{K}$ in the resonance region

OLD DOMINION UNIVERSITY

resonances and currents : e.g. $\gamma \pi \rightarrow \pi \pi$

• first such calculation (of a simpler case) has recently appeared

Raul Briceno JLab Isgur Fellow

(())

OLD DOMINION UNIVERSITY PRL 115 242001 (2015)

convinced the skeptics ?

• well, a Lancastrian and a Yorkshireman agree ...

• like many people here, I have too many things to thank Mike for, but here's the first:

UNIVERSITY OF OXFORD DEGREE OF DOCTOR OF PHILOSO REPORT OF THE EXAMINERS	PHY Thesis sent to examiners $14/06/04$ Examiners' report received $21/7/04$.	
Board/Department of	Physical Sciences	
Candidate's Name	Mr Jozef Dudek Wolfson College	
College, Hall or other Society		
Supervisor(s)	Professor F.E. Close	
Title of Thesis as approved by the Board/Department	Phenomenology of Exotic Hadrons - Hybridmesons and Pentaquarks	

Signed	Junk 2 Paton	Date: 19 7 04	dat desta tab
Name:	DR J. PATON	ment dictority to a fibral with the sales	Examiners
Signed	Mennington	Date: 19/7/04	5
Name:	PROFESSOR M. PENNINGTON	TEL MONTERANTA SUC ESCANDA	2

(())

OLD DOMINION UNIVERSITY

• like many people here, I have too many things to thank Mike for, but here's the first:

25

JEFFERSON LAB

Jozef Dudek **Robert Edwards Balint Joo David Richards** Raul Briceno

TRINITY, DUBLIN

Michael Peardon Sinead Ryan

CAMBRIDGE

Christopher Thomas Graham Moir David Wilson

(Ŭ)

MESON SPECTRUM

PRL103 262001 (2009)	I = 1
PRD82 034508 (2010)	$I = 1, K^{\star}$
PRD83 111502 (2011)	I = 0
JHEP07 126 (2011)	CĒ
PRD88 094505 (2013)	I = 0
JHEP05 021 (2013)	D, D_s

HADRON SCATTERING

PRD83 071504 (2011)	$\pi\pi I = 2$
PRD86 034031 (2012)	$\pi\pi I = 2$
PRD87 034505 (2013)	$\pi\pi I = 1, \rho$
PRL113 182001 (2014)	$\pi K, \eta K : K^{\star}$
PRD91 054008 (2015)	$\pi K, \eta K : K^{\star}$
PRD92 094502 (2015)	$\pi\pi, K\overline{K}: \rho$
PRD93 094506 (2016)	$\pi\eta, K\bar{K}:a_0$

BARYON SPECTRUM

PRD84 074508 (2011) PRD85 054016 (2012) PRD87 054506 (2013) PRD90 074504 (2014) PRD91 094502 (2015)

 $(N, \Delta)^{\star}$ $(N, \Delta)_{\rm hvb}$ $(N \dots \Xi)^{\star}$ $\begin{array}{c} \Omega_{ccc}^{\star} \\ \Xi_{cc}^{\star} \end{array}$

MATRIX ELEMENTS

PRD90 014511 (2014) $t_{\pi^{\star}}$ **PRD91 114501 (2015)** $M' \to \gamma M$ **PRL115 242001 (2015)** $\gamma^* \pi \to \pi \pi$ **PRD93 114508 (2016)** $\gamma^*\pi \to \pi\pi$

LATTICE TECH.

PRD79 034502 (2009) PRD80 054506 (2009) PRD85 014507 (2012)

lattices distillation $\vec{p} > 0$

thinking inside the box | 6.23.2016 | a new era ... **OLD DOMINION** UNIVERSITY