$|V_{us}|$ FROM INCLUSIVE HADRONIC τ DECAYS

An example of the utility of combined lattice/continuum approaches

Kim Maltman, York University, Toronto, Canada

with J. Hudspith, R. Lewis, J. Zanotti and

J. Hudspith, T. Izubuchi, R. Lewis, H. Ohki, C. Lehner + RBC/UKQCD

A New Era for Hadro-Particle Physics

JLAB, June 23-24, 2016

OUTLINE

- The inclusive flavor-breaking FESR V_{us} determination
 - The conventional implementation and the $> 3\sigma$ low $|V_{us}|$ puzzle
 - Continuum, lattice input: conventional implementation systematics and a new implementation strategy
 - Results of the new implementation and a resolution of the $> 3\sigma$ low $|V_{us}|$ puzzle
- A new lattice+inclusive $us V+A \tau$ data approach

BASICS: HADRONIC τ **DECAYS IN THE SM**

• $\Pi_{ij;V/A}^{(J)}(Q^2)$, $\rho_{ij;V/A}^{(J)}(s)$: the flavor ij = ud, us, spin $J = 0, 1 \, \text{V}$, A current-current 2-pt function polarizations and spectral functions. Generically:

$$\Pi_{\mu\nu}(q) = i \int d^4x \, e^{iq \cdot x} \langle 0 | T \left\{ J_{\mu}(x) J_{\nu}^{\dagger}(0) \right\} | 0 \rangle$$

$$= \left(q_{\mu}q_{\nu} - q^2 g_{\mu\nu} \right) \Pi^{(1)}(q^2) + q_{\mu}q_{\nu}\Pi^{(0)}(q^2)$$

$$\rho^{(J)}(s) = \frac{1}{\pi} \operatorname{Im} \Pi^{(J)}(s + i\epsilon)$$

• $R_{ij;V/A} \equiv \Gamma[\tau \to \nu_{\tau} \text{ hadrons}_{ij;V/A}(\gamma)] / \Gamma[\tau^{-} \to \nu_{\tau}e^{-}\bar{\nu}_{e}(\gamma)]$

• In SM, with $y_{ au} \equiv s/m_{ au}^2$, $w_{ au}(y) = (1-y)^2(1+2y)$, $w_L(y) = -2y(1-y)^2$ [Tsai PRD4 (1971) 2821]

$$\frac{dR_{ij;V/A}}{ds} = \frac{12\pi^2 |V_{ij}|^2 S_{EW}}{m_{\tau}^2} \left[w_{\tau} (y_{\tau}) \rho_{ij;V/A}^{(0+1)}(s) + w_L (y_{\tau}) \rho_{ij;V/A}^{(0)}(s) \right]$$

• $\rho_{ud,us;V/A}^{(1)}(s)$; π , K pole contributions to $\rho_{ud,us;A}^{(0)}(s)$ all chirally unsuppressed

• Continuum $ho_{ij;V/A}^{(0)}(s) \propto \left(m_i \mp m_j\right)^2$

THE INCLUSIVE FB τ $|V_{us}|$ DETERMINATION

• **Context:** (conventional implementation) inclusive FB τ result c.f. *K* physics, 3-family unitarity

$ V_{us} $	Source
0.2258(9)(?)	3-family unitarity, HT14 $ V_{ud} $
$0.2231(4)_{exp}(7)_{latt}$	$K_{\ell 3}$, 2+1+1 lattice $f_{+}(0)$
$0.2250(4)_{exp}(9)_{latt}$	$\Gamma[K_{\mu 2}]/\Gamma[\pi_{\mu 2}]$, lattice f_K/f_{π}
$0.2176(19)_{exp}(10?)_{th}$	Inclusive FB $ au$ FESR
	(Passemar CKM14)

• Inclusive FB τ result > 3σ low c.f. others: interesting if real, but theory systematics?

THE CONVENTIONAL IMPLEMENTATION

• Basic tool: FESRs (*Cauchy's Thm*), valid for any s_0 , analytic w(s), kinematic-singularity-free Π :

$$\int_{s_{th}}^{s_0} ds \, w(s) \rho(s) = \frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(s) \Pi(s)$$

- General inclusive FB au sum rules for $|V_{us}|$
 - * FESRs involving FB polarization, spectral function combinations $\Pi^{(J)}_{ud-us;V+A}(Q^2)$, $\rho^{(J)}_{ud-us;V+A}(s)$
 - * Experimental (spectral) input: $|V_{ij}|^2 \rho_{ij;V/A}^{(J)}(s)$ from $dR_{ij;V/A}/ds$, $R_{ij;V/A} \equiv \frac{\Gamma[\tau \rightarrow \nu_{\tau} \text{ hadrons}_{ij;V/A}(\gamma)]}{\Gamma[\tau^- \rightarrow \nu_{\tau} e^- \bar{\nu}_e(\gamma)]}$

(small external us J=0 "subtraction" required)

[SM "kinematic weight" w_{τ}]

* $R_{ij;V/A}^w(s_0)$: Re-weighted $R_{ij;V/A}$ analogue, integrated to variable upper endpoint s_0 in spectrum

$$R^{w}_{ij;V/A}(s_0) \sim \int_{th}^{s_0} ds \, \frac{dR_{ij;V/A}}{ds} \frac{w(s/s_0)}{w_{\tau}(s/m_{\tau}^2)}$$

* FESR for
$$\delta R^{w} \equiv \frac{R_{ud;V+A}^{w}}{|V_{ud}|^{2}} - \frac{R_{us;V+A}^{w}}{|V_{us}|^{2}}$$
 yields
$$|V_{us}| = \sqrt{\frac{R_{us;V+A}^{w}(s_{0})}{\frac{R_{ud;V+A}^{w}(s_{0})}{|V_{ud}|^{2}}} - [\delta R^{w}(s_{0})]^{OPE}}$$

valid for arbitrary analytic w(y), $s_0 \leq m_{\tau}^2$

- * "Self-consistency tests":
 - $\circ |V_{us}|$ independent of s_0 , w (tests control, understanding of OPE, experimental systematics)
 - E.g., integrated D = 2k + 2 OPE $\sim 1/s_0^k$: errors in higher D treatment $\leftrightarrow s_0$ -instability

• Below: FESRs with variable s_0 , w, $\Delta \Pi_{\tau} \equiv \Pi_{ud-us;V+A}^{(0+1)}$

• The conventional implementation [Gamiz et al. JHEP03(2003)060]

•
$$s_0 = m_\tau^2$$
, $w = w_\tau$ only (degree 3, OPE to $D = 8$)

- D = 2, D = 4 known, D = 6 OPE estimated with "VSA" (very small), D = 8 neglected
- Resulting $\left[\delta R^{w_{\tau}}(m_{\tau}^2)\right]_{D\geq 2}^{OPE}$ estimate a few to several % of individual $R_{ud,us;V+A}$

 \Rightarrow modest OPE accuracy enough for precision $|V_{us}|$

• Rationale for $w = w_{\tau}$, $s_0 = m_{\tau}^2$ choice: $R_{ud,us;V+A}$ from inclusive ud, us BFs ($dR_{ij;V/A}/ds$ not needed) [Downside: unquantified systematic error from absence of w(s)-, s_0 -independence tests] • Conventional implementation tests [KM et al. arXiv:1511.08514]

 \circ Variable $s_0 \leq m_{\tau}^2$, $|V_{us}|~s_0$ -stability checks

- Targeted $|V_{us}|$ w-independence test: $y = (s/s_0)$, $w = w_{\tau}(y) = 1 - 3y^2 + 2y^3$ c.f. $\hat{w}(y) = 1 - 3y + 3y^2 - y^3$
 - * $D = 6/8 \ \hat{w}$ OPE contributions $-1/-1/2 \times D = 6/8 \ w_{\tau}$ OPE contributions
 - * IF D > 4 assumptions OK for w_{τ} FESR \Rightarrow also OK for \hat{w} FESR $\Rightarrow |V_{us}|$ agreement, s_0 -stability
 - * D > 4 assumptions not OK \Rightarrow opposite-sign w_{τ} , $\hat{w} s_0$ -instabilities, both decreasing with s_0

• Candidate self-consistency problem sources:

* Experiment: The less-well-known us distribution

* Theory: Conventional D > 4 assumptions (w_{τ} , \hat{w} comparison); slow D = 2 OPE convergence

• The D = 2 series and slow D = 2 convergence

$$\begin{split} \left[\Delta \Pi_{\tau}(Q^2) \right]_{D=2}^{OPE} &= \frac{3}{2\pi^2} \frac{\bar{m}_s^2}{Q^2} \left[1 + 2.333\bar{a} + 19.933\bar{a}^2 \right. \\ &\quad + 208.746\bar{a}^3 + \cdots \right] \\ \text{with running } \overline{MS} \ \bar{a} &= \frac{\alpha_s(Q^2)}{\pi}, \ \bar{m}_s = m_s(Q^2) \\ \bar{a}(m_{\tau}^2) > 0.1 \Rightarrow \text{slow convergence at ALL } \tau \text{ decay scales} \end{split}$$

• w_{τ} , \hat{w} comparison: D > 4 assumption problem(s) likely

Note: VSA VERY crude; channel-dependent ud V,A breaking; caution restrong double cancellation (in ud, us V+A sums, AND resulting ud - us difference)

LATTICE RE D = 2 SERIES, D > 4 OPE ISSUES

- OPE c.f. RBC/UKQCD lattice $\Delta \Pi_{\tau}(Q^2)$
 - KM with J. Hudspith, R. Lewis, J. Zanotti
 - Here: lightest m_{π} , fine $(1/a = 2.38 \ GeV) \ 32^3 \times 64$ 2+1 ensemble $(m_{\pi} \sim 300 \ MeV, \ m_{\pi}L \sim 4.1)$
 - Tight cylinder cut for continuum correlator behavior (width from stabilization in ud V channel α_s study)
 - Large Q^2 : D = 2 + 4 OPE exploration; lower Q^2 : re possible non-negligible D > 4 at τ decay scales

* Fixed- or local-scale D = 2? [c.f. FESR FOPT/CIPT]

- Higher Q^2 : best (excellent) lattice vs D = 2 + 4 OPE match for 3-loop-truncated, fixed-scale D = 2
- Fixed scale suggests FOPT for FESR D = 2

• Onset of D>4 contributions below $\sim 4~GeV^2$

• Standard D = 2, D = 4 error estimates VERY conservative, despite slow D = 2 series convergence

A NEW IMPLEMENTATION STRATEGY BASED ON LATTICE, CONTINUUM LESSONS

- No assumptions re D > 4; include contributions and fit effective condensates C_D as part of analysis
- 3-loop-truncated FOPT for D = 2 contribution; standard error estimates for D = 2 + 4
- Range of s_0 to fit both $|V_{us}|$, C_D
- Fits simplest for $w(y) = w_N(y) = 1 \frac{y}{N-1} + \frac{y^N}{N-1}$ (C_{2N+2} , $|V_{us}|$ as only fit parameters)
- Self-consistency check: $|V_{us}|$ from different w_N

RESULTS OF THE NEW ANALYSES

- For brevity: results for $K\pi$ normalization using preliminary BaBar $B[\tau \to K^- \pi^0 \nu_{\tau}]$ update (Adametz thesis)
- Fitted $|V_{us}|$ (as expected) between (s_0 -unstable) w_{τ} and \hat{w} conventional implementation results
- Fitted C_D show FB cancellation in comparison to fitted $ud \vee + A$ analogues (qualitative self-consistency test)
- Excellent $|V_{us}|$, C_{2N+2} stability wrt fit window variation; excellent agreement of $|V_{us}|$ from different w_N

• Results using preliminary $K\pi$ BF update

	$ V_{us} $	$ V_{us} $
Weight	CIPT+corr $D = 2$	FOPT $D = 2$
	0.22271(228)	0.22252(228)
w_{3}	0.22271(228)	0.22282(228)
w_{4}	0.22271(229)	0.22296(229)

Error budget, 3-loop-truncated FOPT D = 2 fits

	$\delta V_{us} $	$\delta V_{us} $	$\delta V_{us} $
Source	$(w_2 \text{ FESR})$	$(w_3 \text{ FESR})$	$(w_4 \text{ FESR})$
$\delta lpha_s$	0.00001	0.00004	0.00004
δm_s (2 GeV)	0.00017	0.00019	0.00019
$\delta \langle m_s \bar{s} s angle$	0.00035	0.00035	0.00035
$\delta(long \ corr)$	0.00009	0.00009	0.00009
ud exp	0.00027	0.00028	0.00028
us exp	0.00226	0.00227	0.00227 🧲

Fit quality: s_0 -stability for conventional implementation, except with fitted C_{2N+2}

Solid/dashed lines: with conventional implementation/new implementation (fit) treatments of D > 4 contributions

SUMMARY, CONVENTIONAL FB FESR ANALSIS

• Continuum, lattice \Rightarrow conventional D > 4 assumptions untenable, must fit D > 4 effective condensates

[Additional $\sim 0.0020 - 0.0030$ systematic from breakdown of D > 4 assumptions]

- Fitting D > 4 resolves s_0 -, w(y)-dependence problems, raises $|V_{us}|$ by ~ 0.0020
- D > 4 fit needs variable $s_0 \Rightarrow$ analysis using only inclusive non-strange, strange BFs NOT possible
- Lattice \Rightarrow 3-loop FOPT for D = 2, D = 2 + 4 OPE error estimate conservative

- $|V_{us}|$ errors strongly dominated by (improvable) us experimental uncertainties (currently BF dominated)
- New preliminary $K^-\pi^0$ BF normalization, 3-weight combined fit result $|V_{us}| = 0.2228(23)_{exp}(5)_{th}$ in agreement with other determinations (especially $K_{\ell 3}$)

(c.f. 0.2200(23)_{exp}(5)_{th} with 2014 HFAG $B[K^{-}\pi^{0}]$)

- Theory error (conservative) ~ 0.0005 c.f. 0.0009 for $K_{\ell 3}$, $\Gamma[K_{\mu 2}]/\Gamma[\pi_{\mu 2}]$ (lattice crucial here)
- ⇒ FB FESR method competitive with sufficient improvement to *us* experimental errors

• However sub-0.5% $|V_{us}|$ needs sub-% $R^w_{us;V+A}$ error

Relative exclusive mode $R^w_{us:V+A}$ contributions

Wt	s ₀	K	$K\pi$	$K\pi\pi$	Other
	$[GeV^2]$			(B-factory)	
w_2	2.15	0.496	0.426	0.062	0.010
	3.15	0.360	0.414	0.162	0.065
w_{3}	2.15	0.461	0.446	0.073	0.019
	3.15	0.331	0.415	0.182	0.074
w_{4}	2.15	0.441	0.456	0.082	0.021
	3.15	0.314	0.411	0.194	0.081

• "Other": 1999 ALEPH data/MC, $\sim 25\%$ error

Sufficient improvement" includes experimentally (much) more challenging higher-multiplicity modes

A PROMISING τ -BASED ALTERNATIVE

- Work with J. Hudspith, T. Izubuchi, R. Lewis, H. Ohki,
 C. Lehner + RBC/UKQCD
- Basic idea: generalized dispersion relations for products of combination $\tilde{\Pi}$ of J = 0, 1 us V + A polarizations with weights having poles at Euclidean Q^2
 - $\Pi(Q^2)$ such that inclusive $dR_{us;V+A}/ds$ distribution directly determines related spectral function $\tilde{\rho}(s)$
 - Theory: Lattice *us* 2-point function data (no OPE)
 - Weights tunable, allow suppression of larger-error, higher-multiplicity us spectral contributions

More on the lattice-inclusive $us \ \tau$ approach

• Experimental $dR_{us;V+A}/ds$ distribution yields $|V_{us}|^2 \tilde{\rho}(s)$,

$$\tilde{\rho}_{us;V+A}(s) \equiv \left(1 + 2\frac{s}{m_{\tau}^2}\right) \rho_{us;V+A}^{(J=1)}(s) + \rho_{us;V+A}^{(J=0)}(s)$$

(no continuum us J = 0 subtraction needed)

• Associated (kinematic-singularity-free) polarization

$$\tilde{\Pi}_{us;V+A}(Q^2) \equiv \left(1 - 2\frac{Q^2}{m_{\tau}^2}\right) \Pi_{us;V+A}^{(J=1)}(Q^2) + \Pi_{us;V+A}^{(J=0)}(Q^2)$$

Reminder: strange hadronic τ decays in the SM

With
$$y_ au\equiv s/m_ au^2$$
 [Tsai PRD4 (1971) 2821]

$$\frac{dR_{us;V+A}}{ds} = \frac{12\pi^2 |V_{us}|^2 S_{EW}}{m_\tau^2} [1 - y_\tau]^2 \\ \cdot \left[(1 + 2y_\tau) \rho_{us;V+A}^{(J=1)}(s) + \rho_{us;V+A}^{(J=0)}(s) \right] \\ = \frac{12\pi^2 |V_{us}|^2 S_{EW}}{m_\tau^2} [1 - y_\tau]^2 \tilde{\rho}_{us;V+A}(s)$$

 \Rightarrow Division by known factors yields $\tilde{\rho}_{us;V+A}(s)$ with no need for continuum $\rho_{us;V/A}^{(0)}(s)$ subtraction

• For weights $w_N(s) \equiv \frac{1}{\prod_{k=1}^N (s+Q_k^2)}$, $N \ge 3$, obtain convergent, unsubtracted 'dispersion relation'

$$\int_{th}^{\infty} ds \, w_N(s) \, \tilde{\rho}_{us;V+A}(s) = \sum_{k=1}^{N} \frac{\tilde{\Pi}_{us;V+A}(Q_k^2)}{\Pi_{j \neq k} \left(Q_j^2 - Q_k^2\right)}$$

 \circ Lattice data for $\tilde{\Pi}_{us;V+A}(Q_k^2)$ on RHS

 \circ LHS from experimental $dR_{us;V+A}/ds$, up to $|V_{us}|^2$

- $w_N(s)$: rapid fall-off if all $Q_k^2 < 1 \ GeV^2 \Rightarrow K$, $K\pi$ dominate LHS, near-endpoint multi-particle, $s > m_\tau^2$ contributions strongly suppressed [FIG]
- \circ Optimization: increasing $\{Q_k^2\}$ decreases RHS lattice error, increases LHS experimental error

4-pole weights, pole spacing Δ , pole centroid C

- An illustration of expected precision: N = 4, $C = 0.325 \ GeV^2 \ [\{Q_k^2\} = \{0.25, 0.30, 0.35, 0.40 \ GeV^2\}]$
 - $\circ\,$ Spectral integral error $\sim 0.4\%$
 - Statistical error, sum of residues, near-physical-point $n_f = 2 + 1 \text{ RBC/UKQCD}$ ensembles:

 ~ 0.4 % for $48^3 \times 96$, $1/a = 1.73 \ GeV$

 $\sim 0.5\%$ for $64^3 \times 128$, 1/a = 2.36~GeV

- Quadrature sum $\Rightarrow \delta |V_{us}| \sim 0.0007$, ~ 0.0008 for near-physical-point 48³, 64³ ensembles, respectively
- Optimization/systematics (FV, continuum limit, correcting for small m_{ℓ} , m_s mis-tunings) under study

Relative errors as a function of C, 4-pole weights, pole spacing $\Delta = 0.05 \ GeV^2$, pole interval centroid C

OVERALL SUMMARY

- Old 3σ low inclusive FB τ FESR $|V_{us}|$ problem resolved
 - Alternate, no-assumptions implementation: $|V_{us}|$ higher by ~ 0.0020, compatible with other determinations
 - \circ Near-term improvements feasible through improvements in us exclusive mode BFs
 - Highly favorable theoretical error situation
 - However, for competitive $|V_{us}|$ need improvements to old ALEPH higher-multiplicity, low-statistics data [unlikely in the near-term]

• Advantage of new lattice-inclusive $us V + A \tau$ approach

• Theory:

- * Lattice in place of OPE; no (albeit mildly modeldependent) us J = 0 continuum subtraction; improvement through increased statistics
- * Easily parasitic on lattice a_{μ} effort (major effort being pursued by many lattice collaborations)
- Spectral integrals:
 - * Theory errors still small for weights strongly suppressing higher multiplicity contributions
 - * Strong K, $K\pi$ dominance of spectral integral
 - * Significant experimental improvements possible through just improved $K\pi$ BFs, distributions

BACKUP SLIDES

- Are D = 6, 8 OPE contributions likely to be small for the conventional inclusive FB FESRs?
 - $D = 4 \ll D = 2$ for $w_{\tau}(y) = 1 3y^2 + 2y^3$, $y = s/s_0$, "accidental" $[O(\alpha_s^2)$ suppression due to absence of term linear in y in $w_{\tau}(y)$]
 - Comparison of D = 2, 4 OPE contributions for $w(y) = (1 y)^2$ (a case without this suppression) to see natural relative sizes

OPE, SPECTRAL INPUT

- PDG, FLAG, HPQCD input for D = 2,4 OPE
- $ud \lor +A$ spectral data from ALEPH 2013
- $us \vee + A$ spectral data from sum over exclusive modes [> 90% of B_{us}^{TOT} from $K_{\ell 2}$, Belle, BaBar $K\pi$, $K\pi\pi$, 3Kresults; residual: 1999 ALEPH]
- Here, for brevity, $K\pi$ normalization including preliminary BaBar $B[\tau \to K^- \pi^0 \nu_{\tau}]$ update (Adametz thesis)

MORE ON THE us DATA

- K pole via $f_K |V_{us}|$ from $K_{\ell 2}$
- Rather precise unit-normalized $K^-\pi^0$, $\bar{K}^0\pi^-$, $K^-\pi^+\pi^-$, $\bar{K}^0\pi^-\pi^0$, 3K distributions from Belle, BaBar (main uncertainties from BFs)
- K, B-factory modes over 90% of B_{us}^{TOT}
- Residual *us* exclusive mode contributions from 1999 ALEPH data, covariances

THE EXPERIMENTAL $K\pi$ BF SITUATION

- HFAG 2014 $B[(K^{-}\pi^{0} + \bar{K}^{0}\pi^{-})\nu_{\tau}] = 0.0126$
- HFAG 2014 $B[K^{-}\pi^{0}\nu_{\tau}] = 0.00431(15)$ value \rightarrow preliminary BaBar (Adametz thesis) result 0.00500(15) yields $B[(K^{-}\pi^{0} + \bar{K}^{0}\pi^{-})\nu_{\tau}] = 0.0133$
- Central $B[(K^-\pi^0 + \bar{K}^0\pi^-)\nu_{\tau}]$ from $K_{\ell 3}$, dispersive analysis expectations [ACLP13] also 0.0133
- 0.07% difference "small" but represents \sim 2.4% of B_{us}^{TOT} , hence \sim 1.2% increase in $|V_{us}|$

Results for $|V_{us}|$ for current HFAG 2014 $K\pi$ BFs

	$ V_{us} $	$ V_{us} $
Weight	CIPT+corr D = 2	FOPT $D = 2$
w_2	0.21985(230)	0.21966(230)
w_{3}	0.21985(231)	0.21966(231)
w_{4}	0.21985(231)	0.22009(231)

Error budget, existing $K\pi$ BFs

	$\delta V_{us} $	$\delta V_{us} $	$\delta V_{us} $
Source	$(w_2 \text{ FESR})$	$(w_3 \text{ FESR})$	$(w_4 \text{ FESR})$
$\delta lpha_s$	0.00001	0.00003	0.00005
δm_s (2 GeV)	0.00017	0.00018	0.00020
$\delta \langle m_s \bar{s} s angle$	0.00034	0.00034	0.00034
$\delta(long \ corr)$	0.00009	0.00009	0.00009
ud exp	0.00027	0.00027	0.00027
$us \exp$	0.00229	0.00229	0.00230

Stability of $|V_{us}|$ with fitted C_{2N+2} input, existing $K\pi$ BF normalization

