
Resonance poles and threshold 
effects from lattice QCD

David Wilson

A New Era for Hadro-Particle Physics
Thomas Jefferson National Accelerator Facility

23-24 June 2016



L

a

cc spectrum from lattice QCD

David Wilson 2Resonances from lattice QCD

J
H
E
P
0
7
(
2
0
1
2
)
1
2
6

Figure 16. Charmonium spectrum up to around 4.5 GeV showing only JPC channels in which we
identify candidates for hybrid mesons. Red (dark blue) boxes are states suggested to be members
of the lightest (first excited) hybrid supermultiplet as described in the text and green boxes are
other states, all calculated on the 243 volume. As in figure 14, black lines are experimental values
and the dashed lines indicate the lowest non-interacting DD̄ and DsD̄s levels.

The observation that there are four hybrid candidates nearly degenerate with JPC =

(0, 1, 2)�+, 1��, coloured red in figure 16, is interesting. This is the pattern of states

predicted to form the lightest hybrid supermultiplet in the bag model [38, 39] and the

P-wave quasiparticle gluon approach [40], or more generally where a quark-antiquark pair

in S-wave is coupled to a 1+� chromomagnetic gluonic excitation as shown table 5. This

is not the pattern expected in the flux-tube model [41] or with an S-wave quasigluon. In

addition, the observation of two 2+� states, with one only slightly heavier than the other,

appears to rule out the flux-tube model which does not predict two such states so close

in mass. The pattern of JPC of the lightest hybrids is the same as that observed in light

meson sector [11, 31]. They appear at a mass scale of 1.2 � 1.3 GeV above the lightest

conventional charmonia. This suggests that the energy di↵erence between the first gluonic

excitation and the ground state in charmonium is comparable to that in the light meson [31]

and baryon [15] sectors.

To explore this hypothesis of a lightest hybrid multiplet further, we follow ref. [31] and

consider in more detail operator-state overlaps. The operators (⇢
NR

⇥ D
[2]

J=1

)J=0,1,2 with

JPC = (0, 1, 2)�+ and (⇡
NR

⇥D
[2]

J=1

)J=1 with JPC = 1�� are discussed in that reference.

These operators have the structure of colour-octet quark-antiquark pair in S-wave with

S = 1 (⇢
NR

) or S = 0 (⇡
NR

), coupled to a non-trivial chromomagnetic gluonic field with

J
PgCg
g

= 1+� where J
g

, P
g

and C
g

refer to the quantum numbers of gluonic excitation.

Figure 17 shows that the four states suggested to form the lightest hybrid supermultiplet

have considerable overlap onto operators with this structure.

For states within a given supermultiplet, it is expected that the Z-values for each of

these operators, projected into the relevant lattice irreps, will be similar as discussed above.

The relevant overlaps presented in figure 17 suggest that the four hybrid candidates have

– 25 –

from Liu et al (for the Hadron Spectrum Collaboration), JHEP 1207 (2012) 126.
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Figure 16. Charmonium spectrum up to around 4.5 GeV showing only JPC channels in which we
identify candidates for hybrid mesons. Red (dark blue) boxes are states suggested to be members
of the lightest (first excited) hybrid supermultiplet as described in the text and green boxes are
other states, all calculated on the 243 volume. As in figure 14, black lines are experimental values
and the dashed lines indicate the lowest non-interacting DD̄ and DsD̄s levels.
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conventional charmonia. This suggests that the energy di↵erence between the first gluonic

excitation and the ground state in charmonium is comparable to that in the light meson [31]
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To explore this hypothesis of a lightest hybrid multiplet further, we follow ref. [31] and

consider in more detail operator-state overlaps. The operators (⇢
NR

⇥ D
[2]

J=1

)J=0,1,2 with

JPC = (0, 1, 2)�+ and (⇡
NR

⇥D
[2]

J=1

)J=1 with JPC = 1�� are discussed in that reference.

These operators have the structure of colour-octet quark-antiquark pair in S-wave with

S = 1 (⇢
NR

) or S = 0 (⇡
NR

), coupled to a non-trivial chromomagnetic gluonic field with

J
PgCg
g

= 1+� where J
g

, P
g

and C
g

refer to the quantum numbers of gluonic excitation.

Figure 17 shows that the four states suggested to form the lightest hybrid supermultiplet

have considerable overlap onto operators with this structure.

For states within a given supermultiplet, it is expected that the Z-values for each of

these operators, projected into the relevant lattice irreps, will be similar as discussed above.
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FIG. 5. The isoscalar mesons (mainly uu, dd, ss). The legend is as for Fig. 3. Significant spectroscopic mixings in this sector are
given in Table III. The comparison of the 0 + isoscalars with experiment requires special consideration: see Sec. VA. For the E
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Meson loops

Decay channels and charmonium mass shifts
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Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, United Kingdom
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The discovery in the last few years of states belonging to the extended charmonium family has
highlighted the importance of the closeness of decay channels to an understanding of many of these
mesons. We aid this debate by illustrating a simple calculational procedure for including the effect of open
and nearby closed channels.

DOI: 10.1103/PhysRevD.76.077502 PACS numbers: 14.40.Gx, 13.25.Gv, 14.40.Lb

I. MODELING DECAY CHANNELS

The discovery of narrow states of hidden charm, the X,
Y, Z mesons [1,2], has generated a whole literature discus-
sing their nature, structure, and relation to charmonium.
The fact that a state, like the X!3872", sits between D#0 !D0

and D#$D% thresholds [3], with a width of less than
1.2 MeV, has highlighted the potentially important role
that hadronic decay channels may have on the spectrum.
Indeed, it is a feature of resonances with strong S-wave
thresholds that the states are drawn close to their strongly
coupled thresholds [4] as often discussed for the f0 and a0
close to !KK threshold [5]. Eichten, Lane, and Quigg (ELQ)
[6] have calculated the effect of open channels for states
with hidden charm in a scheme that many find unfamiliar.
In this paper we want to revisit an approach related to the
Dyson summation for the inverse meson propagator. This
idea is not new and was considered for charmonium many
years ago by Heikkilä et al. [7]. What is new here is the
straightforward way in which we can estimate the effects
of open and nearby closed channels.

The inverse boson propagator, P !s", is shown in Fig. 1,
where s is the square of the momentum carried by the
propagator. With "!s" the contribution of hadron loops,
the complex mass function M!s" is related to this by

 P !s" &M2!s" % s ' m2
0 % s$"!s"

' m2
0 % s$

X

n'1

"n!s"; (1)

where m0 is the mass of the bare state and the sum is over
all loops (Fig. 1). The propagator, P%1!s", will then have a
pole at (at least one) complex value of s ' sR. This posi-
tion specifies the mass and width of the physical resonance.
If we denote the threshold for the nth channel by s ' sn,
then clearly only those that are open for s ’ Re!sR"> sn
contribute to the decay width of the physical hadron.
However, in principle all hadronic channels contribute to
its mass. Indeed, each of the infinity of closed channels
contributes to the real part of "!s" and for a given physical
mass can be thought of as redefining the ‘‘bare’’ mass.
Since we are interested only in mass shifts, let us subtract
Eq. (1) at some suitable point s ' s0 to be defined below,
then

 M 2!s" %M2!s0" ' "!s" %"!s0"
&
X

n'1

("n!s" %"n!s0"): (2)

Since "n!s" will be effectively constant for those virtual
channels for which Re!sR" * sn, their contribution will
cancel out in Eq. (2). Consequently, the mass shift is
entirely given by the hadronic channels that are fully
open or only just ‘‘virtual.’’ It is a reasonable expectation
that deeply bound states, like the J= , have masses defined
by the charmonium potential. The mass of the J= then
essentially defines the mass scale and fixes the charm quark
mass at the relevant scale. It is thus natural to set s0 '
M!J= "2. In line with expectation our results change little
if we use s0 ' 4m2

c instead. For each state we take the
value of M!s0" to be that predicted by a charmonium
potential, unperturbed by hadronic channels. Of course, if
the parameters in the charmonium potential are fixed with
reference to physical states for which open charm channels
may contribute, we have an issue of double counting. We
believe that by fixing the charmonium parameters by only
deeply bound states we avoid this problem.

Since each "n!s" is an analytic functions with a right-
hand cut, we can write a Cauchy representation in sub-
tracted form, so that

 #"n!s; s0" & "n!s" %"n!s0"

' !s% s0"
!

Z 1
sn
ds0

Im"n!s0"
!s0 % s"!s0 % s0"

: (3)

Then

 

X

n'1

#"n!s; s0" 'M2!s" %M2
pot & #M2!s"; (4)

where Mpot is the mass defined by the charmonium po-

FIG. 1 (color online). The bare bound state propagator is
dressed by hadronic loops. The dot signifies the dressed propa-
gator and vertices.

PHYSICAL REVIEW D 76, 077502 (2007)
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tential. The form of Im!n for particle P coupling to each
channel AB is taken to have a simple form, for s ! sn:

 Im !n"s# $ %g2
n

!
2k"""
s
p
#

2L&1
exp"%!k2#; (5)

where gn is the coupling of particle P to channel n (i.e., to
particles A and B), L is the orbital angular momentum
between A and B, while k is the 3-momentum of A and B in
the rest frame of P. So as usual

 4k2=s $ 1% 2"m2
A &m2

B#=s& "m2
A %m2

B#2=s2: (6)

The scale factor ! is related to the radius of interaction, R,
by ! $ R2=6. This is in turn related to the size of the
overlap between the c "c and the AB states. A larger value of
! produces a smaller mass shift. A value of ! $
0:4 GeV%2 is favored solely because it gives the most
sensible results. This corresponds to R ’ 0:3 fm.

For open channels, the coupling gn is simply related to
the channel n decay width through Eq. (3) with s ’ sR. For
nearby closed channels we use the coupling to states with
the same quantum numbers. As a guide to the size of the
effects, the calculations presented here systematically in-
clude the channels D "D, D "D', D' "D', and Ds

"Ds.

II. COMPARISON WITH EXPERIMENT AND
OTHER STUDIES

We define the base from which the shift due to decay
channels is to be computed by a nonrelativistic potential
model for charmonium. From the many potential model-
ings we choose the classic work of Godfrey and Isgur [8],
more recently tabulated by Barnes, Godfrey, and Swanson
(BGS) [9]. This is because BGS not only provide a pre-
diction for the eigenstates, but include calculations using
the 3P0 model for the partial widths. It is these that fix the
couplings gn, which are the essential input into Eq. (5) for
computing the mass shift from decay channels. Using these
inputs we compute the correction to the real and imaginary
parts of #M2 as shown in Fig. 2 for the example of the  000.
From such plots we arrive at the mass shifts given in
Table I. These are presented in two ways. The simplest is
the shift in what we call the Breit-Wigner (BW) mass, for
which we only need to compute #!"s# at s $ ReM2"s#,
Fig. 2. However, the physically relevant quantity is the shift
in the position of the pole in the complex energy plane.
This requires we evaluate #!"s# at s $ sR $M2"sR#. For
states with small widths, of course, the Breit-Wigner and
pole masses differ little. However, for states with larger
couplings, the difference is inevitably bigger. Indeed, some
states get shifted below their threshold and their pole
moves to the real axis. Others, however, are subject to
significant changes. The largest effect is found for the
"0c1
"33P1# state, where a shift of #mBW $ %66 MeV is

reduced to just #mpole $ %29 MeV.
Correcting the bare masses delivered by the potential

model of Godfrey and Isgur [8,9] by our calculated decay

channel induced mass shifts brings better agreement with
experiment as seen from Table I. For the  000 the downward
shift by between 36 and 41 MeV is reasonable. That for the
#00c of 45 to 58 MeV is not quite enough to bring it in line
with the measured mass, which is 100 MeV below the
potential model prediction.

States with common JPC quantum numbers have com-
mon decay channels and so inevitably mix through these
hadronic intermediate states. Two such states are the #0c
and #00c . Since the ground state #c is deeply bound, it mixes
little with these. Explicit calculation gives a shift of
%0:6 MeV for the #0c and even less for the #00c .
Consequently, for the states listed in Tables I and II, these
interstate mixings are small and can be neglected.

We first compare our calculation with that of Heikkilä
et al. [7] of more than 20 years ago. These authors consider
the spectrum of heavy quarkonia, in which the loop effects
are built in from the start in the determination of the
parameters of the underlying nonrelativistic potential
model. Meson loops then have a dramatic effect on the

FIG. 2 (color online). The real and imaginary parts of #M2"s#
as functions of E $ """

s
p

for the  000"33S1# propagator. The dashed
line shows the curve m2

0 % s, where it intersects the real part of
#M2"s# labeled BW, defines the Breit-Wigner mass. The cusps
in the real and imaginary parts occur at each of the thresholds.
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‘‘bare’’ states with shifts of hundreds of MeV in mass for
the lightest states. In their calculation the infinity of virtual
channels (or as many of these as they choose to include) all
have an effect. In contrast, in our calculation by using
subtracted dispersion relations for the meson loops, the
effect of the many closed channels is absorbed into the
subtraction constants. Moreover, because we expect deeply

bound states like the J= to be negligibly affected by loop
corrections and well approximated by charmonium poten-
tial calculations, the subtraction constants are accurately
determined. The predicted widths by Heikkilä et al. are
within a factor 2 of experiment for the  00 and  000.

We now compare our results with those obtained by
Eichten, Lane, and Quigg [6]. The first of two comparisons

TABLE II. Comparison of the calculation and modeling by Eichten et al [10] in columns 2–5, with the results from our loop
calculations from their same base bare masses with their channel couplings in columns 7 and 8. The couplings to individual channels
are taken from the partial decay widths computed by ELQ in their Table V of [6].

State Centroid (MeV) Spin splitting (MeV) Bare mass (MeV) !hadrons (MeV) "mELQ

(MeV)
Our mass (MeV) Our "m

(MeV)

21S0 3674 !50:1 3623.9 " " " 15.7 3617.0 !6:9
23S1 3674 16.7 3690.7 " " " !5:2 3676.5 !14:2

31S0 4015 !66 3949 74 !3:1 3924.5 !24:5
33S1 4015 22 4037 49.8 1.0 4020.0 !17:0

31P1 3922 0 3922 59.8 !5:4 3892.0 !30:0
33P0 3922 !90 3832 61.5 27.9 3818.8 !13:2
33P1 3922 !8 3914 81 6.7 3868.9 !45:1
33P2 3922 25 3947 28.6 !9:6 3939.4 !7:6

31D2 3815 0 3815 1:7a 4.2 3813.3 !1:7
33D1 3815 !40 3775 20:1a !39:9 3728.1 !46:9
33D2 3815 0 3815 0.045 !2:7 3815.0 0.0
33D3 3815 20 3835 0:86a 19.0 3833.1 !1:9

aEichten et al. [10].

TABLE I. Our results. The calculated shifts for both the Breit-Wigner and pole masses are computed from a base defined by the
nonrelativistic model of Barnes, Godfrey, and Swanson [9] listed above. Far from their masses, these predictions may be incorrect.
Experimental data are from PDG [2]. Only experimental errors greater than 1 MeV are quoted.

Name State n2S#1LJ Experimental mass (MeV) Potential mass (MeV) !hadrons (MeV) "mBW (MeV) "mpole (MeV)

!c 11S0 2980$ 1 2982 " " " " " " " " "
J= 13S1 3096.9 3090 " " " " " " " " "
!0c 21S0 3638$ 4 3630 " " " !10 !10
 0 23S1 3686.1 3672 " " " !9 !9

hc 21P1 3525.9 3516 " " " !2 !2
"c0

23P0 3414.8 3424 " " " !9 !9
"c1

23P1 3510.7 3505 " " " !16 !16
"c2

23P2 3556.2 3556 " " " !6 !6

!00c 31S0 3943$ 6 4043 80a !45 !58
 000 33S1 4039$ 1 4072 80$ 10b !36 !41

31P1 " " " 3934 87a !5 !12
33P0 " " " 3852 30a !70 !70
33P1 " " " 3925 168a !66 !29
33P2 " " " 3972 80a !55 !48

31D2 " " " 3799 " " " " " " " " "
 00 33D1 3771$ 2 3785 23$ 3bb !40 !40

33D2 " " " 3800 " " " " " " " " "
33D3 " " " 3806 " " " " " " " " "

aBGS [9].
bPDG [2].
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are taken from the partial decay widths computed by ELQ in their Table V of [6].

State Centroid (MeV) Spin splitting (MeV) Bare mass (MeV) !hadrons (MeV) "mELQ

(MeV)
Our mass (MeV) Our "m

(MeV)

21S0 3674 !50:1 3623.9 " " " 15.7 3617.0 !6:9
23S1 3674 16.7 3690.7 " " " !5:2 3676.5 !14:2

31S0 4015 !66 3949 74 !3:1 3924.5 !24:5
33S1 4015 22 4037 49.8 1.0 4020.0 !17:0

31P1 3922 0 3922 59.8 !5:4 3892.0 !30:0
33P0 3922 !90 3832 61.5 27.9 3818.8 !13:2
33P1 3922 !8 3914 81 6.7 3868.9 !45:1
33P2 3922 25 3947 28.6 !9:6 3939.4 !7:6

31D2 3815 0 3815 1:7a 4.2 3813.3 !1:7
33D1 3815 !40 3775 20:1a !39:9 3728.1 !46:9
33D2 3815 0 3815 0.045 !2:7 3815.0 0.0
33D3 3815 20 3835 0:86a 19.0 3833.1 !1:9

aEichten et al. [10].

TABLE I. Our results. The calculated shifts for both the Breit-Wigner and pole masses are computed from a base defined by the
nonrelativistic model of Barnes, Godfrey, and Swanson [9] listed above. Far from their masses, these predictions may be incorrect.
Experimental data are from PDG [2]. Only experimental errors greater than 1 MeV are quoted.

Name State n2S#1LJ Experimental mass (MeV) Potential mass (MeV) !hadrons (MeV) "mBW (MeV) "mpole (MeV)

!c 11S0 2980$ 1 2982 " " " " " " " " "
J= 13S1 3096.9 3090 " " " " " " " " "
!0c 21S0 3638$ 4 3630 " " " !10 !10
 0 23S1 3686.1 3672 " " " !9 !9

hc 21P1 3525.9 3516 " " " !2 !2
"c0

23P0 3414.8 3424 " " " !9 !9
"c1

23P1 3510.7 3505 " " " !16 !16
"c2

23P2 3556.2 3556 " " " !6 !6

!00c 31S0 3943$ 6 4043 80a !45 !58
 000 33S1 4039$ 1 4072 80$ 10b !36 !41

31P1 " " " 3934 87a !5 !12
33P0 " " " 3852 30a !70 !70
33P1 " " " 3925 168a !66 !29
33P2 " " " 3972 80a !55 !48

31D2 " " " 3799 " " " " " " " " "
 00 33D1 3771$ 2 3785 23$ 3bb !40 !40

33D2 " " " 3800 " " " " " " " " "
33D3 " " " 3806 " " " " " " " " "

aBGS [9].
bPDG [2].

BRIEF REPORTS PHYSICAL REVIEW D 76, 077502 (2007)
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Charm-light spectrum from lattice QCD
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Figure 7. The D meson spectrum up to around 3.8 GeV labelled by JP . The green boxes are
our calculated masses on these ensembles with M⇡ ⇠ 400 MeV, while the black boxes correspond
to experimental masses of neutral D mesons from the PDG summary tables [1]. We present the
calculated (experimental) masses with half the calculated (experimental) ⌘c mass subtracted to
reduce the uncertainty from tuning the bare charm-quark mass. The vertical size of each box
indicates the one sigma statistical uncertainty on either side of the mean. The dashed lines show the
lowest non-interacting D⇡ and DsK̄ thresholds using our measured masses (coarse green dashing)
and experimental masses (fine black dashing).

Figure 8. As Fig. 7 but for the Ds meson sector. The dashed lines indicate the lowest non-
interacting DK threshold using our measured masses (coarse green dashing) and using experimental
masses (fine black dashing).

– 15 –

from Moir et al (for the Hadron Spectrum Collaboration), JHEP 1305 (2013) 021. 
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Dπ scattering from the lattice
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Dπ scattering on the lattice
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Scattering in a finite volume

infinite volume scattering 
t-matrix known finite-volume 

functions

diagonal in channels, 
mixes partial wavesdiagonal in partial waves, 

mixes channels

phase space

det
⇥
t�1(E) + i⇢(E) +M(E,L)

⇤
= 0

S = 1+ 2i⇢ · t

K-matrices prove very useful

t�1 = K�1 � i⇢

where K is real for real energies
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Elastic Dπ phases
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Coupled-channel scattering
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Dπ scattering on the lattice
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Dπ scattering on the lattice
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Amplitude poles
tij ⇠

cicj
s� s

pole

Near-threshold bound state, coupled strongly to Dπ
At mπ = 391 MeV, we find a pole at (2274±1) MeV

Experiment finds a very broad S-wave resonance with m = (2318±29) - (267±40)i/2
Further studies with mπ = 236 MeV are planned
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Back to the a0(980)

Dynamical generation of scalar mesons

M. Boglione and M. R. Pennington
Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, United Kingdom

!Received 18 March 2002; published 12 June 2002"

Starting with just one bare seed for each member of a scalar nonet, we investigate when it is possible to
generate more than one hadronic state for each set of quantum numbers. In the framework of a simple model,
we find that in the I!1 sector it is possible to generate two physical states with the right features to be
identified with the a0(980) and the a0(1450). In the I!1/2 sector, we can generate a number of physical states
with masses higher than 1 GeV, including one with the right features to be associated with the K0*(1430).
However, a light # scalar meson cannot be generated as a conventional resonance but only as a bound state.
The I!0 sector is the most complicated and elusive: since all outcomes are very strongly model dependent, we
cannot draw any robust conclusion. Nevertheless, we find that in that case too, depending on the coupling
scheme adopted, the occurrence of numerous states can be achieved. This shows that dynamical generation of
physical states is a possible solution to the problem of accounting for more scalar mesons than can fit in a
single nonet, as experiments clearly deliver.

DOI: 10.1103/PhysRevD.65.114010 PACS number!s": 12.40.Yx, 13.75.Lb, 14.40.Cs, 14.40.Ev

I. INTRODUCTION

In the naive quark model picture with three flavors,
quarks and antiquarks are assumed to be bound into states,
the quantum numbers of which are determined by the spin S
and the relative orbital angular momentum L of the
qq̄system. This leads to the multiplet structures that can be
elegantly described by the SU(3) group of flavor symmetry.
The masses of hadrons are then related to the constituent
masses of the quarks and simple relations among them are
found. For instance, the non-strange $ and % vector mesons,
both made out of up and down quarks, have roughly the
same mass, whereas the & , being a pure ss̄ state has a mass
approximately 300 MeV heavier. Furthermore, the mass of a
meson such as the $ , made up of two constituent quarks, is
about 2/3 of the mass of a proton or a neutron, made of three
such quarks. However, the simple and successful picture that
the quark model delivers does not apply to the scalar meson
sector: apparently scalars are different. First of all there are
far more scalar mesons than can be accommodated in one
conventional nonet; moreover, their masses turn out to be
hundreds of MeV lighter than one would simply deduce from
the constituent structure of the mesons.
In Ref. '1(, Tornqvist presented a model in which the

central focus is to consider the loop contributions given by
the hadronic intermediate states that each meson can access:
it is via these hadronic loops that the bare states become
‘‘dressed’’ and, in the case of scalar mesons, hadronic loop
contributions totally dominate the dynamics of the process.
He shows that the mass shift, which is a direct consequence
of the presence of strongly coupled hadronic intermediate
states, is so dramatic that it completely spoils the one-to-one
correspondence between the resonances we observe and the
underlying constituent structure. Though we follow Torn-
qvist’s modelling quite closely, very similar models have
been considered by van Beveren et al. '2(, Geiger and Isgur
'3( and by Oller et al. '4( among others.
In this paper, following and extending the method of

Tornqvist and Roos '5(, we will investigate the possibility of
generating, in the scalar sector, more than one state with the
same quantum numbers, by initially inserting only one
‘‘bare seed.’’ We will show that the outcome depends on the
kinematics of the intermediate channels: crucially, on the
number and position of each threshold opening and on the
strength of their individual couplings. Therefore, every case
has to be considered separately and it is not possible to reach
one common conclusion for all the members of the scalar
meson family.
This modelling and investigation of s-channel propagators

is distinct from models of scattering amplitudes, which in-
clude not only s-channel contributions, but cross-channel ex-
changes too, like that of the Jülich group '6( !as we comment
on later".

II. THE MODEL OF HADRONIC DRESSING

We start by considering a simple model in which all bare
meson states belong to ideally mixed quark multiplets. We
call nn̄ the nonstrange light state and suppose that substitut-
ing a strange quark for a light one increases the mass of the
state by )ms!150 MeV.
The bare propagator for each of these bound states will be

of the form

P!
1

M0
2"s

, !1"

with a pole on the real axis, corresponding to a non-decaying
state; for example, for the vector I!0 state

"&*0!"ss̄* .

If we now assume that the experimentally observed hadrons
are obtained from the bare states (nn̄ , sn̄ , ss̄ , . . . ) by dress-
ing them with hadronic interactions, the propagator becomes

PHYSICAL REVIEW D, VOLUME 65, 114010

0556-2821/2002/65!11"/114010!8"/$20.00 ©2002 The American Physical Society65 114010-1
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PHYSICAL REVIEW D VOLUME 48, NUMBER 3 1 AUGUST 1993

New data on the XI(. threshold region and the nature of the fo(S')
D. Morgan

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 OQX, United Kingdom

M. R. Pennington
Centre for Particle Theory, University ofDurham, Durham, DH1 3LE, United Kingdom

(Received 8 January 1993)

We combine new data on fo(S ) production in J/g and D, decays with earlier information on central
production and elastic mm, KK processes to make a fresh examination of the fo(S*) resonance. The key
feature of our amplitude analysis is its strict enforcement of unitarity. This allows the good energy reso-
lution of the new J/g +fern—(KK) data to play its full role in delineating the fo(S ) resonance structure
that experiment demands. This enables us to distinguish alternative resonance mechanisms that have
been proposed: we conclude that fo{S ) is most probably not a KK molecule, nor an amalgam of two
resonances, but a conventional Breit-Wigner-like structure. In this preferred description, the fo(S ) has
rather a narrow width (I 0-52 MeV) and comparable couplings to m~ and KX. Possible spectroscopic
interpretations are considered.

PACS number(s): 14.40.Cs, 13.20.Fc, 13.20.Gd, 13.25.+m

I. INTRODUCTION

Low mass meson interactions play a fundamental role
in the study of hadron physics at the Fermi scale. Not
only are mesonic channels, m.m, EEC, etc., the most abun-
dant outcome of production processes and decays, but it
is their exchanges that control the bulk of nuclear bind-
ing. While one-pion exchange is, of course, responsible
for the longest range force, the next in strength is two-
pion exchange with I=J=0. Despite its importance, the
nature of the isoscalar scalar interaction is still unclear.
The states that occur in this channel have been variously
ascribed [1] as conventional qq mesons [2], multiquark
states [3],KI7 molecules [4], glueballs [5], and/or hybrids
[6]. The aim of this paper is to extend previous analyses
by incorporating the latest experimental information and
to focus on these issues of the nature of possible resonant
states by concentrating on the crucial EE threshold re-
gion.
Below 1100MeV it has long been known that essential-

ly the only contributions with I=J=0 quantum numbers
come from ~m and EE final states and that other chan-
nels with more pions add less than a few percent to the
integrated cross sections [7], and so can be safely neglect-
ed, as we do weak and electromagnetic contributions.
The most extensive analysis to date of all high statistics
data with mv and EE final states is by the Au-Morgan-
Pennington (AMP) collaboration [8]. An unexpected
outcome of this analysis was the conclusion that the
fo(S ) most likely comprised two resonances —a fairly
narrow object coupling to mm and KE and a very narrow
EE bound state coupling weakly to the mw channel; all
this on a background furnished by a very broad
fo(E(1000)). The interpretation of these results in terms
of quark model states is quite nontrivial in a channel with
the quantum numbers of the vacuum; consequently,

which are members of the expected I =S=1 qq 0++
multiplet is far from unambiguously established [9].
Crucial new information, particularly on J/p decays,

has become available and that is our principal reason for
returning to this problem. A parallel development has
been the emergence of a new orthodoxy for spectroscopic
assignments of the scalars [10]. A key ingredient of this
scheme is a KK molecular composition for the fo(S* )
[and a 0(5)] [4]. In suitable circumstances, this hy-
pothesis can be tested [11,12], as we describe.
The method adopted is to focus on the resonance pole

topology that the data require for the fo(S ). It is in
terms of this that we distinguish alternative compositions
for this state. The issue is exemplified by the question of
whether the deuteron is an elementary state of baryon
number two or more legitimately thought of as a bound
state of two nucleons [13]. Within a fully fledged dynam-
ical discussion, e.g., via dispersion relations, this question
is equivalent to asking whether or not the deuteron is a
Castillejo-Dalitz-Dyson (CDD) pole [14]. In other
words, is the deuteron characterized wholly as a scatter-
ing state of two nucleons or does its Fock space include a
significant elementary component of six quarks? This
Weinberg has answered [13]. Analogously, the picture of
the S* and 6 as EE molecules presupposes that these res-
onances are characterized wholly as bound states of a
kaon and antikaon and that there is no sizable admixture
of qq or qqqq or glue in their wave functions. This is the
question we address.
To achieve this, one needs to study the energy depen-

dence of scattering amplitudes as determined by experi-
ment. Such amplitudes are "analytic" and one can con-
tinue them to complex values of the energy E. As is well
known, unstable particles correspond to poles in the corn-
plex E plane below the real axis [15]. The existence of
thresholds in scattering processes imposes a sheet struc-

0556-2821/93/48(3)/1185(20)/$06. 00 1185 1993 The American Physical Society
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Figure 2: Data on ⇡⇡ ! ⇡⇡ scattering phase shifts: Protopopescu et al. from [31], Grayer et al. from [33] (Solution
B also from [32]), Estabrooks and Martin from [35], Kaminski et al. from[36]. Left panel: The scalar-isoscalar phase
shift �(0)

0 . Note the huge di↵erences due to systematic uncertainties, which exist even within data sets from the same
experimental collaboration [33] (Something similar happens with [31], but we only show the most commonly used and
consistent data set). Please note that there is no Breit-Wigner-like sharp increase of 180o on the phase between threshold
and 800 MeV. Such sharp phase increase is seen around 980 MeV, corresponding to the f0(980) meson, although starting
over a background phase of about 100o degrees. Right panel: For comparison we also show the vector-isovector �1 phase
shift, where the ⇢(770) resonance can be seen to follow the familiar Breit-Wigner shape [38] to a very good degree of
approximation.

Sometimes, as in [33], statistical uncertainties were provided for each set of solutions. However,
since these data sets are incompatible among themselves within statistical uncertainties, the dif-
ferences between sets should be interpreted as an indication of the systematic uncertainty. As an
example, the left panel of Fig.2 displays the data on ⇡⇡! ⇡⇡ scattering phase shifts of the scalar
isoscalar wave. Note the large di↵erences even within data sets coming from the same exper-
iment [33] (Solution B was published first in [32]) due to systematic uncertainties. Something
similar happens with [31], but we only show the most commonly used data set, since it will be
seen later that the others are even more inconsistent with fundamental dispersive constraints.

Another relevant indication of the interest on ⇡⇡ scattering in the early seventies was the
appearance of Ke4 experiments [39, 40]. These correspond to the K ! ⇡⇡e⌫ decay and provide
an indirect measurement of the �00 � �1 phase combination well below 500 MeV, a region that
could not be reached with ⇡N ! ⇡⇡N experiments. At that time these low energy data were not
very determinant in the � discussion, but we will see that recent Ke4 experiments have actually
been decisive to enter the precision era for light scalars.

At this point, and in view of Fig.2 it is important to emphasize that the � is so wide that
right from the very beginning it was clear that the familiar Breit-Wigner description [38], valid
for narrow isolated resonances, is not appropriate to describe the S-wave data. Actually, note in
Fig.2 that there is no isolated Breit-Wigner shape around 500-600 MeV, corresponding to a � or
f0(500) resonance. This means that the � resonance does not appear as a peak in the ⇡⇡ ! ⇡⇡
cross section nor in many other amplitudes which contain in the final state two pions with the
quantum numbers of the f0(500). Of course, a Breit-Wigner-like shape over a background phase
of about 100 degrees is seen around 980 MeV in Fig.2, corresponding to the f0(980), but even

8
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making appropriate allowance for final-state interactions.
He did this by modifying (BW) propagators in a model
dependent but not unreasonable way. Nowadays, there
are simply too many scalars for such a picture to be the
whole story but some variant may still have a role in in-
terpreting the observed spectrum.
We now turn to the second topic of this subsection:

understanding via illustrative examples how measure-
ments of the phase, 5, and inelasticity, g, allow
different pole topologies to be discriminated. We there-
fore compare an amplitude with one pole in the k2 plane
(and no other structure) with a family of amplitudes con-
taining two poles. For the latter we use the (BW) form
equation Eq. (2.21) referred to above. The ratio (g, /gz)
of the squares of the couplings to channels 1 and 2 is the
variable we call C. To make these models close to the
real case we consider in Sec. III, the one-pole and two-
pole amplitudes are constructed to have the same sheet II
pole at E' =0.988—0.024i GeV and the phase 5 =176
at KK threshold. While both amplitudes have this sheet
II pole, only that given by the Breit-Wigner formula has

a sheet III pole. When C is large, this pole is mirror sym-
metric in the kz plane with the sheet II pole, i.e.,
k2" =—kz'. However, as C decreases the sheet III pole
moves further away from the origin at KE threshold,
coming within the ambit of the rule stated in Sec. I. Fur-
thermore, in the limit C—+0, this pole has moved off to
infinity and the amplitude becomes the one-pole form.
Thus, by considering a family of two-pole amplitudes
with variable ratio C we can see the effect of the second
pole.
Our model amplitudes for various ratios of couplings,

C, give the phase shift 5 and inelasticity g shown in
Fig. 3. These plots highlight how the behavior of these
observables is quite different, if C is small or large.
Indeed, the variation is sufficiently marked that it is not
unrealistic to believe that experimental data can distin-
guish these possibilities. In Sec. III we detail the data we
use for this purpose.

III. DATA SEI.ECTION
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FIG. 3. Different ways a resonance can couple just below an
inelastic threshold illustrated by simple models. The curves
showing 5 and g vs M( =&s ) correspond to alternative one-
and two-pole forms possessing a sheet II pole at 988—24i MeV
and yielding a phase shift 6 =176' at threshold. These re-
quirements fix the chosen one-pole form, which is based on a
constant K matrix, and reduces the variability of the two-pole
form adopted (Breit-Wigner with a channel 1 background
phase) to a single parameter, C=g& /g& by which the two pole
curves are labeled. C =0 recovers the one-pole form.

The deep and narrow minimum in the I=J=O m~
elastic cross section (Fig. 1) coupled with the sharp onset
of inelasticity at KI7 threshold [7] inescapably signals a
narrow dynamical structure strongly coupling to the KX
channel. This is the f0(S*),the nature and parameters of
which we aim to determine in this analysis. In principle,
highly precise data on the three reactions: msgr~~~,
mm~KK, and KK~KK would suKce for this task. The
information on such processes is extracted from experi-
mental results on high energy dimeson production at
small momentum transfers, where these reactions are
controlled by one-pion exchange or one-kaon exchange.
Although high statistics experiments, notably by the
CERN-Munich Collaboration [43] and by LASS [44],
have been performed, the information on I=J=O chan-
nels is the least well determined in any partial wave
analysis. Scrutiny of narrow effects requires good energy
resolution. However, such dimeson production experi-
ments do not provide this, 20-MeV bins being typical.
What is more, a glance at the compilation of ~+~K%

cross sections (with fo quantum numbers) in Fig. 4 illus-
trates how poorly these are known. Moreover, even an
experiment with enormous statistics, such as LASS [44],
yields merely a handful of events on %+K ~K,K, near
threshold. Thus, the V'-matrix elements are undercon-
strained by these classic meson-meson scattering data.
Consequently, one casts the net wider to encompass pro-
duction processes and decays. It is at this point that the
extended unitarity of Sec. II, Eq. (2.7), is involved, since
this relates all channels with ~m and KE final states.
Many such production processes and decays not only
favor the quantum numbers of interest, but also allow
fine-energy resolution so essential for delineating narrow
effects. Notable among these reactions is central dimeson
production in pp~pp(M, M2). At very small momen-
turn transfers and at high energies, this process is dom-
inated by double Pomeron exchange ensuring the
dimeson final state has I=0. Data on this process in this
ultralow

~
t

~
domain are provided only by the AFS Colla-

Weinberg, Morgan & Pennington

Resonance decaying in S-wave 
close to threshold

one-pole: extended object ~ meson-meson
two-poles: compact object ~ qq̄, ...
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Jost functions

S11 =
J(�k1, k2)

J(k1, k2)

S22 =
J(k1,�k2)
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In general:

Morgan & Pennington,
far above lowest threshold:

�(kKK̄) =
Y

i

✓
1� kKK̄

kpi

◆X

j

⇣
cjk

j
KK̄

⌘

S11 =
�?

�
�k?

KK̄

�

� (kKK̄)



David Wilson 24Resonances from lattice QCD

0.10 0.15 0.20 0.25 0.30 0.35 0.40

200

300

400

500

600

!k2! "GeV#

Χ2

|kKK̄ | /GeV

kKK̄

�2



David Wilson 25Resonances from lattice QCD

physical
scattering

from Dudek et al (for the Hadron Spectrum Collaboration), PRD93 (2016) no.9, 094506.
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Pole counting

Scan over sheet III pole position
  -- No conclusive second pole found

Only one pole required 
  -- large molecular contribution
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Summary

Resonance information is now being extracted in 
systematically improvable, first principles 
methods using lattice QCD.

Coupled-channel physics is present almost 
everywhere in the spectrum and recent progress 
has made extraction of  the poles and couplings 
possible. 

Thresholds play an important role, particularly in 
S-wave where they can introduce sharp effects 
into the amplitudes.

Careful analyses are needed to extract the pole 
content.

The methods are widely applicable: 
f0(980), X(3872), hybrids, 
πγ ➞ ππ, πN ➞ πN, γN➞ πN. 
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