Resonance poles and threshold effects from lattice QCD

David Wilson

A New Era for Hadro-Particle Physics
Thomas Jefferson National Accelerator Facility
23-24 June 2016

$\mathbf{c \overline { c }}$ spectrum from lattice QCD

from Liu et al (for the Hadron Spectrum Collaboration), JHEP 1207 (2012) 126.

c̄ spectrum from lattice QCD

from Liu et al (for the Hadron Spectrum Collaboration), JHEP 1207 (2012) 126.

cē spectrum from ancient history

from Godfrey and Isgur PRD32 (1985) 189-231

Meson loops

$$
\mathcal{P}^{-1}(s)=m_{0}^{2}-s+\sum_{i} \Pi_{i}(s)
$$

State	Our mass (MeV)	Our Δm (MeV)
$2^{1} S_{0}$	3617.0	-6.9
$2^{3} S_{1}$	3676.5	-14.2
$3^{1} S_{0}$	3924.5	-24.5
$3^{3} S_{1}$	4020.0	-17.0
$3^{1} P_{1}$	3892.0	-30.0
$3^{3} P_{0}$	3818.8	-13.2
$3^{3} P_{1}$	3868.9	-45.1
$3^{3} P_{2}$	3939.4	-7.6
$3^{1} D_{2}$	3813.3	-1.7
$3^{3} D_{1}$	3728.1	-46.9
$3^{3} D_{2}$	3815.0	0.0
$3^{3} D_{3}$	3833.1	-1.9

Charm-light spectrum from lattice QCD

from Moir et al (for the Hadron Spectrum Collaboration), JHEP 1305 (2013) 021.

D π scattering from the lattice

All D π work preliminary, G. Moir, DJW and others for the hadron spectrum collaboration, in prep

$D \pi$ scattering on the lattice

All D π work preliminary, G. Moir, DJW and others for the hadron spectrum collaboration, in prep

Scattering in a finite volume

K-matrices prove very useful

$$
\boldsymbol{t}^{-1}=\boldsymbol{K}^{-1}-i \boldsymbol{\rho}
$$

where \boldsymbol{K} is real for real energies

Elastic D π phases

Coupled-channel scattering

D π scattering on the lattice

$D \pi$ scattering on the lattice

Amplitude poles

K-matrices with Chew-Mandelstam $I(s)^{\chi^{2} / N_{\text {dof }}}$

$$
\begin{array}{ll}
K=\frac{g^{2}}{m^{2}-s} & 3.60 \\
K=\frac{g^{2}}{m^{2}-s}+\gamma^{(0)} & \mathbf{1 . 5 1} \\
K=\frac{g^{2}}{m^{2}-s}+\gamma^{(1)} s & 1.50 \\
K=\frac{g^{2}}{m^{2}-s}+\gamma^{(0)}+\gamma^{(1)} s & 1.57 \\
K=\frac{g^{(1)} s}{m^{2}-s}+\gamma^{(0)} & 1.51 \\
K=\frac{g^{2}+g^{(1)} s}{m^{2}-s}+\gamma^{(0)} & 1.59
\end{array}
$$

K-matrices with $I(s)=-i \rho(s)$

$$
K=\frac{g^{2}}{m^{2}-s}
$$

$$
4.02
$$

$$
K=\frac{g^{2}}{m^{2}-s}+\gamma^{(0)}
$$

$$
1.49
$$

$K=\frac{g^{2}}{m^{2}-s}+\gamma^{(1)} s$
$K=\frac{g^{2}}{m^{2}-s}+\gamma^{(0)}+\gamma^{(1)} s$
$K=\frac{g^{(1)} s}{m^{2}-s}+\gamma^{(0)}$
1.49
$K=\frac{g^{2}+g^{(1)} s}{m^{2}-s}+\gamma^{(0)}$
1.57

Effective range expansion

$$
\begin{aligned}
& k_{\pi D} \cot \delta_{\pi D}=\frac{1}{a}+\frac{1}{2} r^{2} k_{\pi D}^{2} \\
& k_{\pi D} \cot \delta_{\pi D}=\frac{1}{a}+\frac{1}{2} r^{2} k_{\pi D}^{2}+P_{2} k_{\pi D}^{4}
\end{aligned}
$$

Breit-Wigner

$$
t=\frac{1}{\rho} \frac{\sqrt{s} \Gamma}{m_{R}^{2}-s-i \sqrt{s} \Gamma}
$$

$$
t_{i j} \sim \frac{c_{i} c_{j}}{s-s_{\text {pole }}}
$$

$\mathrm{H}-\mathrm{O}-\mathrm{H}$

Near-threshold bound state, coupled strongly to $\mathrm{D} \pi$ At $m_{\pi}=391 \mathrm{MeV}$, we find a pole at $(2274 \pm 1) \mathrm{MeV}$

Experiment finds a very broad S-wave resonance with $m=(2318 \pm 29)-(267 \pm 40) i / 2$ Further studies with $m_{\pi}=236 \mathrm{MeV}$ are planned

Back to the $\mathrm{a}_{0}(980)$

PHYSICAL REVIEW D, VOLUME 65, 114010

Dynamical generation of scalar mesons

M. Boglione and M. R. Pennington
Institute for Particle Physics Phenomenology, University of Durham, Durham DH1 3LE, United Kingdom (Received 18 March 2002; published 12 June 2002)

Starting with just one bare seed for each member of a scalar nonet, we investigate when it is possible to generate more than one hadronic state for each set of quantum numbers. In the framework of a simple model, we find that in the $I=1$ sector it is possible to generate two physical states with the right features to be identified with the $a_{0}(980)$ and the $a_{0}(1450)$. In the $I=1 / 2$ sector, we can generate a number of physical states with masses higher than 1 GeV , including one with the right features to be associated with the $K_{0}^{*}(1430)$. However, a light κ scalar meson cannot be generated as a conventional resonance but only as a bound state. The $I=0$ sector is the most complicated and elusive: since all outcomes are very strongly model dependent, we cannot draw any robust conclusion. Nevertheless, we find that in that case too, depending on the coupling scheme adopted, the occurrence of numerous states can be achieved. This shows that dynamical generation of physical states is a possible solution to the problem of accounting for more scalar mesons than can fit in a single nonet, as experiments clearly deliver.

Pole counting

Weinberg, Morgan \& Pennington
Resonance decaying in S-wave close to threshold
one-pole: extended object ~ meson-meson two-poles: compact object $\sim q \bar{q}, \ldots$

Jost functions

In general:

$$
\begin{aligned}
S_{11} & =\frac{\mathfrak{J}\left(-k_{1}, k_{2}\right)}{\mathfrak{J}\left(k_{1}, k_{2}\right)} \\
S_{22} & =\frac{\mathfrak{J}\left(k_{1},-k_{2}\right)}{\mathfrak{J}\left(k_{1}, k_{2}\right)} \\
\operatorname{det} \mathbf{S} & =\frac{\mathfrak{J}\left(-k_{1},-k_{2}\right)}{\mathfrak{J}\left(k_{1}, k_{2}\right)}
\end{aligned}
$$

Morgan \& Pennington, far above lowest threshold:

$$
\begin{gathered}
S_{11}=\frac{\phi^{\star}\left(-k_{K \bar{K}}^{\star}\right)}{\phi\left(k_{K \bar{K}}\right)} \\
\phi\left(k_{K \bar{K}}\right)=\prod_{i}\left(1-\frac{k_{K \bar{K}}}{k_{p_{i}}}\right) \sum_{j}\left(c_{j} k_{K \bar{K}}^{j}\right)
\end{gathered}
$$

from Dudek et al (for the Hadron Spectrum Collaboration), PRD93 (2016) no.9, 094506.

Pole counting

Pole counting

Pole counting

Pole counting

Summary

Resonance information is now being extracted in systematically improvable, first principles methods using lattice QCD.

Coupled-channel physics is present almost everywhere in the spectrum and recent progress has made extraction of the poles and couplings possible.

Thresholds play an important role, particularly in S-wave where they can introduce sharp effects into the amplitudes.

Careful analyses are needed to extract the pole content.

The methods are widely applicable:

$\mathrm{f}_{0}(980), \mathrm{X}(3872)$, hybrids, $\pi \gamma \rightarrow \pi \pi, \pi \mathrm{N} \rightarrow \pi \mathrm{N}, \gamma \mathrm{N} \rightarrow \pi \mathrm{N}$.

