Chiral quark model for meson production in the resonance region

Qiang Zhao

Institute of High Energy Physics, CAS
and Theoretical Physics Center for Science Facilities (TPCSF), CAS

July 30, 2010, Beijing
Outline

◆ The “missing baryon resonances” problem
◆ Effective chiral Lagrangian for quark-pseudoscalar-meson interaction
◆ Baryon resonances in pseudoscalar meson photoproduction and meson-nucleon scatterings
◆ Prospects
1. “Missing baryon resonances in πN scattering

- The non-relativistic constituent quark model (NRCQM) makes great success in the description of hadron spectroscopy: meson ($q\bar{q}$), baryon (qqq).

- However, it also predicted a much richer baryon spectrum, where some of those have not been seen in πN scatterings.
 - “Missing Resonances”.

\[\begin{align*}
\pi, \ 0^- & \quad N^*, \ L_{2I,2J} \\
N, \ 1/2^+ & \quad \left\{ \begin{array}{l}
P_{33}(1232) \ \Delta \\
P_{11}(1440) \\
S_{11}(1535) \\
D_{13}(1520) \\
\ldots
\end{array} \right.
\end{align*} \]
PDG2008: 22 nucleon resonances (uud, udd)

<table>
<thead>
<tr>
<th>Particle</th>
<th>$L_{2I,2J}$</th>
<th>Overall status</th>
<th>Status as seen in —</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(939)$</td>
<td>P_{11}</td>
<td>*****</td>
<td>$N\pi$ $N\eta$ ΛK ΣK $\Delta\pi$ $N\rho$ $N\gamma$</td>
</tr>
<tr>
<td>$N(1440)$</td>
<td>P_{11}</td>
<td>*****</td>
<td>**** * *** * *** * ***</td>
</tr>
<tr>
<td>$N(1520)$</td>
<td>D_{13}</td>
<td>*****</td>
<td>**** * **** * *** * ***</td>
</tr>
<tr>
<td>$N(1535)$</td>
<td>S_{11}</td>
<td>*****</td>
<td>**** **** * ** *** ** ***</td>
</tr>
<tr>
<td>$N(1650)$</td>
<td>S_{11}</td>
<td>*****</td>
<td>**** * *** ** *** ** ***</td>
</tr>
<tr>
<td>$N(1675)$</td>
<td>D_{15}</td>
<td>*****</td>
<td>**** * * **** * ****</td>
</tr>
<tr>
<td>$N(1680)$</td>
<td>F_{15}</td>
<td>*****</td>
<td>**** **** **** ****</td>
</tr>
<tr>
<td>$N(1700)$</td>
<td>D_{13}</td>
<td>***</td>
<td>*** * ** * ** * * **</td>
</tr>
<tr>
<td>$N(1710)$</td>
<td>P_{11}</td>
<td>***</td>
<td>*** ** ** * ** * ***</td>
</tr>
<tr>
<td>$N(1720)$</td>
<td>P_{13}</td>
<td>****</td>
<td>**** * ** * * ** **</td>
</tr>
<tr>
<td>$N(1900)$</td>
<td>P_{13}</td>
<td>**</td>
<td>** * *</td>
</tr>
<tr>
<td>$N(1990)$</td>
<td>F_{17}</td>
<td>**</td>
<td>** * * * * * *</td>
</tr>
<tr>
<td>$N(2000)$</td>
<td>F_{15}</td>
<td>**</td>
<td>** * * * * * *</td>
</tr>
<tr>
<td>$N(2080)$</td>
<td>D_{13}</td>
<td>**</td>
<td>** * * *</td>
</tr>
<tr>
<td>$N(2090)$</td>
<td>S_{11}</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$N(2100)$</td>
<td>P_{11}</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>$N(2190)$</td>
<td>G_{17}</td>
<td>*****</td>
<td>**** * * * *</td>
</tr>
<tr>
<td>$N(2200)$</td>
<td>D_{15}</td>
<td>**</td>
<td>** *</td>
</tr>
<tr>
<td>$N(2220)$</td>
<td>H_{19}</td>
<td>*****</td>
<td>**** *</td>
</tr>
<tr>
<td>$N(2250)$</td>
<td>G_{19}</td>
<td>*****</td>
<td>**** *</td>
</tr>
<tr>
<td>$N(2600)$</td>
<td>I_{111}</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>$N(2700)$</td>
<td>K_{113}</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

(* *) not well-established
Dilemma:

a) The NRCQM is **WRONG**: quark-diquark configuration? …

b) The NRCQM is **CORRECT**, but those missing states have only weak couplings to πN, i.e. small $g_{\pi N^* N}$. (Isgur, 1980)

Looking for “missing resonances” in $N^* \rightarrow \eta N, K\Sigma, K\Lambda, \rho N, \omega N, \phi N, \gamma N$ …

(Exotics …)
Questions:

Should we take the naïve quark model seriously?

How far one can go with it?

What is the success and what is the failure?

… …
The first orbital excitation states in the NRCQM

In the nonstrange sector, NRCQM allows the groundstate $[56, ^28] (p$ and $n)$ to be excited to $[70, ^28]$ and $[70, ^48]$ octets, and $[70, ^210]$ decuplet via single photon absorption.

γ\n
EM

N

N^*,Delta^*

$|70, ^28, 1, 1, J\rangle \quad \bullet \quad S_{11}(1535) (***)$, $D_{13}(1520) (***)$

$|70, ^48, 1, 1, J\rangle \quad \bullet \quad S_{11}(1650) (***)$, $D_{13}(1700) (***)$, $D_{15}(1675) (***)$

$|70, ^210, 1, 1, J\rangle \quad \bullet \quad S_{31}(1620) (***)$, $D_{33}(1670) (***)$

$|70, ^21, 1, 1, J\rangle \quad \bullet \quad \Lambda(1405) S_{01} (***)$, $\Lambda(1520) D_{03} (***)$

Confirmed recently by JLab Lattice calculation.
(Talk by D. Richards in MENU2010)
The SU(6)\otimesO(3) symmetry must be broken due to spin-dependent forces. Thus, state mixings are inevitable.

Several NRCQM selection rules are violated:

- **Moorhouse selection rule** (Moorhouse, PRL16, 771 (1966))

\[
\gamma + p(|56,^28;0,0,1/2\rangle) \nleftrightarrow N^* (|70,^48\rangle) \\
\gamma + n(|56,^28;0,0,1/2\rangle) \leftrightarrow N^* (|70,^48\rangle)
\]

- **Λ selection rule** (Zhao & Close, PRD74, 094014(2006)) in strong decays

\[
N^* (|70,^48\rangle) \nleftrightarrow K(K^*) + \Lambda
\]

- **Faiman-Hendry selection rule** (Faiman & Hendry, PR173, 1720 (1968)).

\[
\Lambda^* (|70,^48\rangle) \nleftrightarrow N(|56,^28;0,0,1/2\rangle) + \bar{K}
\]
2. Effective chiral Lagrangian for quark-pseudoscalar-meson interactions

An effective chiral Lagrangian for quark-pseudoscalar-meson coupling to keep the meson-baryon interaction invariant under the chiral transformation:

\[
\mathcal{L} = \overline{\psi} \left[\gamma_\mu (i \partial^\mu + V^\mu + \gamma_5 A^\mu) - m \right] \psi + \cdots,
\]

where the vector and axial currents are

\[
V_\mu = \frac{1}{2} \left(\xi^\dagger \partial_\mu \xi + \xi \partial_\mu \xi^\dagger \right),
\]

\[
A_\mu = i \frac{1}{2} \left(\xi^\dagger \partial_\mu \xi - \xi \partial_\mu \xi^\dagger \right),
\]

and the chiral transformation is,

$$\xi = e^{i\phi_m/f_m}, \quad (77)$$

where f_m is the decay constant of the meson. The quark field ψ in the SU(3) symmetry is

$$\psi = \begin{pmatrix} \psi(u) \\ \psi(d) \\ \psi(s) \end{pmatrix}, \quad (78)$$

and the meson field ϕ_m is a $3 \otimes 3$ matrix:

$$\phi_m = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}, \quad (79)$$

where the pseudoscalar mesons π, η and K are treated as Goldstone bosons. Thus, the Lagrangian in Eq. (121) is invariant under the chiral transformation. Expanding the nonlinear field ξ in Eq. (77) in terms of the Goldstone boson field ϕ_m, i.e. $\xi = 1 + i\phi_m/f_m + \cdots$, we obtain the standard quark-meson pseudovector coupling at tree level:

$$H_m = \sum_j \frac{1}{f_m} \bar{\psi}_j \gamma_\mu \gamma_5 \psi_j \partial^\mu \phi_m, \quad (80)$$

where ψ_j ($\bar{\psi}_j$) represents the jth quark (anti-quark) field in the nucleon.
• Test of Goldberger-Treiman relation:

The axial vector coupling, \(g_A \), relates the hadronic operator \(\sigma \) to the quark operator \(\sigma_j \) for the \(j \)-th quark,

\[
\langle N_f | \sum_j \hat{I}_j \sigma_j | N_i \rangle \equiv g_A \langle N_f | \sigma | N_i \rangle.
\]

To equate the quark-level coupling to the hadronic level one for the \(\pi NN \) vertex, i.e. axial current conservation, one has

\[
g_{\pi NN} = \frac{g_AM_N}{f_\pi}
\]
Baryon excitations in $\pi^- p \rightarrow \eta n$

The process $\pi^- p \rightarrow \eta n$ can be expressed in terms of the Mandelstam variables:

$$\mathcal{M} = \mathcal{M}_s + \mathcal{M}_u + \mathcal{M}_t.$$

The s- and u-channel transitions are given by

$$\mathcal{M}_s = \sum_j \langle N_f | H_\eta | N_j \rangle \langle N_j | \frac{1}{E_i + \omega_\pi - E_j} H_\pi | N_i \rangle,$$

$$\mathcal{M}_u = \sum_j \langle N_f | H_\pi \frac{1}{E_i - \omega_\eta - E_j} | N_j \rangle \langle N_j | H_\eta | N_i \rangle.$$

\[\mathcal{M}_s = \sum_j \langle N_f | H_\eta | N_j \rangle \langle N_j | \sum_n \frac{1}{\omega_{\pi}^{n+1}} (\hat{H} - E_i)^n H_\pi | N_i \rangle \]

for any operator \(\mathcal{O} \), one has

\[(\hat{H} - E_i) \mathcal{O} | N_i \rangle = [\hat{H}, \mathcal{O}] | N_i \rangle \]

Refs.
Zhao, Li, & Bennhold, PLB436, 42(1998); PRC58, 2393(1998);
Zhao, Didelez, Guidal, & Saghai, NPA660, 323(1999);
Zhao, PRC63, 025203(2001);
Zhao, Saghai, Al-Khalili, PLB509, 231(2001);
Zhao, Al-Khalili, & Bennhold, PRC64, 052201(R)(2001); PRC65, 032201(R) (2002);
\[u\text{-channel} \]

\[\pi, k \rightarrow \eta, q \]

\[N, P_i \rightarrow N^{(*)} \Delta^{(*)} \rightarrow N', P_f \]

\[t\text{-channel} \]

\[\pi, k \rightarrow \eta, q \rightarrow a_0 \]

\[N, P_i \rightarrow a_0 \rightarrow N', P_f \]

\[\mathcal{L}_{a_0 \pi \eta} = g_{a_0 \pi \eta} m_\pi \eta \tilde{\pi} \tilde{a}_0 \]

\[H_{a_0} = \sum_j g_{a_0 q q} m_\pi \tilde{\psi}_j \psi_j \tilde{a}_0 \]

\[\mathcal{M}_t = g_{a_0 \pi \eta} m_\pi \langle N_f | H_{a_0} | N_i \rangle \frac{1}{t^2 - m_{a_0}^2} \]
S-channel transition amplitude with quark level operators

Non-relativistic expansion:

\[H_\pi = \sum_j \frac{I_j}{g_\pi^2} \sigma_j \cdot \left[A_\pi e^{i k \cdot r_j} + \frac{\omega_\pi}{2m_q} \{ p_j, e^{i k \cdot r_j} \} \right], \]

\[H_\eta = \sum_j \frac{I_j}{g_\eta^2} \sigma_j \cdot \left[A_\eta e^{-i q \cdot r_j} + \frac{\omega_\eta}{2m_q} \{ p_j, e^{-i q \cdot r_j} \} \right], \]

with

\[A_\pi = -\left(\frac{\omega_\pi}{E_i + M_i} + 1 \right) k, \]

\[A_\eta = -\left(\frac{\omega_\eta}{E_f + M_f} + 1 \right) q. \]
\[M^s = \sum_n (M^s_3 + M^s_2) e^{-(k^2+q^2)/6\alpha^2}. \]

with

\[M^s_3 = \langle N_f | \frac{3I_3}{g_A^2} \left\{ \sigma_3 \cdot A_\eta \sigma_3 \cdot A_\pi \sum_{n=0}^\infty \frac{F_s(n)}{n!} \chi^n \right. \]

\[+ \left[-\sigma_3 \cdot A_\eta \frac{\omega_\pi}{3m_q} \sigma_3 \cdot q - \frac{\omega_\eta}{3m_q} \sigma_3 \cdot k \sigma_3 \cdot A_\pi \right. \]

\[+ \left. \frac{\omega_\eta \omega_\pi \alpha^2}{m_q m_q} \right] \sum_{n=1}^\infty \frac{F_s(n)}{(n-1)!} \chi^{n-1} \]

\[+ \left. \frac{\omega_\eta \omega_\pi}{3m_q 3m_q} \sigma_3 \cdot q \sigma_3 \cdot k \sum_{n=2}^\infty \frac{F_s(n)}{(n-2)!} \chi^{n-2} \right\} |N_i\rangle \]

where \(\chi \equiv k \cdot q/3\alpha^2. \)
\[M^s = \sum_n \left(M^s_3 + M^s_2 \right) e^{-\left(k^2 + q^2\right)/6\alpha^2} \]

with

\[M^s_3 = \langle N_f | \frac{3I_3}{g_A^2} \left\{ \sigma_3 \cdot A_\eta \sigma_3 \cdot A_\pi \sum_{n=0}^{\infty} \frac{F_s(n)}{n!} \chi^n \right\} \left| N_i \right\rangle \]

\[M^s_2 = \langle N_f | \frac{6I_1}{g_A^2} \left\{ \sigma_1 \cdot A_\eta \sigma_3 \cdot A_\pi \sum_{n=0}^{\infty} \frac{F_s(n)}{n!} \frac{\chi^n}{(-2)^n} \right\} \left| N_i \right\rangle \]

where

\[\omega_\pi = \frac{\omega_\pi}{3m_q}, \quad \omega_\eta = \frac{\omega_\eta}{3m_q}, \quad \alpha^2 = \frac{\alpha^2}{m_q m_q}, \quad \sigma_1 \cdot \sigma_3 = \sum_{n=1}^{\infty} \frac{F_s(n)}{(n-1)!} \frac{\chi^{n-1}}{(-2)^n} \]

\[\sigma_1 \cdot q \sigma_3 \cdot k \sum_{n=2}^{\infty} \frac{F_s(n)}{(n-2)!} \frac{\chi^{n-2}}{(-2)^n} \]
Define g-factors:

\[
\mathcal{M}^s = \frac{1}{g_A^\pi} \left\{ A_\eta \cdot A_\pi \sum_{n=0} \left[g_{s1} + (-2)^{-n} g_{s2} \right] \frac{F_s(n)}{n!} \chi^n \right\}
\]

\[
+ \left(-\frac{\omega_\pi}{3m_q} A_\eta \cdot q - \frac{\omega_\eta}{3m_q} A_\pi \cdot k + \frac{\omega_\eta \omega_\pi \alpha^2}{m_q m_q 3} \right) \sum_{n=1} \left[g_{s1} + (-2)^{-n} g_{s2} \right] \frac{F_s(n)}{(n-1)!} \chi^{n-1}
\]

\[
+ \frac{\omega_\eta \omega_\pi}{(3m_q)^2} k \cdot q \sum_{n=2} \frac{F_s(n)}{(n-2)!} \left[g_{s1} + (-2)^{-n} g_{s2} \right] \frac{r_s(n)}{\chi^n}
\]

\[
+ i \sigma \cdot (A_\eta \times A_\pi) \sum_{n=0} \left[g_{v1} + (-2)^{-n} g_{v2} \right] \frac{r_s(n)}{\chi^n}
\]

\[
+ \frac{\omega_\eta \omega_\pi}{(3m_q)^2} i \sigma \cdot (q \times k)
\]

\[
\times \sum_{n=2} \left[g_{v1} + (-2)^{-n} g_{v2} \right] \frac{F_s(n)}{(n-2)!} \chi^{n-2} \right\} e^{-\frac{(k^2+q^2)}{6\alpha^2}} \]
Compared with M^s_3, amplitude M^s_2 is relatively suppressed by a factor of $(-1/2)^n$ for each n.

Higher excited states are relatively suppressed by $(k \cdot q/3\alpha^2)^n/n!$

One can identify the quark motion correlations between the initial and final state baryon

Similar treatment can be done for the u channel
Separate out individual resonances

A. $n = 0$ shell resonances

For $n = 0$, only the nucleon pole term contributes to the transition amplitude. Its s-channel amplitude is

$$\mathcal{M}^s_N = \mathcal{O}_N \frac{2M_0}{s - M_0^2} e^{-(k^2 + q^2)/6\alpha^2},$$

with

$$\mathcal{O}_N = [g_{s1} + g_{s2}] A_\eta \cdot A_\pi + [g_{v1} + g_{v2}] i\sigma \cdot (A_\eta \times A_\pi),$$

where M_0 is the nucleon mass.
B. $n = 1$ shell resonances

For $n = 1$, only S and D waves contribute in the s channel. Note that the spin-independent amplitude for D waves is proportional to the Legendre function $P_2^0(\cos \theta)$ and the spin-dependent amplitude for D waves is in proportion to $\frac{\partial}{\partial \theta} P_2^0(\cos \theta)$. Moreover, the S-wave amplitude is independent of the scattering angle.

$$\mathcal{M}^s(S) = \mathcal{O}_S F_s(R) e^{-(k^2+q^2)/6\alpha^2},$$
$$\mathcal{M}^s(D) = \mathcal{O}_D F_s(R) e^{-(k^2+q^2)/6\alpha^2},$$

with

$$\mathcal{O}_S = \left(g_{s1} - \frac{1}{2} g_{s2} \right) \left(|A_\eta||A_\pi| \frac{|k||q|}{9\alpha^2} - \frac{\omega_\eta}{3m_q} A'_\eta \cdot q - \frac{\omega_\eta}{3m_q} A_\pi \cdot k + \frac{\omega_\eta \omega_\pi}{m_q m_q} \frac{\alpha^2}{3} \right),$$

$$\mathcal{O}_D = \left(g_{s1} - \frac{1}{2} g_{s2} \right) |A_\eta||A_\pi|(3 \cos^2 \theta - 1) \frac{|k||q|}{9\alpha^2} + \left(g_{v1} - \frac{1}{2} g_{v2} \right) i \sigma \cdot (A_\eta \times A_\pi) \frac{k \cdot q}{3\alpha^2}.$$
In the SU(6) symmetry limit,

\[
M^s(S) = \left[g_{S_{11}(1535)} + g_{S_{11}(1650)} \right] M^s(S), \\
M^s(D) = \left[g_{D_{13}(1520)} + g_{D_{13}(1700)} + g_{D_{15}(1675)} \right] M^s(D).
\]

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Factor</th>
<th>Value</th>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{s1}</td>
<td>1</td>
<td>$g_{S_{11}(1535)}$</td>
<td>2</td>
<td>g_2</td>
<td>5/3</td>
</tr>
<tr>
<td>g_{s2}</td>
<td>2/3</td>
<td>$g_{S_{11}(1650)}$</td>
<td>-1</td>
<td>$g_{P_{11}(1710)}$</td>
<td>180/619</td>
</tr>
<tr>
<td>g_{v1}</td>
<td>5/3</td>
<td>$g_{D_{13}(1520)}$</td>
<td>2</td>
<td>$g_{P_{13}(1900)}$</td>
<td>18/619</td>
</tr>
<tr>
<td>g_{v2}</td>
<td>0</td>
<td>$g_{D_{13}(1700)}$</td>
<td>-1/10</td>
<td>$g_{P_{11}(2100)}$</td>
<td>-16/619</td>
</tr>
<tr>
<td>g_A^π</td>
<td>5/3</td>
<td>$g_{D_{15}(1675)}$</td>
<td>-9/10</td>
<td>$g_{F_{15}(1680)}$</td>
<td>5/3</td>
</tr>
<tr>
<td>g_A^{η}</td>
<td>1</td>
<td>$g_{P_{11}(1440)}$</td>
<td>225/619</td>
<td>$g_{F_{15}(2000)}$</td>
<td>-2/21</td>
</tr>
<tr>
<td>g_1</td>
<td>1</td>
<td>$g_{P_{13}(1720)}$</td>
<td>180/619</td>
<td>$g_{F_{17}(1990)}$</td>
<td>-4/7</td>
</tr>
</tbody>
</table>
Model parameters

Goldberger-Treiman relation:

\[g_{mNN} = \frac{g_A^m M_N}{f_m} \]

\[g_{\pi NN} = 13.48, \]
\[g_{\eta NN} = 0.81 \]

\[g_{a_0 NN} g_{a_0 \pi \eta} = 100 \]

\[m_q = 330 \text{ MeV}, \]
\[\alpha^2 = 0.16 \text{ GeV}^2. \]

TABLE II. Breit-Wigner masses \(M_R \) (in MeV) and widths \(\Gamma_R \) (in MeV) for the resonances. \(n = 1 \) and \(n = 2 \) stand for the degenerate states with quantum number \(n = 1 \) and \(n = 2 \) in the \(u \) channel.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>(M_R)</th>
<th>(\Gamma_R)</th>
<th>Resonance</th>
<th>(M_R)</th>
<th>(\Gamma_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{11}(1535))</td>
<td>1535</td>
<td>150</td>
<td>(P_{11}(1440))</td>
<td>1440</td>
<td>300</td>
</tr>
<tr>
<td>(S_{11}(1650))</td>
<td>1655</td>
<td>165</td>
<td>(P_{11}(1710))</td>
<td>1710</td>
<td>100</td>
</tr>
<tr>
<td>(D_{13}(1520))</td>
<td>1520</td>
<td>115</td>
<td>(P_{13}(1720))</td>
<td>1720</td>
<td>200</td>
</tr>
<tr>
<td>(D_{13}(1700))</td>
<td>1700</td>
<td>115</td>
<td>(P_{13}(1900))</td>
<td>1900</td>
<td>500</td>
</tr>
<tr>
<td>(D_{15}(1675))</td>
<td>1675</td>
<td>150</td>
<td>(P_{11}(2100))</td>
<td>2100</td>
<td>150</td>
</tr>
<tr>
<td>(n = 1)</td>
<td>1650</td>
<td>230</td>
<td>(F_{15}(1680))</td>
<td>1685</td>
<td>130</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>1750</td>
<td>300</td>
<td>(F_{15}(2000))</td>
<td>2000</td>
<td>200</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>(F_{17}(1990))</td>
<td>1990</td>
<td>350</td>
</tr>
</tbody>
</table>
Differential cross sections

Left panel:
- Solid: full calculation
- Dot-dashed: without nucleon
- Born term

Right panel:
- Solid: full calculation
- Dotted lines: exclusive S11(1535)
- Dot-dashed: without S11(1650)
- Dashed: without t-channel
Left panel:
- Solid: full calculation
- Dot-dashed: without nucleon Born term
- Dashed: without D13(1520)

Right panel:
- Solid: full calculation
- Dotted lines: exclusive S11(1535)
- Dot-dashed: without S11(1650)
- Dashed: without t-channel
Total cross sections

- $S_{11}(1535)$ is dominant near threshold. The exclusive cross section is even larger than the data.
- $S_{11}(1650)$ has a destructive interference with the $S_{11}(1535)$, and appears to be a dip in the total cross section.
- States from $n=2$ shell account for the second enhancement around 1.7 GeV.

Zhong, Zhao, He, and Saghai, PRC76, 065205 (2007)
S-channel resonance excitations in $K^-p \rightarrow \Sigma^0 \pi^0$

\[O_S = [g_{S_{01}(1405)} + g_{S_{01}(1670)}]O_S, \]
\[O_D = [g_{D_{03}(1520)} + g_{D_{03}(1690)}]O_D, \]

\[\frac{g_{S_{01}(1405)}}{g_{S_{01}(1670)}} = \frac{\langle N_f | I_3^\pi \sigma_3 | S_{01}(1405) \rangle \langle S_{01}(1405) | I_3^K \sigma_3 | N_i \rangle}{\langle N_f | I_3^\pi \sigma_3 | S_{01}(1670) \rangle \langle S_{01}(1670) | I_3^K \sigma_3 | N_i \rangle} \]

\[|S_{01}(1405)\rangle = \cos(\theta)|70,^21\rangle - \sin(\theta)|70,^28\rangle \]
\[|S_{01}(1670)\rangle = \sin(\theta)|70,^21\rangle + \cos(\theta)|70,^28\rangle \]

\[\frac{g_{S_{01}(1405)}}{g_{S_{01}(1670)}} = \frac{[3 \cos(\theta) - \sin(\theta)][\cos(\theta) + \sin(\theta)]}{[3 \sin(\theta) + \cos(\theta)][\sin(\theta) - \cos(\theta)]} \]

$g_{S_{01}(1405)}/g_{S_{01}(1670)} = -3$ leads to $\theta = 0^\circ$, i.e., no configuration mixing between $[70,^21]$ and $[70,^28]$.

Zhong and Zhao, PRC79, 045202 (2009)
We thus determine the mixing angle by experimental data which requires

\[\frac{g_{S_{01}(1405)}}{g_{S_{01}(1670)}} \approx -9 \]
$g_{\Lambda(1405)}/g_{\Lambda(1670)} = -9$

$g_{S_{01}(1405)}/g_{S_{01}(1670)} = -3$

$\theta \simeq 41^\circ \text{ and } 165^\circ$
Diff. Xsect. for $K^-p \rightarrow \Sigma^0 \pi^0$
$K^- (s \bar{u})$

s-channel

$M_2^s = 0$

M_3^s is the only s-channel amplitude

U-channel turns to be important

[Diagram with particle interactions and complex expressions]

[Graph showing cross section vs. beam momentum with various channels represented]
Baryon excitations in meson photoproduction

Quark-photon electromagnetic coupling:

$$H_e = - \sum_j e_j \gamma^j A^\mu(k, r)$$

Transition amplitudes in terms of the Mandelstam variables:

$$M_{fi} = M^{sg}_{fi} + M^s_{fi} + M^u_{fi} + M^t_{fi}$$

Zhao et al, PRC65, 065204 (2002)
The seagull term is composed of two parts,

\[M_{fi}^{sg} = \langle N_f | H_{m,e} | N_i \rangle + i \langle N_f | [g_e, H_m] | N_i \rangle, \]

(83)

where \(|N_i\rangle\) and \(|N_f\rangle\) are the initial and final state nucleon, respectively, and

\[H_{m,e} = \sum_j \frac{e_m}{f_m} \phi_m(q, r_j) \overline{\psi}_j \gamma_j^\mu \gamma^5_j \psi_j A^\mu(k, r_j) \]

(84)

is the contact term from the pseudovector coupling, and

\[g_e = \sum_j e_j r_j \cdot \epsilon e^{ik \cdot r_j} \]

(85)

comes from the transformation of the electromagnetic interaction in the s- and u-channel [9, 6].
The s- and u-channel amplitudes have the following expression:

\[
M^s_{fi} + M^u_{fi} = i\omega_\gamma \sum_j \langle N_f | H_m | N_j \rangle \langle N_j | \frac{1}{E_i + \omega_\gamma - E_j} h_e | N_i \rangle \\
+ i\omega_\gamma \sum_j \langle N_f | h_e \frac{1}{E_i - \omega_m - E_j} | N_j \rangle \langle N_j | H_m | N_i \rangle,
\]

where

\[
h_e = \sum_j e_j r_j \cdot \epsilon (1 - \alpha_j \cdot \hat{k}) e^{i \mathbf{k} \cdot \mathbf{r}_j},
\]

and $\hat{k} \equiv k / \omega_\gamma$ is the unit vector in the direction of the photon momentum.
The nonrelativistic expansions of Eqs. (87) and (80) become [6]:

\[h_e = \sum_j \left[e_j r_j \cdot \epsilon - \frac{e_j}{2m_j} \sigma_j \cdot (\epsilon_\gamma \times \hat{k}) \right] e^{i k \cdot r_j}, \]

(88)

and

\[H_m^{nr} = \sum_j \left[\frac{\omega_m}{E_f + M_f} \sigma_j \cdot P_f + \frac{\omega_m}{E_i + M_i} \sigma_j \cdot P_i + \sigma_j \cdot q + \frac{\omega_m}{2\mu_q} \sigma_j \cdot p_j \right] \frac{\hat{I}_j}{g_A} e^{-i q \cdot r_j}, \]

(89)

where \(M_i \) (\(M_f \)), \(E_i \) (\(E_f \)) and \(P_i \) (\(P_f \)) are mass, energy and three-vector momentum for the initial (final) nucleon; \(r_j \) and \(p_j \) are the internal coordinate and momentum for the \(j \)th quark in the nucleon rest system.
Transition amplitudes in the harmonic oscillator basis

\[M_{fi}^{sg} = -e^{-(k-a)^2/6\alpha^2} \frac{1}{E_i + M_i} e_m \left[1 + \frac{\omega_m}{2} \left(\frac{1}{E_i + M_i} + \frac{1}{E_f + M_f} \right) \right] \sigma \cdot \epsilon, \]

\[M_{fi}^{t} = e^{-(k-a)^2/6\alpha^2} \frac{e_m (M_f + M_i)}{q \cdot k} \left(\frac{\sigma \cdot q}{E_f + M_f} - \frac{\sigma \cdot k}{E_i + M_i} \right) q \cdot \epsilon, \]

\[M_{fi}^{s} = (M_2^{s} + M_3^{s}) e^{-(k^2+q^2)/6\alpha^2}, \]

\[M_{fi}^{u} = (M_2^{u} + M_3^{u}) e^{-(k^2+q^2)/6\alpha^2}, \]
\[\frac{M_3^s}{g_3^s} = -\frac{1}{2m_q} \left[ig_v A_s \cdot (\epsilon_\gamma \times k) - \sigma \cdot (A_s \times (\epsilon_\gamma \times k)) \right] \times \frac{M_n}{n!(P_i \cdot k - nM\omega_h)} \left(\frac{k \cdot q}{3\alpha^2} \right)^n \]
\[+ \frac{1}{6} \left[\frac{\omega_\gamma \omega_m}{\mu_q} (1 + \frac{\omega_\gamma}{2m_q}) \sigma \cdot \epsilon_\gamma + \frac{2\omega_\gamma}{\alpha^2} \sigma \cdot A_s \epsilon_\gamma \cdot q \right] \] \[A_s = - \left(\frac{\omega_m}{E_f + M_f} + 1 \right) q \]

\[\frac{M_2^s(-2)^n}{g_2^s} = -\frac{1}{2m_q} \left[ig_v' A_s \cdot (\epsilon_\gamma \times k) - g_\alpha' \sigma \cdot (A_s \times (\epsilon_\gamma \times k)) \right] \times \frac{M_n}{n!(P_i \cdot k - nM\omega_h)} \left(\frac{k \cdot q}{3\alpha^2} \right)^n \]
\[+ \frac{1}{6} \left[\frac{\omega_\gamma \omega_m}{\mu_q} (1 + g_\alpha' \frac{\omega_\gamma}{2m_q}) \sigma \cdot \epsilon_\gamma + \frac{2\omega_\gamma}{\alpha^2} \sigma \cdot A_s \epsilon_\gamma \cdot q \right] \]
\[\times \frac{M_n}{(n - 1)!(P_i \cdot k - nM\omega_h)} \left(\frac{k \cdot q}{3\alpha^2} \right)^{n-1} \]
\[+ \frac{\omega_\gamma \omega_m}{18\mu_q\alpha^2} \sigma \cdot k\epsilon_\gamma \cdot q \frac{M_n}{(n - 2)!(P_i \cdot k - nM\omega_h)} \left(\frac{k \cdot q}{3\alpha^2} \right)^{n-2} \]
Compared with M_{s3}, amplitude M_{s2} is relatively suppressed by a factor of $(-1/2)^n$ for each n.

Higher excited states are relatively suppressed by $(k \cdot q/3\alpha^2)^n/n!$.

One can identify the quark motion correlations between the initial and final state baryon.

Similar treatment can be done for the u channel.

In principle, all the s- and u-channel states have been included in the amplitudes, and the quark level operators have been related to the hadronic level ones through g-factors defined as follows.

Then, one has to separate out the amplitudes for each single resonance (see Ref. Zhao et al, PRC65, 065204 (2002)).
Some numerical results for pion photoproduction

\[M_{1^+}^{3/2} = -g_{\pi NN} g_R \left(\frac{1}{2m_q} \left(\frac{\omega_m}{E_f + M_f} + 1 \right) \right) \times \frac{2M_\Delta}{s - M_\Delta^2 + iM_\Delta \Gamma_\Delta} e^{-(k^2 + q^2)/6\alpha^2} \]

\[g_R \equiv g_3^s g_v + g_2^u g_v' - \mu_i \]

Zhao et al, PRC65, 065204 (2002)
Differential cross sections for $\gamma p \rightarrow \pi^+ n$.
Polarized beam asymmetry for $\gamma p \rightarrow \pi^+ n$.
Polarized target asymmetry for $\gamma p \rightarrow \pi^+ n$.
Recoil polarization asymmetry for $\gamma p \rightarrow \pi^+ n$.

Simultaneous account for $\gamma p \rightarrow \pi^0 p$ and $\gamma n \rightarrow \pi^- p$ reaction and other relevant reactions.

Zhao et al, PRC65, 065204 (2002)
Number of states with the principle quantum number $n \leq 2$:

\[\gamma n \rightarrow N^* (\Delta^*) \rightarrow \pi N \quad 27 \text{ states} \]

\[\gamma p \rightarrow N^* (\Delta^*) \rightarrow \pi N \quad 19 \text{ states} \]

\[\gamma n \rightarrow N^* \rightarrow \eta N \quad 16 \text{ states} \]

\[\gamma p \rightarrow N^* \rightarrow \eta N \quad 8 \text{ states} \]

\[\gamma n \rightarrow N^* \rightarrow K \Lambda \quad 8 \text{ states} \]

\[\gamma p \rightarrow N^* \rightarrow K \Lambda \quad \]

Due to Λ selection rule

\[\Lambda \text{ Selection rule: Zhao & Close, PRD74, 094014(2006)} \]
Prospects - I

1. For the purpose of searching for individual resonance excitations, it is essential to have a quark model guidance for both known and “missing” states. And then allow the data to tell:

i) which state is favored;

ii) whether a state beyond the conventional quark model is needed;

iii) how quark model prescriptions for N*NM form factors complement with isobaric models.
Prospects - II

2. Understanding the non-resonance background

A reliable estimate of the non-resonance background, such as the t- and u-channel. Their interferences with the resonances are essentially important.

3. Unitarity constraint

A coherent study of the pseudoscalar photoproduction and meson-baryon scattering is needed. In particular, a coupled channel study will put a unitary constraint on the theory.

Photoproduction of pseudoscalar mesons (π, η, η', K); and $\pi N \rightarrow \eta N$; $K^- p \rightarrow \pi \Sigma$, and more are coming out soon...

Q. Z., *PRC* 63, 035205 (2001);
Q. Z., J.S. Al-Khalili, Z.P. Li, and R.L. Workman, *PRC* 65, 065204 (2002);
Q. Z., B. Saghai and Z.P. Li, *JPG* 28, 1293 (2002);
Thanks !
A revisit to the S-wave state mixing

The mixing between pure \([70, ^2\!8]\) and \([70, ^4\!8]\) states is defined as

\[
\begin{pmatrix}
 S_{11}(1535) \\
 S_{11}(1650)
\end{pmatrix} =
\begin{pmatrix}
 \cos \theta_S & -\sin \theta_S \\
 \sin \theta_S & \cos \theta_S
\end{pmatrix}
\begin{pmatrix}
 \langle [70, ^2\!8, 1, 1, 1/2^-] \rangle \\
 \langle [70, ^4\!8, 1, 1, 1/2^-] \rangle
\end{pmatrix}
\]

Similarly, the \(D\)-wave mixing can be written as

\[
\begin{pmatrix}
 D_{13}(1520) \\
 D_{13}(1700)
\end{pmatrix} =
\begin{pmatrix}
 \cos \theta_D & -\sin \theta_D \\
 \sin \theta_D & \cos \theta_D
\end{pmatrix}
\begin{pmatrix}
 \langle [70, ^2\!8, 1, 1, 3/2^-] \rangle \\
 \langle [70, ^4\!8, 1, 1, 3/2^-] \rangle
\end{pmatrix}
\]
The physical states should be orthogonal which means:

\[\pi, \eta, K \ldots \]
\[S_{11}(1535) \quad S_{11}(1650) \]
\[N, \Lambda, \ldots \]

\[= 0 \]

This expectation can be examined by the K-matrix propagator between [70, ²8] and [70, ⁴8] mixing states:

\[
G = \frac{1}{D_a D_b - |D_{ab}|^2} \begin{pmatrix} D_a & D_{ab} \\ D_{ab} & D_b \end{pmatrix}
\]

\[
D_a = s - m_a^2 + i\sqrt{s} \Gamma^a(s)
\]
\[
D_b = s - m_b^2 + i\sqrt{s} \Gamma^b(s)
\]

\[
\Gamma^a(s) = \Gamma^a_{\pi N} + \Gamma^a_{\eta N} + \ldots ,
\]
\[
\Gamma^b(s) = \Gamma^b_{\pi N} + \Gamma^b_{\eta N} + \ldots .
\]

\[
D_{ab} \approx \frac{i}{16\pi} [\rho_{\pi N} g_{S_{11}N\pi}^a g_{S_{11}N\pi}^b + \rho_{\eta N} g_{S_{11}N\eta}^a g_{S_{11}N\eta}^b]
\]
Recalling that

\[H_{m}^{NR} = \sum_{j} \left\{ \frac{\omega_{m}}{E_{f} + M_{f}} \right\} \]

The N* → NM transition amplitudes can be expressed as

\[
\alpha \equiv \langle \psi_{000}^{s} | q e^{i \sqrt{\frac{2}{3}} q \lambda_{z}} | \psi_{110}^{\lambda} \rangle = i \frac{q^{2}}{\sqrt{3} \alpha_{h}} e^{-q^{2} / 6 \alpha_{h}^{2}},
\]

\[
\beta \equiv \langle \psi_{000}^{s} | e^{i \sqrt{\frac{2}{3}} q \lambda_{z}} \hat{p}_{3-} | \psi_{111}^{\lambda} \rangle = -\langle \psi_{000}^{s} | e^{i \sqrt{\frac{2}{3}} q \lambda_{z}} \hat{p}_{3+} | \psi_{111}^{\lambda} \rangle
\equiv -i \frac{2}{3} \alpha_{h} e^{-q^{2} / 6 \alpha_{h}^{2}},
\]

\[
\gamma \equiv \langle \psi_{000}^{s} | e^{i \sqrt{\frac{2}{3}} q \lambda_{z}} \hat{p}_{3z} | \psi_{110}^{\lambda} \rangle = i \frac{\alpha_{h}}{\sqrt{3}} \left(1 + \frac{q^{2}}{3 \alpha_{h}^{2}} \right) e^{-q^{2} / 6 \alpha_{h}^{2}},
\]

\[
\mathcal{M}_{S_{11} \rightarrow NM} = \frac{1}{f_{m}} [C_{1} \langle \hat{H}_{1} \rangle \alpha(q) + C_{2} \langle \hat{H}_{2} \rangle (\gamma(q) - \sqrt{2} \beta(q))],
\]

\[
\mathcal{M}_{D_{13}(D_{15}) \rightarrow NM} = \frac{1}{f_{m}} \left[C_{1} \langle \hat{H}_{1} \rangle \alpha(q) + C_{2} \langle \hat{H}_{2} \rangle \left(\gamma(q) + \frac{\beta(q)}{\sqrt{2}} \right) \right].
\]

with \[C_{1} = -3 \left(\frac{\omega_{m}}{E_{f} + M_{f}} + 1 \right), \quad C_{2} = \frac{3 \omega_{m}}{2 \mu q}. \]

<table>
<thead>
<tr>
<th>\hat{H}{1}(\alpha), \hat{H}{2}(\gamma - \sqrt{2}\beta)</th>
<th>S_{11}^{+} \rightarrow \Lambda K^{+}</th>
<th>S_{11}^{+} \rightarrow p\eta</th>
<th>S_{11}^{+} \rightarrow n\pi^{+}</th>
<th>S_{11}^{+} \rightarrow p\pi^{0}</th>
<th>S_{11}^{+} \rightarrow \Sigma^{+}K^{0}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\langle N, J_{z} = \frac{1}{2}</td>
<td>\hat{H}_{1}</td>
<td>S_{11}^{+}, J_{z} = \frac{1}{2} \rangle</td>
<td>-\frac{1}{6}</td>
<td>-\cos \theta \cos \frac{\theta}{\sqrt{3}}</td>
<td>-\frac{2 \sqrt{2}}{9 \sqrt{3}}</td>
</tr>
<tr>
<td>\langle N, J_{z} = \frac{1}{2}</td>
<td>\hat{H}_{2}</td>
<td>S_{11}^{+}, J_{z} = \frac{1}{2} \rangle</td>
<td>-\frac{1}{6}</td>
<td>-\cos \theta \cos \frac{\theta}{\sqrt{3}}</td>
<td>-\frac{2 \sqrt{2}}{9 \sqrt{3}}</td>
</tr>
</tbody>
</table>

We can then extract the N*NM form factors given by the chiral effective Lagrangian in the NRCQM, e.g.

\[\sum_{\text{spin}} |M_{\text{hadron}}|^2 \equiv (E_i + M_i)(E_f + M_f) \sum_{\text{spin}} |M_{\text{quark}}|^2, \]

where

\begin{align*}
N^*(S_{11} \to NM) : & \quad M_{\text{hadron}}^{S_{11}} = g_{S_{11}}NM \bar{u}_N u_R, \\
N^*(D_{13} \to NM) : & \quad M_{\text{hadron}}^{D_{13}} = g_{D_{13}}NM \bar{u}_N \gamma_5 \gamma_\mu u_R \gamma_\nu p_\mu p_\nu, \\
N^*(D_{15} \to NM) : & \quad M_{\text{hadron}}^{D_{15}} = g_{D_{15}}NM \bar{u}_N u_R \gamma_\mu \gamma_\nu p_\mu p_\nu, \\
\end{align*}

\[M_{\text{quark}}^{S_{11}} = \frac{1}{f_m} [C_1 \alpha(q) + C_2 (\gamma(q) - \sqrt{2}/\beta(q))] \langle \hat{H} \rangle, \]

\[= \frac{1}{f_m} \frac{i \alpha_h e^{-q^2/6\alpha^2}}{\sqrt{3}} \left[C_1 \frac{q^2}{\alpha_h^2} + C_2 \left(3 + \frac{q^2}{3\alpha_h^2}\right) \right] \langle \hat{H} \rangle, \]

\[M_{\text{quark}}^{D_{13}/D_{15}} = \frac{1}{f_m} [C_1 \alpha(q) + C_2 (\gamma(q) + \frac{\beta(q)}{\sqrt{2}})] \langle \hat{H} \rangle, \]

\[= \frac{1}{f_m} \frac{i q^2 e^{-q^2/6\alpha^2}}{3\sqrt{3} \alpha_h} \langle \hat{H} \rangle. \]
\[N \text{ threshold} \]

\[|\xi_{ab}| \equiv \left| \frac{D_{ab}}{D_a} \right| \]

\[|\xi_{ba}| \equiv \left| \frac{D_{ab}}{D_b} \right| \]
With the data for $S_{11} \rightarrow N\pi$ and $N\eta$ [1], i.e.

\[Br(S_{11}(1535) \rightarrow N\pi) = 35 \sim 55\% \]
\[Br(S_{11}(1650) \rightarrow N\pi) = 60 \sim 95\% , \]

\[Br(S_{11}(1535) \rightarrow N\eta) = 45 \sim 60\% \]
\[Br(S_{11}(1650) \rightarrow N\eta) = 3 \sim 10\% , \]

$$\theta_S \approx 24.6^\circ \sim 32.1^\circ$$

Similarly, with the data for $D_{13} \rightarrow N\pi$

\[Br(D_{13}(1520) \rightarrow N\pi) = 55 \sim 65\% \]
\[Br(D_{13}(1700) \rightarrow N\pi) = 5 \sim 15\% , \]

\[Br(D_{13}(1520) \rightarrow N\eta) = 0.23 \pm 0.04\% \]
\[Br(D_{13}(1700) \rightarrow N\eta) = 0.0 \pm 1.0\% , \]

$$\theta_D \approx 6.3^\circ \sim 18.3^\circ.$$
Relative signs for the N*NM couplings are given by the NRCQM.

<table>
<thead>
<tr>
<th>$\theta_S(24.6^\circ \sim 32.1^\circ)$</th>
<th>$S_{11}^+ \rightarrow p\eta$</th>
<th>$S_{11}^+ \rightarrow \Lambda K^+$</th>
<th>$S_{11}^+ \rightarrow n\pi^+$</th>
<th>$S_{11}^+ \rightarrow p\pi^0$</th>
<th>$S_{11}^+ \rightarrow \Sigma^+ K^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}_{N* \rightarrow NM}$</td>
<td>6.86 \sim 7.18</td>
<td>4.32 \sim 4.07</td>
<td>3.29 \sim 2.68</td>
<td>$-2.312 \sim -1.92$</td>
<td>3.32 \sim 3.88</td>
</tr>
<tr>
<td>$g_{S_{11}NM}$</td>
<td>7.03\sim7.35</td>
<td>4.42\sim4.16</td>
<td>3.37\sim2.74</td>
<td>$-2.38 \sim -1.94$</td>
<td>3.41 \sim 3.99</td>
</tr>
<tr>
<td>$g_{S_{11}NM}/g_{S_{11}p\eta}$</td>
<td>1</td>
<td>0.63 \sim 0.57</td>
<td>0.48 \sim 0.37</td>
<td>$-0.34 \sim -0.27$</td>
<td>0.49 \sim 0.54</td>
</tr>
</tbody>
</table>

TABLE VI: Strong coupling constants for $S_{11}(1535) \rightarrow NM$.

<table>
<thead>
<tr>
<th>$\theta_S(24.6^\circ \sim 32.1^\circ)$</th>
<th>$S_{11}^+ \rightarrow p\eta$</th>
<th>$S_{11}^+ \rightarrow \Lambda K^+$</th>
<th>$S_{11}^+ \rightarrow n\pi^+$</th>
<th>$S_{11}^+ \rightarrow p\pi^0$</th>
<th>$S_{11}^+ \rightarrow \Sigma^+ K^0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}_{N* \rightarrow NM}$</td>
<td>$-2.56 \sim -1.67$</td>
<td>2.0 \sim 2.57</td>
<td>4.06 \sim 4.44</td>
<td>$-2.85 \sim -3.15$</td>
<td>$-4.19 \sim -3.75$</td>
</tr>
<tr>
<td>$g_{S_{11}NM}$</td>
<td>$-2.50 \sim -1.63$</td>
<td>1.96 \sim 2.51</td>
<td>3.96 \sim 4.34</td>
<td>$-2.80 \sim -3.07$</td>
<td>$-4.0 \sim -3.58$</td>
</tr>
<tr>
<td>$g_{S_{11}NM}/g_{S_{11}p\eta}$</td>
<td>1</td>
<td>$-0.78 \sim -1.54$</td>
<td>$-1.58 \sim -2.66$</td>
<td>1.12 \sim 1.88</td>
<td>1.6 \sim 2.2</td>
</tr>
</tbody>
</table>

TABLE VII: Strong coupling constants for $S_{11}(1650) \rightarrow NM$.

Indication of a destructive sign between $S_{11}(1535)$ and $S_{11}(1650)$ amplitudes in $\gamma p \rightarrow \eta p$, and $\pi^- p \rightarrow \eta n$.
It is important to have a correct definition of the common sign of amplitudes and relative sign between helicity amplitudes, i.e. $A_{1/2}, A_{3/2},$ and $S_{1/2}$.

\[
A_{1/2}, A_{3/2}, S_{1/2}:
\]

\[
A_{\frac{1}{2}, \frac{3}{2}} = \zeta A_{\frac{1}{2}, \frac{3}{2}}, \quad S_{\frac{1}{2}} = \zeta S_{\frac{1}{2}}.
\]

\[
\zeta = -\text{sign}(g^*/g)
\]
\[\gamma^* p \rightarrow S_{11} (1535) : \text{ 3q picture} \]

Combined with the difficulties in the description of large width of \(S_{11}(1535) \rightarrow \eta N \) and large \(S_{11}(1535) \rightarrow \phi N, \Lambda K \) couplings, this shows that 3q picture for \(S_{11}(1535) \) should be complemented.

From I. Aznauryan, Electromagnetic \(N-N^* \) Transition Form Factors Workshop, 2008

\[A_{1/2} \]

\[S_{1/2} \]

Opposite sign of \(S_{1/2} !!! \)

Impossible to change in quark model !!!

LF RQM:

- Capstick, Keister, PR D51 (1995) 3598
- Pace, Simula et al., PR D51 (1995) 3598
FIG. 1: Helicity amplitude for $\gamma^* p \rightarrow S_{11}(1535)$

FIG. 2: Helicity amplitude for $\gamma^* n \rightarrow S_{11}(1535)$
FIG. 3: Helicity amplitude for $\gamma^* p \to S_{11}(1650)$

FIG. 4: Helicity amplitude for $\gamma^* n \to S_{11}(1650)$