GEM Activities at USTC

刘建北 (Jianbei Liu)
(for the USTC GEM group)
University of Science and Technology of China

The 7th Workshop on Hadron Physics in China and Opportunities Worldwide
Duke Kunshan University, Kunshan, China
August 5, 2015
Outline

• Introduction: GEM detectors

• Self-stretching GEM assembly
 – NS2 technique

• 30cm*30cm GEM R&D

• Large-area GEM stretching studies

• 50cm*100cm GEM design and prototyping
 – Towards SoLID GEM

• GEM readout electronics

• Summary and plans
GEM Detectors

- Gas Electron Multiplier (GEM) detectors
 - electrons released in primary ionization are multiplied through small holes on GEM foils and finally collected on the anode plane.
- A low-mass and cost-effective solution to high-precision and large-area tracking at high-rate large-scale experiments such as SoLID.
NS2 Technique

- A new GEM assembly method developed at CERN for the CMS GEM project.
- Main focus of large-size GEM detector R&D at USTC

- No gluing, assembly easy and fast, highly efficient and labor saving
- No inner spacers, no dead areas, smooth gas flow
- Complete re-opening possible, full detector re-cleaning possible, highly replaceable and repairable, reduced cost
30cm *30cm GEM R&D
• Intensive R&D on NS2 technique through 30cm*30cm GEM prototyping. Modifications and improvements to NS2.

GEM layer assembly

Main frame assembly

GEM foil stretching and whole Chamber assembly
Testing

X-Ray -> GEM -> Pre-Amplifier -> Shaper1

- Shaper2
- Disc.
- Scaler

- HV
- Pico-ammeter
- MCA
Gain vs. HV

- Clear exponential dependence of gain on high voltage
- Can reach a gain of 10^4 at 4000V
Response Uniformity

Gain at different sectors

Energy resolution at different sectors

Uniformity $\sim 11\%$

Uniformity $\sim 5.3\%$

Good uniformity observed

Note: uniformity = RMS/Mean
GEM Stretching Simulation

- Simulated displacement of stretched triple GEM foils (0.5m*1m) with HV applied.

- Maximum GEM displacement ~ 150um when tensioned at ~0.3kg/cm per GEM
- Tensioning more doesn’t help too much in further reducing displacement.
GEM Stretching Measurement

Tensions applied to GEM:
- ~0.48kg/cm @ long side
- ~0.39kg/cm @ short side

GEM extension:
- ~1.3mm @ long side
- ~0.7mm @ short side

Valuable input for GEM tension determination and choice
Towards SoLID GEM:
50cm *100cm GEM
Design

- Main components in the design
 - GEM electrodes
 - GEM foil stretching components
 - Drift and readout electrodes
 - Main frame
Prototyping (I)

• A full-size mechanical mock-up of a 0.5m*1m GEM detector
 – to validate the mechanical design
 – to gain experience in large-size GEM stretching and detector assembly
Prototyping (II)

• Assembling an actual 0.5m*1m GEM prototype
Response Uniformity

0.5m*1m GEM

Gain at different sectors

Energy resolution at different sectors

Uniformity ~ 51%
~ 11%

Much worse than 30cm*30cm GEM

Uniformity ~ 11%
~ 5.3%

Note: uniformity = RMS/Mean
• Large gain variations arose from chamber deformation under tension from GEM stretching and gas flowing.

• Gain uniformity improved by reinforcing the mechanic supporting frame and readout board.

\(\approx 32\% \quad \approx 10\% \)
Design optimization

• Optimized 0.5m*1m GEM design based on results from prototyping and simulation.
 – Reinforced supporting frames
 – Segmented GEM clamping to better accommodate GEM extension when stretched
 – ...

![Diagram of GEM design]
GEM Readout Development

- Developed a GEM readout system based on the INFN APV25 hybrid.
- Tested and characterized the readout system

- The developer will graduate soon. Need to identify a successor to keep the work going.
APV25-MPD Readout

• Redesigned the FPC connector of APV25 hybrid to improve the grounding so as to reduce noise.

• Have gotten the APV25-MPD system working by upgrading the MPD firmware. Detailed tests underway.
Summary and Plans

• Active large-size-GEM R&D at USTC on both detectors and readout in the past year.
 – An important milestone achieved: successful first prototyping of 0.5m*1m GEM detectors using an improved self-stretching technique.

• Near-term plans
 – Further optimize 0.5m*1m GEM detector design through more simulation and prototyping
 – Test GEM detector prototypes using APV25-MPD readout