

Jefferson Laboratory 12 GeV Upgrade

H. E. Montgomery

July 2009

Acknowledgements

This talk was compiled from the work of many others. In particular I have liberally used transparencies from talks presented by my colleagues at Jefferson Laboratory and others from whom they in turn have "borrowed".

I would like to thank the organizers and the people from Lanzhou for their welcome and hospitality.

The Talk

- Introduction
- Jefferson Laboratory CEBAF and Upgrade
- Experiments and Physics in 12 GeV Era
- Project Status
- Conclusion

Jefferson Lab

Superconducting radiofrequency (SRF) cavities undergo vertical testing. Cryomodules in the accelerator tunnel An aerial view of the recirculating linear accelerator and 3 experimental halls. CEBAF Large Acceptance Spectrometer (CLAS) in Hall В all all a

Electron Scattering: A picture

Spin, Current, and Beam Delivery @CEBAF

Polarized Targets at Jefferson Lab

G_Eⁿ, SSAs Transversity

Hall B: eg1

Dynamically polarized $NH_3 ND_{3}$,

Q² evolution of Nucleon Spin Structure, DVCS

Hall B: FROST

Frozen Spin Target, Butanol

"Missing" N* Search.

Hall C: Dynamically polarized, NH₃ ND₃

$$G_E^n$$
, SANE, g_1^p , $g_1^{d_{e^-}}$

Jefferson Lab

HDIce from BNL under development: Polarized neutron target for N* expts.

12 GeV Upgrade

12 GeV Upgrade

Exciting new scientific opportunities – continue world leadership

- Discover the spectrum and properties of exotic mesons in mass range 1.5-2.6 GeV in order to explore the physical origins of quark confinement
- Define the spin and flavor structure of the nucleon in the valence region, hence test theories of di-quarks, pQCD....

- Determine the orbital angular momentum carried by up and down quarks and explore potential of Generalized Parton Distributions for tomographic imaging
- Exploit the unique capabilities of CEBAF at 12 GeV to explore the structure of nuclei at the level of quarks and gluons – understand the EMC effect
- Probe potential new physics (beyond the Standard Model) through precise test of evolution of sin² θ_W from Z-pole

Four Halls

The GlueX/Hall D Project

Hall B - understanding nucleon structure via generalized parton distributions

Hall C - precision determination of valence quark properties in nucleons and nuclei

Hall D - exploring origin of confinement by

Hall A – short range correlations, form factors, hyper-nuclear physics, future new experiments

Glue χ uses Coherent Bremsstrahlung

11

Glueχ

Hall C Precision Spectrometers

Hall B: The CEBAF Large Acceptance Spectrometer (CLAS)

CLAS12 Central Detector

European collaboration: INFN Frascati, INFN Genova, U. Glasgow LPSC Grenoble IPN Orsay, CEA-Irfu Saclay

Super BigBite Spectrometer

QCD

Confinemen

Large Distance Low Energy Strong QCD

Spectroscopy

Gluonic Degrees of Freedom Missing Symptotic Freedo

Small Distance High Energy

Perturbative QCD

High Energy Scattering

Gluon Jets Observed

Glue_χ : Search for Hybrid Mesons

Hybrid mesons and mass predictions P transverse phonon modes **Hybrid mesons 1 GeV mass difference** 0 Normal mesons ground state 3 Hybrid Mass (GeV) ss hybrids uu/dd hybrids 2.5 2 Lattice 1-+ 1.9 GeV 1.5 $b_0(0^+)$ $\pi_1(1^+)$ 2+- 2.1 GeV $b_{2}(2^{+})$ 1 0+- 2.3 GeV 0.5 Lowest mass expected to Lattice Calculations be $\pi_1(1^{-+})$ at 1.9±0.2 GeV 0 2 5 1 3 4 4

Glue χ : Finding the Exotic Wave

 $\gamma \rightarrow V(ector Meson) S = 1$ (Double-blind M. C. exercise)

An exotic wave $(J^{PC} = 1^{-+})$ was generated at level of 2.5 % with 7 other waves. Events were smeared, accepted, passed to PWA fitter.

Statistics shown here correspond to a few days of running.

1.6

Mass (3 pions) (GeV)

1.8

Charged Pion Electromagnetic Form Factor

Where does the dynamics of the q-q interaction make a transition from the strong (confinement) to the perturbative (QED-like) QCD regime?

It will occur earliest in the simplest systems
 → the pion form factor F_π(Q²) provides our best chance to determine the relevant distance scale experimentally

To measure $F_{\pi}(Q^2)$:

- At low Q² (< 0.3 (GeV/c)²): use π + e scattering \rightarrow R_{rms} = 0.66 fm
- At higher Q²: use ${}^{1}H(e,e'\pi^{+})n$

Scatter from a virtual pion in the proton and 1) extrapolate to the pion pole
→ large uncertainty
2) use a realistic pion electroproduction model

Hall C Experiment

Measuring High-x Structure Functions with 12 GeV in Hall A

Generalized Parton Distributions (GPDs)

X. Ji, D. Mueller, A. Radyushkin (1994-1997)

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs

Structure functions, guark longitudinal momentum & helicity distributions

 $f(\mathbf{x})$

Deep Inelastic and Deep Exclusive Scattering

JSA

p', f

p, i

CLAS12 - DVCS/BH Beam Asymmetry

Selected Kinematics

L = $2x10^{35}$ T = 2000 hrs $\Delta Q^2 = 1 \text{ GeV}^2$ $\Delta x = 0.05$

CLAS12 - DVCS/BH Target Asymmetry

Tests of the Handbag Dominance in Hall C

- I o study the combined spatial and momentum distributions, need to measure GPDs
 - But must demonstrate that the conditions for factorization apply!
- One of the most stringent tests of factorization is the Q² dependence of the π electroproduction cross section
 - $-\sigma_{\rm L}$ scales to leading order as Q⁻⁶
 - $-\sigma_T$ scales as Q⁻⁸
 - As Q² becomes large: $\sigma_L >> \sigma_T$
- Factorization theorems for meson ٠ electroproduction have been proven rigorously only for longitudinal photons [Collins, Frankfurt, Strikman, 1997]

Møller & Deep Inelastic Scattering Parity Violation

Semi-Inclusive Program?

-400

-300

-200

-100

0

100

200

300

$sin^2\theta_W$

12 GeV Upgrade Project Milestones

Level				
Number	Milestone Description	Baseline	Projected	Actual
1-1	CD-0 (Approve Mission Need)	Mar-04		Mar-04
1-2	CD-1 (Approve Preliminary Baseline Range)	Feb-06		Feb-06
1-3	CD-2 (Approve Performance Baseline)	Dec-07		Nov-07
1-4	CD-3 (Approve Start of Construction)	Sep-08		Sept-08
1-5	CD-4A (Approve <i>Accelerator</i> Project Completion and Start of Operations	Dec-14	Dec-14	
1-6	CD-4B (Approve <i>Experimental Equipment</i> Project Completion and Start of Operations)	Jun-15	Jun-15	
2-05	Design Review of Superconducting Magnets	Jul-08		May-08
2-14	Design of Conventional Facilities Completed	Sep-08		Sep-08
2-06	Award First Superconducting Magnet Contract	Jul-09		Jul-09
2-15	Ready for Equipment - CHL Addition (RFE)	Sep-10	Sep-10	
2-16	Ready for Equipment - Hall-D (RFE)	Oct-10	Oct-10	
2-10	Start Hall-D Installation	Nov-10	Nov-10	
2-01	Klystron Mass Production Authorization	Jun-11	Jun-11	

12 GeV - \$310M TPC - May-2009

12 GeV - \$310M TPC - May-2009

FY09 & 10 Major Procurement Effort

- 34 of 43 Major Procurements being worked ~\$75M Phased
 - 31 Specifications complete and signed
 - 29 Solicitations issued
 - 25 Bids received ~\$65M
 - 11 Awarded ~\$35M
 - Hall D Barrel Cal Fibers
 - Civil CHL, Hall D, Hall D CM
 - SRF Waveguides, Nb, Cavity
 - Klystrons
 - 4m Dipole (1st Stimulus), Conventional Quads
 - Hall C Q1
 - 2 Additional Vendor selected ~\$10M
 - CHL Coldbox
 - SRF Vacuum Valves (at DOE)

12 GeV SCHEDULE

Nuclear Physics at Jefferson Laboratory

Exploring the Nature of Matter

12 GeV Upgrade Project

