Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 – August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China

Probing nucleon structure by using a polarized proton beam

Jianwei Qiu Iowa State University

Based on work with Collins, Ji, Kang, Kouvaris, Sterman, Vogelsang, and Yuan

Spin of a composite particle

□ Spin of a nucleus:

- Nuclear binding: 8 MeV/nucleon << mass of nucleon</p>
- Nucleon number is fixed inside a given nucleus
- Spin of a nucleus = sum of the valence nucleon spin

□ Spin of a nucleon – Naïve Quark Model:

If the probing energy << mass of constituent quark
Nucleon is made of three constituent (valence) quark
Spin of a nucleon = sum of the constituent quark spin

□ Spin of a nucleon – QCD:

- Current quark mass << energy exchange of the collision</p>
- Number of quarks and gluons depends on the probing energy

Proton spin in QCD

□ Angular momentum of a proton at rest:

$$S = \sum_{f} \langle P, S_z = 1/2 | \hat{J}_f^z | P, S_z = 1/2 \rangle = \frac{1}{2}$$

QCD Angular momentum operator:

Energy-momentum tensor

-1

$$J_{\rm QCD}^{i} = \frac{1}{2} \,\epsilon^{ijk} \int d^{3}x \,\, M_{\rm QCD}^{0jk} \quad \longleftarrow \quad M_{\rm QCD}^{\alpha\mu\nu} = T_{\rm QCD}^{\alpha\nu} \,x^{\mu} - T_{\rm QCD}^{\alpha\mu} \,x^{\nu}$$
Angular momentum density

***** Quark angular momentum operator:

$$\vec{J}_q = \int d^3x \left[\psi_q^{\dagger} \vec{\gamma} \gamma_5 \psi_q + \psi_q^{\dagger} (\vec{x} \times (-i\vec{D})) \psi_q \right]$$

Gluon angular momentum operator:

$$\vec{J}_g = \int d^3x \left[\vec{x} \times (\vec{E} \times \vec{B}) \right]$$

Also see, X.S. Chen et al PRL100, 232002 (2008)

Proton state:
$$|P, S_z = 1/2$$

in terms of quarks and gluons?

July 31, 2009

Parton's contribution to proton's spin?

□ Matrix elements of parton angular momentum operators:

 $\langle P, S_z = 1/2 | J_q^z | P, S_z = 1/2 \rangle$ $\langle P, S_z = 1/2 | J_g^z | P, S_z = 1/2 \rangle$

□ First principle calculation:

Proton wave function in terms of quarks and gluons – unknown

Lattice QCD: non-local operators

Direct measurement:

- Experiments measure hadronic cross sections
- Many parton could participate in the hadronic collisions
 - single x-section could depend on many parton matrix elements
- High energy collision QCD factorization
 - x-section dominated by matrix elements of single quark/gluon

Approximations and limitations

□ High energy collisions – QCD Factorization:

□ Limitations:

Matrix elements extracted from the cross sections are NOT necessary the same as the matrix elements that define the parton's contribution to proton's spin!

Polarized inclusive DIS

NLO QCD is consistent with the data – improvement at EIC, ...

July 31, 2009

Polarized hadronic collisions

Phenix π^0 ം _10.05 **PHENIX Preliminary** 0.04 Run5 (9.4% scaling error) 0.03 - Run6 (40% scaling error) PHENIX 0.02 GRSV-std 0.01 $GRSV \triangle G = 0$ -0.01 Scaling errors not included -0.02 **Online Polarization values** used in Run6 -0.03 p_ (ĞeV/c)

Small asymmetry leads to small gluon "helicity" distribution

Quark "helicity" to proton spin

Extracted by the leading power QCD:

$$\Delta q = \int_0^1 dx \,\Delta q(x) = \langle P, s_{\parallel} | \overline{\psi}_q(0) \gamma^+ \gamma_5 \,\psi_q(0) | P, s_{\parallel} \rangle$$

Integrated over "ALL" momentum components of active parton

- o parton entering the hard part has only collinear momentum
- o parton in the distribution has all components
- Matrix element of a local operator

□ NLO QCD global fit - DSSV:

- $\Delta u + \Delta \bar{u} = 0.813 \qquad \Delta d + \Delta \bar{d} = -0.458 \qquad \Delta \bar{s} = -0.057$
- $\Sigma = 0.242 \approx 24\%$ proton spin de Florian, Sassot, Stratmann, and Vogelsang Phys. Rev. Lett. 2008
- Independent of whose definition of quark contribution to the proton spin but, does depend on QCD factorization scheme

□ Better flavor separation by W-boson production at RHIC

Gluon "helicity" to proton spin

Extracted by the leading power QCD:

$$\Delta g = \int_0^1 dx \,\Delta g(x) = \langle P, s_{\parallel} | F^{+\mu}(0) F^{+\nu}(0) | P, s_{\parallel} \rangle (-i\epsilon_{\mu\nu})$$

Integrated over "ALL" momentum components of active gluon

NLO QCD global fit - DSSV:

- $\Delta g = -0.084$ arXiv:0804.0422
- * $\Delta g(x)$ change sign in RHIC region
- Effectively, no contribution

to proton spin

NOTE:

- * The extracted value of $\Delta q(x), \ \Delta g(x)$ is independent of whose definition of quark, gluon contribution to proton's spin
- $\boldsymbol{\ast}$ Depend on the scheme, high order corrections in $\boldsymbol{\alpha}_{s}$ and in 1/Q

Questions

How to go beyond the probability distributions?

How to directly probe QCD quantum interference?

Single Transverse-Spin Asymmetry (SSA)

$$A(\ell, \vec{s}) \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)} = \frac{\sigma(\ell, \vec{s}) - \sigma(\ell, -\vec{s})}{\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s})}$$

Role of fundamental symmetries

□ Fundamental symmetry and vanishing asymmetry:

- ✤ A_L=0 (longitudinal) for Parity conserved interactions
- A_N =0 (transverse) for inclusive DIS Time-reversal invariance – proposed to test T-invariance by Christ and Lee (1966)

Even though the cross section is finite!

□ SSA corresponds to a T-odd triple product

$$A_N \propto i \vec{s}_p \cdot \left(\vec{p} \times \vec{\ell} \right) \Rightarrow i \varepsilon^{\mu \nu \alpha \beta} p_\mu s_\nu \ell_\alpha p_\beta'$$

Novanishing A_N requires a phase, a spin flip, and enough vectors to fix a scattering plan

SSA in parton model

Kane, et al. 1978

□ The spin flip at leading twist – transversity:

$$\delta q(x) = (\gamma \cdot \vec{S}_{\perp}) = (\gamma \cdot \vec{S}_{\perp}) \langle \psi_{q}(x) - \psi_{q}(x) \rangle \langle P, \vec{S}_{\perp} | \psi_{q}(x) - \psi_{q}(x) \rangle \langle P, \vec{S}_{\perp} \rangle \rangle$$

Chiral-odd helicity-flip density

- * the operator for δq has even γ 's \implies quark mass term
- \bullet the phase requires an imaginary part \implies loop diagram

SSA vanishes in the parton model connects to parton's transverse motion Asymmetry in QCD collinear factorization

One large momentum transfer Q >> Λ_{QCD} : Efremov, Teryaev, 1982 Qiu, Sterman, 1991

□ Asymmetry – QCD quantum interference:

$$\sigma(s_T) - \sigma(-s_T) \approx \sigma_{\operatorname{Re}(a) * \operatorname{Im}(b)}^{(3)} + \sigma_{\operatorname{Re}(a) * \operatorname{Im}(c)}^{(3)} + \dots$$

Leading spin dependent part of the cross section

Interference between amplitudes (a) and (b) or (c)

✤ The hadronic phase – the "i"

 \implies Re[(*a*)] interferes with Im[(*b*)] or Im[(*c*)]

* $\operatorname{Re}[(a)] \times \operatorname{Im}[(b)] \propto m_Q \, \delta q(s_\perp)$ – QCD parton model

A_N from polarized twist-3 correlations

□ Factorization:

Qiu, Sterman, 1991, 1999

□ New twist-3 quark-gluon correlation functions:

• $T_F(x_1, x_2)$ and $T_D(x_1, x_2)$ have different properties under the P and T transformation • $T_D(x_1, x_2)$ does not contribute to the A_N • $T_F(x_1, x_2)$ is universal, $x_1 = x_2$ for A_N due to the pole

Kouvaris,Qiu,Vogelsang,Yuan, 2006

Nonvanish twist-3 function → Nonvanish transverse motion

Scale dependence of correlation functions

□ Almost all existing calculations of SSA are at LO:

- Strong dependence on renormalization and factorization scales
- Artifact of the lowest order calculation

□ Improve/test QCD predictions:

- Complete set of twist-3 correlation functions relevant to SSA
- ***** LO evolution for the universal twist-3 correlation functions
- NLO partonic hard parts for various observables
- ***** NLO evolution for the correlation functions, ...

Current status:

- Two sets of twist-3 correlation functions
- \clubsuit LO evolution kernel for $T_{q,F}(x,x)$ and $T_{G,F}^{(f,d)}(x,x)$ Kang, Qiu, 2009
- * LO evolution kernel for $T_{q,F}(x,x)$ from NLO hard part

for SSA of p_T weighted Drell-Yan

July 31, 2009

Vogelsang, Yuan, 2009

Two sets of twist-3 correlation functions

Twist-2 distributions:

Unpolarized PDFs:

$$q(x) \propto \langle P | \overline{\psi}_q(0) \frac{\gamma^+}{2} \psi_q(y) | P \rangle$$

$$G(x) \propto \langle P | F^{+\mu}(0) F^{+\nu}(y) | P \rangle (-g_{\mu\nu})$$

$$\Delta q(x) \propto \langle P, S_{\parallel} | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \psi_q(y) | P, S_{\parallel} \rangle$$

$$\Delta G(x) \propto \langle P, S_{\parallel} | F^{+\mu}(0) F^{+\nu}(y) | P, S_{\parallel} \rangle (i\epsilon_{\perp\mu\nu})$$

Polarized PDFs:

$$\begin{split} \hline \mathbf{Two-sets Twist-3 correlation functions:} & \text{Kang, Qiu, PRD, 2009} \\ \widetilde{T}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\epsilon^{s_T \sigma n \overline{n}} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle \\ \widetilde{T}_{G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n \overline{n}} F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda}) \\ \widetilde{T}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle \\ \widetilde{T}_{\Delta G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (i \epsilon_{\perp \rho\lambda}) \end{split}$$

July 31, 2009

Leading order evolution equations - I

Kang, Qiu, PRD, 2009

Quark:

$$\begin{aligned} \frac{\partial T_{q,F}(x,x,\mu_F)}{\partial \ln \mu_F^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left\{ P_{qq}(z) T_{q,F}(\xi,\xi,\mu_F) \right. \\ &+ \frac{C_A}{2} \left[\frac{1+z^2}{1-z} \left[T_{q,F}(\xi,x,\mu_F) - T_{q,F}(\xi,\xi,\mu_F) \right] + z T_{q,F}(\xi,x,\mu_F) \right] + \frac{C_A}{2} \left[T_{\Delta q,F}(x,\xi,\mu_F) \right] \\ &+ P_{qg}(z) \left(\frac{1}{2} \right) \left[T_{G,F}^{(d)}(\xi,\xi,\mu_F) + T_{G,F}^{(f)}(\xi,\xi,\mu_F) \right] \end{aligned}$$

Antiquark:

$$\begin{aligned} \frac{\partial T_{\bar{q},F}(x,x,\mu_F)}{\partial \ln \mu_F^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left\{ P_{qq}(z) T_{\bar{q},F}(\xi,\xi,\mu_F) \right. \\ &+ \frac{C_A}{2} \left[\frac{1+z^2}{1-z} \left[T_{\bar{q},F}(\xi,x,\mu_F) - T_{\bar{q},F}(\xi,\xi,\mu_F) \right] + z T_{\bar{q},F}(\xi,x,\mu_F) \right] + \frac{C_A}{2} \left[T_{\Delta\bar{q},F}(x,\xi,\mu_F) \right] \\ &+ P_{qg}(z) \left(\frac{1}{2} \right) \left[T_{G,F}^{(d)}(\xi,\xi,\mu_F) - T_{G,F}^{(f)}(\xi,\xi,\mu_F) \right] \end{aligned}$$

- * All kernels are infrared safe
- Diagonal contribution is the same as that of DGLAP
- Quark and antiquark evolve differently caused by tri-gluon

Leading order evolution equations - II

Gluons:

Kang, Qiu, PRD, 2009

$$\begin{aligned} \frac{\partial T_{G,F}^{(d)}(x,x,\mu_F)}{\partial \ln \mu_F^2} &= \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \bigg\{ P_{gg}(z) T_{G,F}^{(d)}(\xi,\xi,\mu_F) \\ &+ \frac{C_A}{2} \left[2 \left(\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right) \left[T_{G,F}^{(d)}(\xi,x,\mu_F) - T_{G,F}^{(d)}(\xi,\xi,\mu_F) \right] \right. \\ &+ 2 \left(1 - \frac{1-z}{2z} - z(1-z) \right) T_{G,F}^{(d)}(\xi,x,\mu_F) + (1+z) T_{\Delta G,F}^{(d)}(x,\xi,\mu_F) \bigg] \\ &+ P_{gq}(z) \left(\frac{N_c^2 - 4}{N_c^2 - 1} \right) \sum_q \left[T_{q,F}(\xi,\xi,\mu_F) + T_{\bar{q},F}(\xi,\xi,\mu_F) \right] \bigg\} \end{aligned}$$

Similar expression for $T_{G,F}^{(f)}(x, x, \mu_F)$

- Kernels are also infrared safe
- I diagonal contribution is the same as that of DGLAP
- Two tri-gluon distributions evolve slightly different
- * $T_{G,F}^{(d)}$ has no connection to TMD distribution
- ***** Evolution can generate $T_{G,F}^{(d)}$ as long as $\sum_{q} [T_{q,F} + T_{\bar{q},F}] \neq 0$

Scale dependence of twist-3 correlations

July 31, 2009

Questions

How to probe parton's transverse motion at a given transverse momentum ?

Transverse momentum dependent (TMD) parton distribution functions (PDFs)

Can SSA be factorized in terms of TMD PDFs ?

TMD factorization

□ Need processes with two observed momentum scales:

 $\begin{array}{l} Q_1 \gg Q_2 \end{array} \left\{ \begin{array}{l} Q_1 & \text{necessary for pQCD factorization to have a chance} \\ Q_2 & \text{sensitive to parton's transverse motion} \end{array} \right. \end{array} \right.$

Example – semi-inclusive DIS:

- Both p and p' are observed
- P'T probes the parton's kT
- Effect of k_T is not suppressed by Q

□ Very limited processes with valid TMD factorization

- * Drell-Yan transverse momentum distribution: Q, q_T
 - quark Sivers function
 - o low rate

Collins, Qiu, 2007 Vogelsang, Yuan, 2007

* Semi-inclusive DIS for light hadrons: Q, p_T o mixture of quark Sivers and Collins function

TMD parton distributions

SIDIS:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x, \mathbf{k}_{\perp}, \vec{S}) = \int \frac{dy^{-} d^{2} \mathbf{y}_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p, \vec{S} | \overline{\psi}(0^{-}, \mathbf{0}_{\perp}) \Phi_{n}^{\dagger}(\{\infty, 0\}, \mathbf{0}_{\perp}) \\ \times \Phi_{\mathbf{n}_{\perp}}^{\dagger}(\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\}) \frac{\gamma^{+}}{2} \Phi_{n}(\{\infty, y^{-}\}, \mathbf{y}_{\perp}) \psi(y^{-}, \mathbf{y}_{\perp}) | p, \vec{S} \rangle$$

Gauge links:

$$\Phi_{n}(\{\infty, y^{-}\}, \mathbf{y}_{\perp}) \equiv \mathcal{P}e^{-ig\int_{y^{-}}^{\infty} dy_{1}^{-}n^{\mu}A_{\mu}(y_{1}^{-}, \mathbf{y}_{\perp})}$$

$$\Phi_{n_{\perp}}(\infty, \{\mathbf{y}_{\perp}, \mathbf{0}_{\perp}\}) \equiv \mathcal{P}e^{-ig\int_{\mathbf{0}_{\perp}}^{\mathbf{y}_{\perp}} d\mathbf{y}_{\perp}'\mathbf{n}_{\perp}^{\mu}A_{\mu}(\infty, \mathbf{y}_{\perp}')}$$

$$Pe^{-ig\int_{\mathbf{0}_{\perp}}^{\mathbf{y}_{\perp}} d\mathbf{y}_{\perp}'\mathbf{n}_{\perp}^{\mu}A_{\mu}(\infty, \mathbf{y}_{\perp}')}$$

$$Pe^{-ig\int_{\mathbf{0}_{\perp}}^{\mathbf{y}_{\perp}} d\mathbf{y}_{\perp}'\mathbf{n}_{\perp}^{\mu}A_{\mu}(\infty, \mathbf{y}_{\perp}')}$$

$$\begin{split} f_{q/h^{\dagger}}^{\mathrm{DY}}(x,\mathbf{k}_{\perp},\vec{S}) &= \int \frac{dy^{-}d^{2}\mathbf{y}_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp})\Phi_{n}^{\dagger}(\{-\infty,0\},\mathbf{0}_{\perp}) \\ &\times |\Phi_{\mathbf{n}_{\perp}}^{\dagger}(-\infty,\{\mathbf{y}_{\perp},\mathbf{0}_{\perp}\})\frac{\gamma^{+}}{2} \Phi_{n}(\{-\infty,y^{-}\},\mathbf{y}_{\perp})\psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle \end{split}$$

PT invariance:

$$f^{\rm SIDIS}_{q/h^{\uparrow}}(x,{\bf k}_{\perp},\vec{S})=f^{\rm DY}_{q/h^{\uparrow}}(x,{\bf k}_{\perp},-\vec{S})$$

□ Sivers function:

$$f_{q/h^{\uparrow}}(x, \mathbf{k}_{\perp}, \vec{S}) \equiv f_{q/h}(x, k_{\perp}) + f_{q/h^{\uparrow}}^{\text{Sivers}}(x, k_{\perp}) \vec{S} \cdot (\hat{p} \times \hat{\mathbf{k}}_{\perp})$$

$$f_{q/h^{\uparrow}}^{\text{Sivers}}(x, k_{\perp})^{\text{SIDIS}} = -f_{q/h^{\uparrow}}^{\text{Sivers}}(x, k_{\perp})^{\text{DY}} \longleftarrow \begin{array}{c} \text{Modified} \\ \text{Universality} \end{array}$$

July 31, 2009

Test of the modified universality

□ SSA of W-production at RHIC :

Kang, Qiu, 2009

Sivers function same as DY, different from SIDIS by a sign

- large asymmetry: should be able to see sign change

But, the detectors at RHIC cannot reconstruct the W's

The Sivers functions from Anselmino et al 2009

SSA of lepton from W-decay

□ Lepton SSA is diluted from the decay:

0.1 ¥ μ-0.08 P₋=41GeV 0.06 0.04 0.02 0 1..... -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 0.06 Å μ-0.05 v=1.2 0.04 0.03 0.02 0.01 30 35 40 45 50 55 60 65 70 Ρ.

- flavor separation

 asymmetry gets smaller due to dilution should still be measurable by current RHIC sensitivity

Larger SSA for Z⁰ production while the rate is lower

July 31, 2009

Kang, Qiu, 2009

Summary and outlook

- □ Quark and gluon contribution to proton's spin depend on the "definition" an the scale where we probe them
- Matrix elements extracted from spin asymmetries in HE collisions are NOT necessary equal to the matrix elements defining partonic contribution to proton spin
- □ With RHIC, Jlab upgrade and future EIC, better determination of quark/gluon "helicity" distributions
- □ Single transverse spin asymmetry opens a whole new meaning to test QCD dynamics!

Direct measurement of QCD quantum interference, parton's transverse motion, etc.

Thank you!

Challenge: Map out the nucleon

RHIC, Jlab and future EIC spin program will play a key role!

29

Backup transparencies

Multi-gluon correlation functions

Diagonal tri-gluon correlations:

$$T_{G}(x,x) = \int \frac{dy_{1}^{-} dy_{2}^{-}}{2\pi} e^{ixP^{+}y_{1}^{-}} \times \frac{1}{xP^{+}} \langle P, s_{\perp} | F^{+}_{\alpha}(0) \left[\epsilon^{s_{\perp}\sigma n\bar{n}} F_{\sigma}^{+}(y_{2}^{-}) \right] F^{\alpha+}(y_{1}^{-}) | P, s_{\perp} \rangle$$

□ Two tri-gluon correlation functions – color contraction:

 $T_G^{(f)}(x,x) \propto i f^{ABC} F^A F^C F^B = F^A F^C (\mathcal{T}^C)^{AB} F^B$ $T_G^{(d)}(x,x) \propto d^{ABC} F^A F^C F^B = F^A F^C (\mathcal{D}^C)^{AB} F^B$

Ji, **PLB289** (1992)

Quark-gluon correlation: $T_F(x,x) \propto \overline{\psi}_i F^C(T^C)_{ij} \psi_j$

D-meson production at EIC:

✤ Clean probe for gluonic twist-3 correlation functions
✤ $T_G^{(f)}(x,x)$ could be connected to the gluonic Sivers function

D-meson production at EIC

Kang, Qiu, PRD, 2008

Dominated by the tri-gluon subprocess:

- Active parton momentum fraction cannot be too large
- Intrinsic charm contribution is not important
- Sufficient production rate
- □ Single transverse-spin asymmetry:

$$A_{N} = \frac{\sigma(s_{\perp}) - \sigma(-s_{\perp})}{\sigma(s_{\perp}) + \sigma(-s_{\perp})} = \frac{d\Delta\sigma(s_{\perp})}{dx_{B}dydz_{h}dP_{h\perp}^{2}d\phi} \left/ \frac{d\sigma}{dx_{B}dydz_{h}dP_{h\perp}^{2}d\phi} \right.$$

SSA is directly proportional to tri-gluon correlation functions

July 31, 2009

Features of the SSA in D-production at EIC

Dependence on tri-gluon correlation functions:

 $D - \text{meson} \propto T_G^{(f)} + T_G^{(d)} \qquad \overline{D} - \text{meson} \propto T_G^{(f)} - T_G^{(d)}$ Separate $T_G^{(f)}$ and $T_G^{(d)}$ by the difference between D and \overline{D} \Box Model for tri-gluon correlation functions:

 $T_G^{(f,d)}(x,x) = \lambda_{f,d}G(x)$ $\lambda_{f,d} = \pm \lambda_F = \pm 0.07 \text{GeV}$ \Box Kinematic constraints:

$$x_{min} = \begin{cases} x_B \left[1 + \frac{P_{h\perp}^2 + m_c^2}{z_h (1 - z_h) Q^2} \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \ge 1 \\ x_B \left[1 + \frac{2m_c^2}{Q^2} \left(1 + \sqrt{1 + \frac{P_{h\perp}^2}{z_h^2 m_c^2}} \right) \right], & \text{if } z_h + \sqrt{z_h^2 + \frac{P_{h\perp}^2}{m_c^2}} \le 1 \end{cases}$$

Note: The $z_h(1-z_h)$ has a maximum

SSA should have a minimum if the derivative term dominates

July 31, 2009

Minimum in the SSA of D-production at EIC

\Box SSA for D⁰ production (λ_f only):

 $\boldsymbol{\ast}$ Derivative term dominates, and small $\boldsymbol{\phi}$ dependence

- **Asymmetry is twice if** $T_G^{(f)} = +T_G^{(d)}$, or zero if $T_G^{(f)} = -T_G^{(d)}$
- \clubsuit Opposite for the \bar{D} meson
- ✤ Asymmetry has a minimum ~ z_h ~ 0.5

July 31, 2009

Kang, Qiu, PRD, 2008

Maximum in the SSA of D-production at EIC

 \Box SSA for D⁰ production (λ_f only):

* The SSA is a twist-3 effect, it should fall off as $1/P_T$ when $P_T >> m_c$ * For the region, $P_T \sim m_c$, $\tilde{t} = (p_c - q)^2 - m_c^2 = -\frac{1 - \hat{z}}{\hat{r}}Q^2$

$$A_N \propto \epsilon^{P_h s_\perp n\bar{n}} \frac{1}{\tilde{t}} = -\sin\phi_s \frac{P_{h\perp}}{\tilde{t}}$$

Kang, Qiu, PRD, 2008

July 31, 2009

Jianwei Qiu

 $\hat{z} = z_h/z, \quad \hat{x} = x_B/x$

SSA of D-meson production at RHIC

July 31, 2009

SSA of D-meson production at RHIC

P_T dependence: $\sqrt{s} = 200 \text{ GeV}$ $\mu = \sqrt{m_c^2 + P_{h\perp}^2}$ $m_c = 1.3 \text{ GeV}$

July 31, 2009

What is the $T_F(x,x)$?

D Twist-3 correlation $T_F(x,x)$:

$$T_F(x,x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-}$$
$$\times \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \left[\int dy_2^- \epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

Twist-2 quark distribution:

$$q(x) = \int \frac{dy_1^-}{4\pi} e^{ixP^+y_1^-} \langle P, \vec{s}_T | \bar{\psi}_a(0) \gamma^+ \psi_a(y_1^-) | P, \vec{s}_T \rangle$$

T_F Represents a fundamental quantum correlation between quark and gluon inside a hadron

What the $T_F(x,x)$ tries to tells us?

rest frame of (p,s_T)

Consider
 a classical
 (Abelian)
 situation:

change of transverse momentum

$$\frac{d}{dt}p_2' = e(\vec{v}' \times \vec{B})_2 = -ev_3B_1 = ev_3F_{23}$$

- in the c.m. frame

 $(m, \vec{0}) \rightarrow \bar{n} = (1, 0, 0_T), \ (1, -\hat{z}) \rightarrow n = (0, 1, 0_T)$

$$\implies \frac{d}{dt}p'_2 = e \,\epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^{+}$$

- total change:
$$\Delta p'_2 = e \int dy^- \epsilon^{s_T \sigma n\bar{n}} F_{\sigma}^{+}(y^-)$$

 $T_F(x,x)$ probes a net asymmetry in parton transverse momentum caused by a color Lorentz force inside a spinning proton

Evolution Kernels

Given Segment And Feynman diagrams:

Kang, Qiu, PRD, 2009

LO for flavor non-singlet channel:

