Access Quark Information Through semi-Inclusive Deep-Inelastic Scattering Experiments at JLab-12 GeV

Xiaodong Jiang, Los Alamos National Laboratory.

July. 31, 2009. JLab-12GeV Workshop@Lanzhou Univ. China

- Opportunities of SIDIS at JLab-12GeV.
- How do we know when we hit a quark?
- Cross sections of SIDIS π production at NLO.
- Ratios of multiplicities carry quark information.
- My list of interesting SIDIS physics topics at JLab-12GeV.

SIDIS Program at JLab-12 GeV

A_{UT} trans. target SSA, Collins and Sivers asymmetries to access quark transversity and Sivers distribution function. $\pi^{+/0/-}$, K^{+/-} etc.

A_{LL} long. target double-spin asymmetries for quark spin-flavor decomposition, $\Delta u, \Delta d, \Delta u - \Delta d$

Hadron azimuthal distribution in SIDIS, like $cos(2\varphi)$, access transverse momentum dependent parton distributions. and more...

Three underline assumptions:

- Hard scattering at the vertex.
- Independent fragmentation (soft).
- Universality of Frag. Func.

Can we access quark information at JLab-12 GeV?

- > Hard scattering. How do we know when we hit a quark ?
- Fragmentation. Quark information carried out by hadron ?
- Universality of Frag. Func. Agree with e⁺e⁻, p+p data ?

Do we understand the fundamental cross sections in SIDIS, to Next-Leading-Order ?

Do we understand their relative relations, Q^2 , z, p_t and ϕ -dependencies ?

The first step of SIDIS program at JLab-12 GeV is to firmly establish the baseline of interpretation. What is the best evidence ?

Leading Order Cross Sections, contributions from each quark flavor

LO contributions from each quark flavor, on Deuteron and ³He

 $\sigma_q / \sigma_{all} = e_f^2 q_f \cdot D_f^h / \sum_i e_i^2 q_i \cdot D_i^h$

SIDIS cross sections at NLO

 $q(x,Q^2) \cdot D(z,Q^2) \Rightarrow \int \frac{dx'}{x'} \int \frac{dz'}{z'} q\left(\frac{x}{x'}\right) C(x',z') D\left(\frac{z}{z'}\right)$

$$\sigma^{h}(x,z) = \sum_{f} e_{f}^{2} q_{f} \left[1 + \otimes \frac{\alpha_{s}}{2\pi} \mathcal{C}_{qq} \otimes \right] D_{q_{f}}^{h} + \left(\sum_{f} e_{f}^{2} q_{f} \right) \otimes \frac{\alpha_{s}}{2\pi} \mathcal{C}_{qg} \otimes D_{G}^{h} + G \otimes \frac{\alpha_{s}}{2\pi} \mathcal{C}_{gq} \otimes \left(\sum_{f} e_{f}^{2} D_{q_{f}}^{h} \right)$$

Wilson co-efficiencies $C_{ij}(x,z)$ are well-known.

At NLO, gluon Frag. Func. are involved, limited number of unknowns. Many independent measurements help to constrain these unknowns within the framework of a global NLO-QCD fit.

NLO global fits of Fragmentation Functions

Fit compare with HERMES SIDIS data, R. Sassot et al. 2007.

For example, a measurement with CLAS12:

SIDIS π^+ , π^- , π^0 production on proton and deuteron targets

$$ep \rightarrow e \pi X$$
 $e(p+n) \rightarrow e \pi X$

Form ratios from measured yields N_{π^+}, N_{π^-}

Check kinematic dependence on Q², x_{bj} , z_{π} , P_t High Luminosity $10^{35} cm^{-2} s^{-1}$

	$E_0=11~{\rm GeV}$	$E_0{=}8.8~{\rm GeV}$	$E_0 = 6.6 \text{ GeV}$
Beam on LH_2	1000 hours	250 hours	250 hours
Beam on LD_2	1000 hours	250 hours	250 hours

Definition and cuts

$$z_{\pi} = \frac{E_{\pi}}{\nu}$$

* Virtual-photon nucleon CM

 $Q^2 > 1GeV^2, W > 2GeV, x_F > 0$

Cuts for pion on X_F, W'

Q2 vs. x, z vs. x, Pt vs. x

Check Q^2 dependence for a given z and x Check z dependence for a given Q^2 and x Check P_t dependence for a given Q^2 and x

Expected results: z-dependence

Expected results: Q2 dependence

(x, Q²) coverage. with beam energy 11,8.8 and 6.6 GeV

 $Q^2\mbox{-dependence}$, same $Q^2\mbox{-point}$ covered by different beam energy.

Combined-ratio of multiplicities

At LO no z-dependency. SU(2) symmetry in pdf and F.F.

Even at NLO, zdependency mostly canceled in the ratio.

ratios become completely determined by parton distributions.

A clear evidence to prove that parton information is preserved in the fragmentation process.

At 5.5 GeV, we already know from Hall C data ...

Hall C data at 5.5 GeV: combined-ratio of multiplicities

X=0.32, Q²=2.3 GeV².

Flat in 0.4<z<0.7

Agree with LO parton distribution ratios.

and the reason is ...

Neglect sea quarks and assume no p_t dependence of parton distribution functions

 \rightarrow Fragmentation functions drop out at Leading Order, due to SU(2) symmetry.

$$\rightarrow [\sigma_{p}(\pi^{+}) + \sigma_{p}(\pi^{-})] / [\sigma_{d}(\pi^{+}) + \sigma_{d}(\pi^{-})]$$

$$= [4u(x) + d(x)] / [5(u(x) + d(x))] \text{ independent of } z.$$

$$\rightarrow [\sigma_p(\pi^+) - \sigma_p(\pi^-)] / [\sigma_d(\pi^+) - \sigma_d(\pi^-)]$$

$$= [4u(x) - d(x)] / [3(u(x) + d(x))] \text{ independent of } z.$$

Kaon multiplicities

Cut on P_{K} <3.0 GeV/c, no RICH.

A planned RICH detector helps in:

- 1. Eliminate π contamination.
- Expand coverage to high-z, to study the transition to exclusive KY channels.

Kaon from the hit-quark ? Any hope to access s-quark information ? Need a detailed understanding of cross sections to ~2% level. Recall LO Cross Sections, contributions from each quark flavor.

$$\sigma_q / \sigma_{all} = e_f^2 q_f \cdot D_f^h / \sum_i e_i^2 q_i \cdot D_i^h \qquad (@z_h = 0.5)$$

A list of questions in SIDIS

- π Frag. Func. agree with e⁺e⁻, p+p data ?
- Fragmentation to other mesons: η , K_s^{0} , ρ , ω and ϕ . Ratio π^0/η .
- Connection between Frag. Func. to hadron structure.
- ϕ (s-sbar) in SIDIS carry information of s-quarks ? What about spin asymmetries, Sivers asymmetries ?
- Transition from SIDIS to the exclusive limit, a theory picture ?
- Λ production and Λ polarization. Spin-transfer, induced polarization, transverse spin asymmetry to access quark transversity.

Summary

- SIDIS@JLab-12GeV offers many new physics opportunities.
- Firmly establish the baseline of interpretation is the critical step.
- \bullet Understanding cross sections of $\pi\mathchar`-production$ to NLO level is the first step.