Pin-down the nature of the lowest 1/2- baryons

Evidence for a new Σ^* Resonance

Bing-Song Zou (Institute of High Energy Physics, CAS, Beijing)

Outline:

- Introduction
- A new scheme for the 1/2⁻ baryon nonet
- Evidence for the predicted $\Sigma^*(1/2^-)$
- Conclusion

1. Introduction

Successful for spatial
ground states !Prediction
experiment $m_{\Omega} \cong 1670 \text{ MeV}$ experiment $m_{\Omega} \cong 1672.45 \pm 0.29 \text{ MeV}$

Evidence for components other than 3q in the proton

Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process

 \rightarrow $\overline{d} - \overline{u} \sim 0.12$

Garvey&Peng, Prog. Part. Nucl. Phys.47, 203 (2001)

Meson cloud picture: Thomas, Speth, Weise, Oset, Brodsky, Ma, ... $|p > \sim |uud > + \varepsilon_1 | n (udd) \pi^+ (\overline{du}) >$ $+ \varepsilon_2 | \Delta^{++} (uuu) \pi^- (\overline{ud}) > + \varepsilon' | \Lambda (uds) K^+ (\overline{su}) > ...$

Penta-quark picture : Riska, Zou, Zhu, ... $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 | [\mathbf{ud}][\mathbf{ud}] \quad \mathbf{d} > + \varepsilon' | [\mathbf{ud}][\mathbf{us}] \quad \mathbf{s} > + \dots$

An outstanding problem for the classical 3q model

Mass order reverse problem for the lowest excited baryons

uud (L=1) $\frac{1}{2}$ - ~ N*(1535)should be the lowestuud (n=1) $\frac{1}{2}$ + ~ N*(1440)uds (L=1) $\frac{1}{2}$ - ~ Λ *(1405)

harmonic oscillator $(2n + L + 3/2)h\omega$

To understand the full baryon spectroscopy, it is crucial to understand the lowest 1/2⁻ baryon nonet first !

2. A new scheme for the 1/2⁻ baryon nonet

A.Zhang et al, HEPNP29(2005)250 ; B.S.Zou, EPJA35(2008)325

- $N^{*}(1535) \sim uud (L=1) + \varepsilon [ud][us] \overline{s} + ...$
- $N^{*}(1440) \sim uud (n=1) + \xi [ud][ud] d + ...$
- $\Lambda^{*}(1405) \sim uds (L=1) + \varepsilon [ud][su] u + ...$

N*(1535): [ud][us] s → larger coupling to Nη, Nη', Nφ & KΛ, weaker to Nπ & KΣ, and heavier !

Strange properties of N*(1535)

a) Assuming N_x to be purely N*(1535) : B.C. Liu, B.S. Zou, PRL96 (2006) 042002; PRL98 (2007) 039102

> From relative branching ratios of $J/\psi \rightarrow p \ N^* \rightarrow p \ (K^- \ \Lambda) / p \ (p\eta)$ $g_{N^*K\Lambda}/g_{N^*p\eta}/g_{N^*N\pi} \sim 2:2:1$

 b) N_x as dynamical generated with unitary chiral theory: N*(1535) + non-resonant part L.S.Geng, E.Oset, B.S. Zou, M.Doring, PRC79 (2009) 025203

 $g_{N*K\Lambda}/g_{N*p\eta}/g_{N*N\pi} \sim 1.2:2:1$

Phenomenology : Large $g_{N^*K\Lambda} \rightarrow large \ ss \ in \ N^*(1535)$ $\overline{s[su][ud]} \ or \ K\Lambda-K\Sigma \ state$

Evidence for large $g_{N^*K\Lambda}$ from $pp \rightarrow p K^+ \Lambda$

Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) B.C.Liu, B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002

Tsushima, Sibirtsev, Thomas, PRC59 (1999) 369, without including N*(1535)

FSI vs N*(1535) contribution in pp \rightarrow p K⁺ Λ

B.C.Liu & B.S.Zou, Phys. Rev. Lett. 98 (2007) 039102 (reply) A.Sibirtsev et al., Phys. Rev. Lett. 98 (2007) 039101 (comment)

Evidence for small $g_{N^*K\Sigma}$ from pp \rightarrow p K⁺ Λ /pp \rightarrow p K⁺ Σ^0

Fig. 3. The Λ/Σ^0 cross-section ratio as a function of the excess energy ϵ . The solid circles show the ratio obtained for the $pp \rightarrow K^+\Lambda p$ and $pp \rightarrow K^+\Sigma^0 p$ reactions at COSY [2]. Solid

A.Sibirtsev et al., EPJA29 (2006) 363

[2] P.Kowina et al., EPJA22 (2004) 293

Evidence for large $g_{N^*N\phi}$ from $\pi^-p \rightarrow n\phi$, $pp \rightarrow pp\phi$, $pn \rightarrow d\phi$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, nucl-th/09050260

Evidence for large $g_{N^*N\eta'}$ from $\gamma p \rightarrow p \eta'$, $pp \rightarrow pp\eta'$ M.Dugger et al., PRL96 (2006) 062001; X.Cao & X.Lee, PRC78(2008)035207

The new picture for the 1/2⁻ nonet predicts:

- $\Lambda^* \quad [us][ds] \quad \overline{s} \qquad \sim \quad 1575 \text{ MeV}$
- Σ^* [us][du] \overline{d} ~ 1360 MeV
- Ξ^* [us][ds] \overline{u} ~ 1520 MeV

Prediction of other unquenched models: (1) 5-quark model Helminen & Riska, NPA699(2002)624 $\Sigma^*(1/2^-) \sim \Lambda^*(1/2^-)$

(2) meson-baryon dynamics Jido-Oset et al., NPA725(2003)181 broad non-resonant $\Sigma^*(1/2^-)$ structure

Important to look for the $\Sigma^*(1/2^-)$ **around 1380 MeV !**

3. Evidence for the predicted $\Sigma^*(1/2^-)$

	$M_{\Sigma^{\star}(3/2)}$	$\Gamma_{\Sigma^{\star}(3/2)}$	$M_{\Sigma^*(1/2)}$	$\Gamma_{\Sigma^*(1/2)}$	$\chi^2/ndf({\rm Fig.1})$	$\chi^2/ndf({\rm Fig.2})$
Fit1	1385.3 ± 0.7	46.9 ± 2.5			68.5/54	10.1/9
Fit2	$1386.1\substack{+1.1 \\ -0.9}$	$34.9^{+5.1}_{-4.9}$	$1381.3^{+4.9}_{-8.3}$	$118.6\substack{+55.2\\-35.1}$	58.0/51	3.2/9

J.J.Wu, S.Dulat, B.S.Zou, PRD80 (2009) 017503

(a)

(b)

(c)

J/ψ decaybranching ratio * 104 $\bar{p} \Delta(1232)^+$ 3/2+<1</td> $\bar{\Sigma}^- \Sigma * (1385)^+$ 3.1 ± 0.5 3.1 ± 0.5 $\bar{\Xi}^+ \Xi * (1520)^ 5.9 \pm 1.5$

p N*(1535)⁺ 1/2- 10 ± 3 $\overline{\Sigma}^{-}\Sigma^{*}(1360)^{+}$? } SU(3) allowed $\overline{\Xi}^{+}\Xi^{*}(1530)^{-}$?

It is very important to check whether under the $\Sigma(1385)$ and $\Xi(1520)$ peaks there are $1/2^-$ components ?

Other evidence: failed to reproduce data with Σ *(1385)

LEPS, PRL102(2009)012501

Something new?

4. Conclusion

- 1) Quenched quark models and unquenched models gives very distinctive predictions for $\Sigma^*(1/2^-)$;
- Possible existence of a Σ*(1/2⁻) around 1380 MeV cannot be excluded although its evidence is not strong;
- 3) It should be checked by forthcoming experiments : $K^- p \rightarrow \pi \Sigma^*(1360), \Sigma^*(1360) \rightarrow \Lambda \pi$ $\gamma N \rightarrow K^+ \Sigma^*(1360), \Sigma^*(1360) \rightarrow \Lambda \pi$ $J/\psi \rightarrow \overline{\Sigma} \Sigma^*(1360), \Sigma^*(1360) \rightarrow \Lambda \pi$

