A Study of 3π production in $\gamma p \rightarrow n\pi^+\pi^+\pi^-$ and $\gamma p \rightarrow \Delta^{++}\pi^+\pi^-\pi^-$ with CLAS at Jefferson Lab

Aristeidis Tsaris
Florida State University

XVI International Conference on Hadron Spectroscopy
Newport News, VA
September 13-18, 2015
Photoproduction of 3π

- Exotic $\pi_1(1600) \rightarrow 3\pi$
 - Has a rich and controversial history

- Theoretical work suggests enhanced hybrid production with photon beams
 - Expect exotic meson production equal to $q \bar{q}$ meson production

- Very little photoproduction data events
 - Resents results from CLAS
 - Upcoming results from GlueX/CLAS12

- $n3\pi$ and $\Delta^{++}3\pi$ are complimentary channels
Jefferson Lab

CLAS spectrometer
Using the CLAS-g12 dataset we selected events with three charge pions, measured by the CLAS spectrometer and identified a neutron by energy and momentum conservation.
Enhance Peripheral Production

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

\[\begin{align*}
\text{Mass}(n, \pi^+) & \quad (\text{GeV}/c^2) \\
\text{Mass}(n, \pi^-) & \quad (\text{GeV}/c^2) \\
\text{Mass}(\pi^+ \pi^+ \pi^-) & \quad (\text{GeV}/c^2)
\end{align*} \]
Further Reducing the Baryon Background

$$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$$

$$\theta_{lab}[\pi_{\text{slow}}^+] < 25^\circ$$
Features of the 3π sample

$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

- **Mass** $(\pi^+ \pi^+ \pi^-)$
 - $M_{3\pi} < 1.5 \text{ GeV}$
 - $M_{3\pi} > 1.5 \text{ GeV}$

- **Mass** $(\pi^- \pi_{\text{slow}})$
- **Mass** $(\pi^- \pi_{\text{fast}})$
- **Mass** $(\pi^- \pi_{\text{fast}})$

- **Entries**
 - 528898
 - 328323
 - 184774
A mass independent pwa is performed using an event based likelihood fit.

To calculate the amplitudes we used helicity formalism in the reflectivity basis using the isobar model:

$$I(\tau) = \sum_{\kappa,\epsilon} |\sum_{\alpha} \epsilon^{\kappa} V_{\alpha}^{\epsilon} A_{\alpha}(\tau)|^2$$

For the current fit, a total of 17 partial waves were used in the high mass region and 13 partial waves in the low mass region.
Features of the partial waves of the 3π System for the $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

- **Mass** $(\pi^+ \pi^+ \pi^-)$
 - $M = 1.318$ GeV
 - $\Gamma = 0.105$ GeV

- **Mass** $(\pi^+ \pi^+ \pi^-)$
 - $M = 1.200$ GeV
 - $\Gamma = 0.367$ GeV

- **Intensity of 2++ D waves**

- **Intensity of 1++ S waves**

- **Phase difference between 1++1-S and 2++1-D waves**

- **Phase difference between 1++1+S and 2++1+D waves**

Curve is just to guide the eye
Features of the partial waves of the 3π System for the $\gamma p \rightarrow n\pi^+\pi^+\pi^-$

- **Intensity of 2-+ S waves**
 - $M = 1.670$ GeV
 - $\Gamma = 0.260$ GeV

- **Phase difference between 1-+1-P and 2-+1-S waves**

- **Intensity of 1-+ P waves**

- **Phase difference between 1-+1+P and 2-+1+S waves**

Curve is just to guide the eye

Preliminary
Using the CLAS-g12 dataset we selected events with four charge pions, measured by the CLAS spectrometer and identified a proton by energy and momentum conservation.
Kinematic Separation of the Δ^{++}

$\gamma p \rightarrow \Delta^{++} \pi^{+} \pi^{-} \pi^{-}$

Momentum Difference:

$|\vec{p}_{\pi_1}| - |\vec{p}_{\pi_2}|$ (GeV/c)

Background Δ^{++}

Signal Δ^{++}

Background Δ^{++}

Signal Δ^{++}

$\text{Mass}(p, \pi_{\text{fast}}^+)$ (GeV/c2)

$\text{Mass}(p, \pi_{\text{slow}}^+)$ (GeV/c2)
Data Selection and Background Reduction

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

+ \[M_{p\pi_{\text{slow}}^{+}} < 1.35 \]

Events/40 (MeV/c^2)^2

\[t' (\text{GeV/c}^2)^2 \]

Mass(\(p\pi\pi^-\pi_{\text{fast}}^-)) (\text{GeV/c}^2)

Mass(\(p\pi_{\text{slow}}\pi_{\text{slow}}^-)) (\text{GeV/c}^2)

Mass(\(p\pi_{\text{fast}}^-\)) (\text{GeV/c}^2)

Mass(\(\pi_{\text{slow}}^+\pi_{\text{slow}}^-\)) (\text{GeV/c}^2)

Black \rightarrow \text{Data}

Red \rightarrow \text{Data with Cuts}

Blue \rightarrow \text{MC with Cuts}
Features of the 3π sample

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

\[\text{Mass}(\pi^+ \pi^- \pi^-) \quad \text{GeV}/c^2 \]

\[M_{3\pi} < 1.5 \text{GeV} \]

\[(\text{GeV}/c^2)^2 \]

\[M^2(\pi^+, \pi^-_{\text{fast}}) \quad (\text{GeV}/c^2)^2 \]

\[M^2(\pi^+, \pi^-_{\text{slow}}) \quad (\text{GeV}/c^2)^2 \]

\[M^2(\pi^+, \pi^-_{\text{fast}}) \quad (\text{GeV}/c^2)^2 \]

\[M^2(\pi^+, \pi^-_{\text{slow}}) \quad (\text{GeV}/c^2)^2 \]

\[M_{3\pi} > 1.5 \text{GeV} \]
Partial Wave Analysis

- A mass independent pwa is performed using an event based likelihood fit
- To calculate the amplitudes we used helicity formalism in the reflectivity basis using the isobar model

\[I(\tau) = \sum_{\kappa,\epsilon} \left| \sum_{\alpha} \epsilon^\kappa V_{\alpha, \epsilon} A_{\alpha}(\tau) \right|^2 \]

- For the current fit a total of 13 partial waves were used in the high mass region and 9 partial waves in the low mass region
Features of the partial waves of the 3π System for the $\gamma p \rightarrow \Delta^{++}\pi^+\pi^-\pi^-$

- **Intensity of 2^{++} D waves**
 - $M = 1.318$ GeV
 - $\Gamma = 0.105$ GeV

- **Intensity of 1^{++} S waves**
 - $M = 1.260$ GeV
 - $\Gamma = 0.367$ GeV

- **Phase difference between $1^{++}1-$S and $2^{++}1-$D waves**

- **Intensity of 1^{++} D waves**

Curve is just to guide the eye

Preliminary
Features of the partial waves of the 3π System for the $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

Preliminary

leakage of $a_2(1320)$ into the P-wave

Total Intensity of 2-+ waves

The importance of the $J^{PC}=1^{-+}$ partial wave is still being investigated.
Summary

- $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$:
 - The $a_2(1320)$ and the $a_1(1260)$ are observed
 - The $\pi_2(1670)$ is observed
 - The $J^{PC}=1^{-+}$ appears to have no phase motion relative to the $\pi_2(1670)$

- $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$:
 - A first time PWA of the $\Delta^{++} 3\pi$ system
 - The $a_2(1320)$ and the $a_1(1260)$ are observed
 - The $\pi_2(1670)$ is observed
Back up slides

List of Waves used for the current Fit $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^e</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$1^{-/+}$</td>
<td>S,P,D</td>
<td>$\rho(770),\sigma$</td>
<td>6</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$1^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Isotropic background wave

$M_{3\pi} < 1.4 \text{ GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^e</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$1^{-/+}$</td>
<td>S,P,D</td>
<td>$\rho(770),\sigma$</td>
<td>6</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$1^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$1^{-/+}$</td>
<td>S,P,D</td>
<td>$\rho(770),f_2(1270)$</td>
<td>6</td>
</tr>
</tbody>
</table>

Isotropic background wave

$M_{3\pi} > 1.38 \text{ GeV}$
List of Waves used for the current Fit $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^ϵ</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$^{++}$</td>
<td>1$^{-/-}$</td>
<td>S,D</td>
<td>$\rho(770)$</td>
<td>4</td>
</tr>
<tr>
<td>2$^{++}$</td>
<td>1$^{-/-}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2$^{-+}$</td>
<td>1$^{-/-}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Isotropic Background Wave

$M_{3\pi} < 1.4 \text{ GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^ϵ</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$^{++}$</td>
<td>1$^{-/-}$</td>
<td>S,D</td>
<td>$\rho(770)$</td>
<td>4</td>
</tr>
<tr>
<td>2$^{++}$</td>
<td>1$^{-/-}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2$^{-+}$</td>
<td>1$^{-/-}$</td>
<td>S,P,D</td>
<td>$\rho(770), f_2(1270)$</td>
<td>6</td>
</tr>
</tbody>
</table>

Isotropic Background Wave

$M_{3\pi} > 1.35 \text{ GeV}$
Intensity of 2+ S waves

\[M = 1.640 \text{ GeV} \]
\[\Gamma = 0.260 \text{ GeV} \]

Intensity of 1+ P waves

Phase difference between 1+1+P and 2+1+S waves

\[\delta \phi \]

Curve is the phase motion of a pure 2+ wave only

Curves are the phase motion of a pure 2+ wave only

Preliminary