Inelastic Compton Scattering on The Deuteron

Neutron Polarizability Extraction

Hadron 2015

Berhan Demissie
GWU
Nucleon Scalar Polarizabilities

- Measure stiffness of charge and current distribution in the nucleons
- Nucleon mass splitting \(\sim \beta_{p-n} = \beta_p - \beta_n \)

 \[\text{Walker-Loud et al PhysRevLett.108.232301} \]
 \[\text{Gasser et al arXiv:1506.6747} \]

 ➤ Mirror Nuclei

 ➤ Big Bang Nucleosynthesis (BBN)

ChiPT Effective Field Theory

- Effective Lagrangian of Nucleons and Mesons which satisfy unitarity, analyticity, Lorentz, CPT, chiral symmetries.

 ➤ Counting rule and Expansion Parameters:

 \[Q(= q, m_\pi, m_\Delta - m) \]

 \[\text{Well-defined uncertainties } \sim Q^{n+1} \]

 \[\text{Model independent} \]
Latest values from \(p(\gamma, \gamma)p \) and \(d(\gamma, \gamma)d \)

\(\omega \sim m_\pi \) up to \(N^4\text{LO} \)

- Pion and \(\Delta(1232) \) degrees of freedom

\[\begin{align*}
\alpha_p &= 10.7 \pm 0.4\text{(stat)} \pm 0.2\text{(Baldin)} \pm 0.3\text{(theory)} \\
\beta_p &= 3.1 \pm 0.4\text{(stat)} \pm 0.2\text{(Baldin)} \pm 0.3\text{(theory)}
\end{align*}\]

\[\begin{align*}
\alpha_n &= 11.1 \pm 1.8\text{(stat)} \pm 0.4\text{(Baldin)} \pm 0.8\text{(theory)} \\
\beta_n &= 3.1 \pm 1.8\text{(stat)} \pm 0.4\text{(Baldin)} \pm 0.8\text{(theory)}
\end{align*}\]

- Treat all Compton data within the same framework
- Corroborate and improve accuracy of \(\alpha_n \) and \(\beta_n \) independently

\(d(\gamma, \gamma n)p \) in \(\chi\text{EFT} \)

\[d(\gamma, \gamma n)p \sim n(\gamma, \gamma)n \]

Non \(\chi \)EFT Approach

Why \(\chi \)EFT

- Model independent
- Well controlled uncertainties
- Treatment of the channel in \(\chi \)EFT
 - All Compton scattering data in the same framework

NQFP - neutron quasi-free peak kinematic region
- \(E_p \leq 1.1 \) MeV
- Polarizability sensitive \(E_\gamma \) : 200-400 MeV

Re-Analysis in \(\chi \)EFT Approach

- \(\alpha_n = 12.5 \pm 1.8 \text{(stat.)}^{1.1}_{-0.6} \text{(syst.)} \pm 1.1 \text{(mod.)} \)
- \(\beta_n = 2.7 \mp 1.8 \text{(stat.)}^{0.6}_{-1.1} \text{(syst.)} \mp 1.1 \text{(mod.)} \)
Impulse Approximation

\[\text{Born } + \]

\[\chi_{\text{EFT}} d(\gamma, \gamma n)p : \chi_{\text{EFT}} \]

\[\text{IA } \]

\[\text{FSI } & \text{ MEC } \]

\[\text{Results } \]

\[e^2 \delta^2 \]

\[e^2 \delta^3 \]

\[e^2 \delta^4 \]

\[N^3 \text{LP} \]
Final State Interaction

\[V_{ct} = C_s + \sigma_1 \cdot \sigma_2 C_t \]

- C_s and C_t fixed
- n p bound system: deuteron
 - \(E_b = 2.224 \text{ MeV} \)
- n p scattering
 - scat. length = -23.7 fm

Meson Exchange Current
Currently established values
\[\alpha_n = 11.55 \quad \beta_n = 3.65 \]
\[\chi^2 / d.o.f = 1.2 \]

No significant deuteron wave function dependence.
Currently established values

\[\alpha_p = 10.65 \quad \beta_p = 3.15 \]

\[\chi^2 / \text{d.o.f} = 3.4 \]

Scaling Factor : 0.93
Future Goals:

- Improve the description of proton quasi-free region
 - Establish consistent description of data from elastic Compton on the proton and quasi-free proton from inelastic Compton on the deuteron
- Extract α_n and β_n
- Extract $\gamma^{(n)}_{\pi}$
- Implementation which separates inelastic Compton events from elastic ones for Hiys experiments
Conclusion

- Neutron polarizability from $\gamma n \rightarrow \gamma n$

- χEFT is - model independent
 - well defined uncertainties

- Analyze all Compton data using the same framework – χEFT

- data-theory consistency shows discrepancy

- Stay tuned for more!

Thank You