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1.   Introduction and Motivation 



1.1  Hadronic Physics 

•  New era of precision experiments 
 Build amplitudes to look for exotics, hybrid mesons 

 
•  Require building blocks: 

–  ππ 
–  Kπ 

 
•  Precise tests of the Standard Model 

•  Look for physics beyond the Standard Model: High precision at low 
energy as a key to new physics? 
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ChPT + dispersion relations  



1.2   Chiral Symmetry 

•  Limit 
 
 
 
 
 
 
 
Symmetry: 

 

•  Chiral Perturbation Theory: dynamics of the Goldstone bosons (kaons, 
pions, eta) 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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   mu , md ≪ ms < ΛQCD

 Weinberg’s power counting rule 

p << 4 ~ 1 GeVH FππΛ =
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }



1.3   Chiral expansion 

•    

 
 
 
 

•  The structure of the lagrangian is fixed by chiral symmetry but not the 
coupling constants à LECs appearing at each order 

•  The method has been rigorously established and can be formulated as a 
set of calculational rules:  
 

LO :     tree level diagrams with 
 
 

NLO:   tree level diagrams with  
           1-loop diagrams with 
 
 

NNLO: tree level diagrams with  
                 2-loop diagrams with  
                 1-loop diagrams with one vertex from 
 

•  Renormalizable and unitary order by order in the expansion 
 

 

6 

LO : 
   O p2( ) NLO : 

   O p6( )NNLO :    O p4( )
  L2   LChPT =   +    L4  ....+  +    L6

  L2

  L4

  L2

  L6

  L2

  L4

   L2 :  F0 , B0

   
L4 = Li  

i=1

10

∑ O4
i ,

   
L6 = Ci  

i=1

90

∑ O6
i



•  Today’s standard in the meson sector: 2-loop calculations 
 

•  Main obstacle to reaching high precision: determination of the 
LECs: O(p6) LECs proliferation makes the program to pin down/
estimate all of them prohibitive 
 

•  In a specific process, only a limited number of LECs appear 
 
•  The LECs calculable if QCD solvable, instead 

–  Determined from experimental measurement 
–  Estimated with models: Resonances, large NC 

–  Computed on the lattice 
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1.5   ChPT in the meson sector: precision calculations 

Emilie Passemar 



2.   Success: ππ  scattering 



2.1  ππ scattering lengths 
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•  ππ  scattering computed early on, one of the first applications of  
SU(2) x SU(2)         converge better           

 the scattering lengths 
 
 

 
•  At NLO: 

 
 
 
 
 

•  Higher order corrections are suppressed by O(m/Λ) , Λ = O(1GeV)                  
        expected to be a few percent 

 

 Gasser & Leutwyler’83 



2.1  ππ  scattering lengths 
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•  This momentum dependence is reflected in a chiral log in aI
0 

How large are yet higher orders? 
Is it at all possible to make a precise prediction? 

G. Colangelo 



2.2  Roy equations 
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•  Unitarity effects can be calculated exactly using dispersive methods 
 
•  Unitarity, analyticity and crossing symmetry ≡ Roy equations 
 
•  Input: imaginary parts above 0.8 GeV 

           two subtraction constants, e.g.      and 
 

•  Output: the full ππ scattering amplitude below 0.8 GeV  
                      extended recently up to 1.15 GeV 
 

•  Numerical solutions of the Roy equations 
Pennington-Protopopescu, Basdevant-Froggatt-Petersen (70s)  
Bern group: Ananthanarayan, Colangelo, Gasser and Leutwyler’00 
                   Caprini, Colangelo, Leutwyler’11 
Orsay group: Descotes-Genon, Fuchs, Girlanda and Stern’01 
Madrid-Cracow group: Garcia-Martin, Kamisnki  Pelaez, Ruiz de Elvira, Yndurain’11 

  a0
0

  a2
0



2.3  Combining ChPT and dispersion relations:  
       A happy marriage 
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•  In ChPT the two subtraction constants are predicted  

•  Subtracting the amplitude at threshold (     ,    ) is not mandatory 
 

•  The freedom in the choice of the subtraction point can be exploited to use 
the chiral expansion where it converges best, i.e. below threshold 

•  The convergence of the series at 
threshold is greatly improved 
-  ChPT at threshold:  

-  ChPT below threshold + Roy 

G. Colangelo 

  a0
0

  a2
0



2.4  Chiral Predictions for     and   
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Where can we test these predictions?  
 

•  Production experiments πN → ππN, ψ → ππω, B → Dππ, . . . 
 

•  Extraction of ππ scattering amplitude is not simple 

•  Best accuracy in Kl4 data, K → 3π, ππ atoms 

Colangelo, Gasser & Leutwyler’01 

  a0
0

  a0
2



 
 

 
•  With the new much more precise NA48 data it seemed that there was a 

disagreement          isospin breaking corrections  

2.5  Experimental tests 
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 H. Leutwyler 



2.6  On the importance of isospin breaking corrections 
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•  Isospin breaking computed recently   

              Perfect agreement!   

 H. Leutwyler 

Colangelo, Gasser, Rusetsky’09 
Bernard, Descotes-Genon, Knecht ‘13   
 



2.7  ππ  as a building block 

 
 
 

 
 

Emilie Passemar 16 

•  Extremely precise extraction of ππ scattering using ChPT and dispersion 
relations 

•  Similar works done solving Roy-Steiner equations for  
–  Kπ  :  Buettiker, Descotes-Genon, Moussallam’07 
–  πN :  Hoferichter, Ruiz de Elvira, Kubis, Meißner’15 

•  Compare to lattice results          see Talk by J. Dudek 
 
•  Use these as building blocks for phenomenology: 
–  ππ   rescattering:  e.g., π form factors, e+e- → ππ, γγ → ππ,  
ω/φ/η→ 3π,  τ → 3πντ, J/Ψ→γπ0π0. B →3π, B → J/Ψππ, etc. 

–  Kπ   rescattering: e.g., Kπ form factors, K → ππeνe, τ → Kπντ, ���
τ → Kππντ, D → Kππ, B → Kπ 

 

 
 
 
  



2.7  ππ  as a building block 
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 H. Leutwyler 

Garcia-Martin et al’09 



3.  η  → 3π  and light quark masses 



3.1   η→ π+ π- π0  

•  Decay forbidden by isospin symmetry 
 
 
 

 

•          effects are small         Sutherland’66, Bell & Sutherland’68 
          Baur, Kambor, Wyler’96, Ditsche, Kubis, Meissner’09 

 

•  Decay rate measures the size of isospin breaking (mu − md) in the SM:  
 

 

             Clean access to (mu− md) 
 

 
 

•   
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3.2   ChPT 

•  Slow convergence of the chiral series (SU(3) ChPT) 

 

•  CHPT amplitudes have problems with measured Dalitz plot distributions 

•  Main deficiency: strong ππ rescattering included only perturbatively 

•  Large ππ  final state interactions  
 

        call for a dispersive treatment :  
–  analyticity, unitarity and crossing symmetry 
–  Take into account all the rescattering effects 

 
•  Match to CHPT amplitude to obtain Q from rates 

 
      

 
 

 
Γη→3π = 66 + 94 +100 + ...( )eV = 300 ±12( )eV

LO NLO NNLO 

LO: 
NLO: 
 NNLO: PDG’14 

Osborn, Wallace’70 

Gasser & Leutwyler’85 

 Bijnens  & Ghorbani’07 
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3.3   Dispersive method 

•  Decomposition of the amplitude as a function of ππ  isospin states  
 
  
 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 

•  Unitary relation for MI(s): 

 
 
 
 
 

 
 
 
 
 
 
 

 

 
      
 

 
 
              
 
 
 

 
 

 
 
 
 

 
 
 
 

 
 

( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM
Fuchs, Sazdjian & Stern’93 

Anisovich & Leutwyler’96 

  
disc MI (s) = 2i  MI (s) + M̂I (s)( )  sinδ I (s)e− iδ I (s)θ s − 4Mπ

2( )
right-hand cut  left-hand cut  

G. Colangelo, S. Lanz,  
H. Leutwyler , E.P., in progress 
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3.3   Dispersive method 
 

•  Unitary relation for MI(s): 

 
•  Dispersion relation for the MI’s 

 
 
 
 
 

•                     : singularities in the t and u channels, depend on the other   
        subtract           from the partial wave projection of                           
        Angular averages of the other functions        Coupled equations 
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G. Colangelo, S. Lanz,  
H. Leutwyler , E.P. 
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From unitarity to integral equation

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(s)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s− iϵ)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Khuri, Treiman 1960
Aitchison 1977

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Precision tools in hadron physics for Dalitz plot studies – p. 12



3.4   Combining ChPT and dispersion relations 

•  As for ππ,  combine dispersion relations with ChPT where it works the best 

•  Use representation holding up to and including NNLO  
ππ partial-wave discontinuities for l = 0,1 only and I=0,1,2           

•  Interesting matching point: Adler zero 
The real part of the amplitude along the line s=u has a zero 
Chiral SU(2) prediction          small higher order corrections             

 

 
      

 
 

Anisovich & Leutwyler’96  
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3.5   Different recent analyses 

1.  Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach 
Allows investigation of isospin-violating corrections 
 

2.  Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach 
Match to absorptive part of NNLO chiral amplitude where differences 
between NLO and NNLO are small           R (Q)  

    Problem: do not reproduce the Adler’s zero 
 
3.  Guo et al. 2015: JPAC analysis, Khuri-Treiman equations solved 

numerically using Pasquier inversion techniques 
-  Madrid/Cracow ππ phase shifts, 3 subtraction constants 
-  Match to NLO ChPT near Adler zero          Q 

4.  Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following 
Anisovich, Leutwyler 
–  Electromagnetic effects to NLO fully taken into account (Ditsche, 

Kubis, Meißner’09) 
–  Matching to one loop ChPT : Taylor expand the partial wave around s=0 

 
 
 

 
      

 
 

See talk by V. Mathieu 
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3.6   Dalitz plot parameters: Charged channel 

•  Dalitz plot measurement of  η→ π+ π- π0  
 

Amplitude expanded in X and Y around X=Y=0 

 
      

 
 

  Ac s, t,u( ) 2
= N 1 + aY + bY 2 + dX 2 + fY 3( )
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C. Fernandez-Ramirez 
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See talks by Daniel Lersch (WASA), Liqing Qin (BESSIII) 
  



3.7  Comparison of results for α : neutral decay 

Preliminary 

  An s, t,u( ) 2
= N 1 + 2α Z( )

  Z = X 2 +Y 2

•  Dalitz plot measurement  
of  η→ 3π0  
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Preliminary 

3.8  Quark mass ratio 

 
 
 
 
•  M(s,t,u) determined through  

the dispersive analysis of  
the data but for N one has  
to rely on ChPT 
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3.9  η → 3π and light quark masses 
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 H. Leutwyler 



4.   Conclusion and outlook 



4.1  Conclusion 

Emilie Passemar 

•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Build amplitude using a power counting scheme       

 

    precise predictions in the meson sector 
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 ChPT

Garcia-Martin et al’09 



4.1  Conclusion 
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•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Build amplitude using a power counting scheme       
–   precise predictions in the meson sector 

 
•  But when one wants to go to higher energy or more precise prediction 

        nicely complement by dispersion relation: analyticity, unitarity, 
crossing Ex: ππ scattering, η à 3π 

 
 

 

 

 
 
 
  

 ChPT  Dispersion Relations

Garcia-Martin et al’09 



4.2  Outlook: Challenges for the future 
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•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Build amplitude using a power counting scheme       
–   precise predictions in the meson sector 

 
•  But when one wants to go to higher energy or more precise prediction 

        nicely complemented by dispersion relation: analyticity, unitarity, 
crossing Ex: ππ scattering, η à 3π 

 
 

 

 

 
 
 
  

 ChPT  Dispersion Relations

? 
Garcia-Martin et al’09 



4.2  Outlook: Challenges for the future 
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•  What can we do if one wants to explore the intermediate energy region:  
resonance appear         not taken into account by ChPT 
         Include coupled channels: 
–  Analytically: e.g. dispersive approach, unitary coupled channel (Ed Berger talk) 
     Ex: ππ scalar form factors (ππ and KK), Donoghue, Gasser, Leutwyler’90,  
      Moussallam’99, Daub et al’13, Celis, Cirigliano, E.P.’14     
             see Christoph Hanhart’s talk 

 

 

 
 
 
  

 "σ "

0f

Celis, Cirigliano, E.P.’14     
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4.2  Outlook: Challenges for the future 
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•  What can we do if one wants to explore the intermediate energy region:  
resonance appear         not taken into account by ChPT 
         Include coupled channels: 
–  Analytically: e.g. dispersive approach, unitary coupled channel (Ed Berger talk) 
     Ex: ππ scalar form factors (ππ and KK), Donoghue, Gasser, Leutwyler’90,  
      Moussallam’99, Daub et al’13, Celis, Cirigliano, E.P.’14     
             see Christoph Hanhart’s talk) 
 

 

 

 
 
 
  

0f

Celis, Cirigliano, E.P.’14     
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4.2  Outlook: Challenges for the future 

 
 
 

 
 

•  What can we do if one wants to explore the intermediate energy region:  
resonance appear         not taken into account by ChPT 
         Include coupled channels: 
–  Analytically: e.g. dispersive approach, unitary coupled channel (Ed Berger talk) 
     Ex: ππ scalar form factors (ππ and KK), Donoghue, Gasser, Leutwyler’90,  
      Moussallam’99, Daub et al’13, Celis, Cirigliano, E.P.’14     
             see Christoph Hanhart’s talk) 
      γγ → ππ, KK Dai & Pennington’13, η à 3π Albaladejo & Moussallam’15 
 

–  Lattice QCD: see Jo Dudek’s talk 
     Ex: ππ, KK scattering, P wave Wilson, Briceno, Dudek, Edwards, Thomas’15 
           Kπ and Kη scattering Hadron spectrum, Wilson, Dudek, Edwards, Thomas’14 
 

              Include resonances: see talk by Ed Berger 
–  RChPT, Unitarized ChPT e.g., Pelaez, Oller, Oset’99 
–  Lattice with Unitarized ChPT  Bolton, Briceno, Wilson’15 

 
•  If one wants to explore the full Dalitz plot in B, D decays          N/D  

Oller and Oset’98 
     

 
 
 

 

 
 
 
  

see talk by A. Jackura 



5.   Back-up 



4.1  Precision Physics at intermediate energies 
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•  ChPT is a very interesting tool at low energy 
–  Model independent 
–  Rely on unitarity, analyticity 
–  Build amplitude using a power counting scheme       
–   precise predictions in the meson sector but unknowns LECs to be 

determined 
 
 

•  But when one wants to go to higher energy or more precise prediction 
        nicely complement by dispersion relation 
 

Ex:  ππ scattering, η à 3π 

•  Still if one wants to explore the intermediate energy region: resonance 
appear         not taken into account by ChPT            
–  For ππ:  I=1: ρ(770),  ρ(1450), ρ(1700), …,  I=0: “σ(~500)”, f0(980),… 

–  For Kπ: I=1: K*(892), K*(1410), K*(1680), …,  I=0: “κ(~800)”, … 
 

 

 

 
 
 
  



1.4   Construction of an effective theory: ChPT 

•  Degrees of freedom: Goldstone bosons (GB) 
 

Symmetry group: 
  
•  Build all the corresponding invariant operators including explicit 

symmetry breaking parameters 

•  Goldstone bosons interact weakly at low energy and  
        expansion organized in external momenta and quark masses    

                                                                                Weinberg’s power counting rule 
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(3) (3)L RG SU SU≡ ⊗

( ),ChPT U χ≡L L

GB’s Masses ~ mq 

,u d s QCDm m m < Λ=

p << 4 ~ 1 GeVH FππΛ =
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }



2.1  Low energy constants 
���
���
	


 

 

 
 
 
 
 
 
 
 

 

Emilie Passemar 39 

•  Recent fit by Ecker and Bijnens of NLO LECs Li (i = 1,…,10)  and 
NNLO LECs Ci (i = 1,…,90) 
Update and extension of Bijnens, Jemos  2012 

 
 

•  New ingredients:   
–  relations li  (Li ; Ci  ) (j  = 1,…, 4) Gasser, Haefeli, Ivanov, Schmid 2007 

       altogether 17 input data 
–  penalize bad convergence of meson masses 
–  intelligent guesses (priors) for 34 (combinations of the ) Ci 
–  renormalization scale  µ = 0.77 GeV 
 
 

•  Fitting procedure: 
–  minimization/random walk in restricted Ci –space 
–  iterate after possible modication of Ci –space 
–  normal  χ2 fit for Li  for (fixed) “best" values of the Ci 

                     “best" values for Li 

 
      

 
 



2.1  Low energy constants 

•  Strong sensitivity to (large-Nc) suppressed L4          
        enforce small L4 (supported by lattice), 103 Lr

4= 0.3;  
NLO: 0.3 ≤ 103 Lr

4 ≤ 0.3 fixed à LA = 2 L1-L2 and L6 automatically suppressed 

•  NNLO only makes sense with certain set of Cr 

•  Except for last column: no estimate of higher-order uncertainties 
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L5

 



2.1  Low energy constants 

•  Reasonable convergence of observables (enforced for masses)  

•  Qualitative evidence for resonance saturation, even for scalars 
 

•   Last 3 columns: good stability 
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L5

 



1.4   Construction of an effective theory: ChPT 

•  Degrees of freedom: Goldstone bosons (GB) 
 

Symmetry group: 
  
•  Build all the corresponding invariant operators including explicit 

symmetry breaking parameters 
     

•  Goldstone bosons interact weakly at low energy and  
        expansion organized in external momenta and quark masses    

                                                                                Weinberg’s power counting rule 
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(3) (3)L RG SU SU≡ ⊗

    LChPT ≡ LQCD
0 +Lm

,u d s QCDm m m < Λ=

p << 4 ~ 1 GeVH FππΛ =
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }

with    Lm = −qMq ,    M = diag mu , md , ms( )



1.4   Chiral expansion 

•    

•  Renormalizable and unitary order by order in the expansion 

•  The structure of the lagrangian is fixed by chiral symmetry but not 
the coupling constants à LECs appearing at each order 

 

•  LECs describe the influence of heavy degrees of freedom not 
contained in the ChPT lagrangian 

•  Naturalness: LECs of order one  
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LO : 
   O p2( ) NLO : 

   O p6( )NNLO :    O p4( )
  L2   LChPT =   +    L4  ....+

   L2 :  F0 , B0 ,
   
L4 = Li  

i=1

10

∑ O4
i ,

   
L6 = Ci  

i=1

90

∑ O6
i

  +    L6



2.2  Pion polarizabilities: success of ChPT at NNLO 
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•  New ingredients:   
–  relations li  (Li ; Ci  ) (j  = 1,…, 4) Gasser, Haefeli, Ivanov, Schmid 2007 

       altogether 17 input data 
–  penalize bad convergence of meson masses 
–  intelligent guesses (priors) for 34 (combinations of the ) Ci 
–  renormalization scale  µ = 0.77 GeV 
 
 

•  Fitting procedure: 
–  minimization/random walk in restricted Ci –space 
–  iterate after possible modication of Ci –space 
–  normal  χ2 fit for Li  for (fixed) “best" values of the Ci 

                     “best" values for Li 

 
      

 
 



1.5   ChPT in the meson sector: precision calculations 

•    

 
 
•  The structure of the lagrangian is fixed by chiral symmetry but not 

the coupling constants à LECs appearing at each order 
 

•  LECs describe the influence of heavy degrees of freedom not 
contained in the ChPT lagrangian 

 

•  Naturalness: LECs of order one  
 

•  Today’s standard in the meson sector: 2-loop calculations 
 

•  Main obstacle to reaching high precision: determination of the LECs 
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LO : 
   O p2( ) NLO : 

   O p6( )NNLO :    O p4( )
  L2   LChPT =   +    L4  ....+

   L2 :  F0 , B0 ,
   
L4 = Li  

i=1

10

∑ O4
i ,

   
L6 = Ci  

i=1

90

∑ O6
i

  +    L6



Emilie Passemar 46 

•  ChPT : Calculations at 
–  NLO  
–  NNLO 

 
•  Prediction obtained matching O(p6) χPT to Roy equations (disp. relations) 

 

•  Adding the uncertainties in quadrature:  
 

 

2.4  Chiral Predictions for  



3.3   Different recent analyses 

1.  Schneider, Kubis, Ditsche 2011: 2-loop NREFT approach 
-  allows investigation of isospin-violating corrections 
-  relations between charged and neutral Dalitz plots 
 
 

2.  Kampf, Knecht, Novotny, Zdrahal 2011: Analytic dispersive approach 
-  Amplitudes involve 6 parameters (subtraction constants) 
-  Fit to Dalitz plot distribution (KLOE 2008: η → π+π−π0) 
-  Predict Dalitz plot parameter α (neutral decay mode) 
-  Match to absorptive part of NNLO chiral amplitude where differences 

between NLO and NNLO are small           R (Q)  
    Problem: do not reproduce the Adler’s zero 
 
 

 
      

 
 



3.3   Different recent analyses 

3.  Guo et al. 2015:  JPAC analysis, Khuri Treiman equations solved 
numerically using Pasquier inversion techniques 
-  Madrid/Cracow ππ phase shifts, 3 subtraction constants 
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         predict Dalitz plot parameter α 
-  Match to NLO ChPT near Adler zero          Q 

4.  Colangelo, Lanz, Leutwyler, E.P. in progress: dispersive approach following 
Anisovich, Leutwyler 
-  Electromagnetic effects to NLO fully taken into account (Ditsche, Kubis, 

Meißner’09) 
-  Dispersive amplitudes: Bern ππ phase shifts, 6 subtraction constants 
-  Fit similtanously Charged (WASA, KLOE) and Neutral Dalitz plots 

(MAMI) 
-  Matching to one loop ChPT : Taylor expand the partial wave around s=0 
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3.4   Dalitz plot parameters 

•  Dalitz plot measurement : Amplitude expanded in X and Y around X=Y=0 
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3.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
•  All the data give consistent results. The preliminary outcome for Q is 

intermediate between the lattice result and the one of Kastner and Neufeld.   

NB: Isospin breaking  
has not been accounted for 

  Q = 20.7 ±1.2
From kaon mass spliting : 

Kastner & Neufeld’08 



3.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
 
 

•  All  our preliminary results give a negative value for α. In particular the result 
using KLOE data for η→ π+ π- π0 is in perfect agreement with the PDG value! 

NB: Isospin breaking  
has not been accounted for 


