## Recent Results on J/ψ Radiative Decays at BESII

### Yao Qin Peking University (for the BESIII Collaboration)

XVI International Conference on Hadron Spectroscopy September 13-18, 2015 Newport News, VA





## Outline

• Introduction

- Selected results on  $J/\psi$  radiative decays
  - ✓ Observation of X(1835) in J/ $\psi$ → $\gamma K_s K_s \eta$
  - ✓ Model independent PWA of J/ $\psi$ → $\gamma \pi^0 \pi^0$
  - ✓ PWA of J/ $\psi$ → $\gamma \phi \phi$
- Summary

### **BEPCII and BESIII**



## Introduction

**QCD** allows hadrons beyond conventional meson and baryon

- Multiquark state: more than 3 quarks
- Hybrid state:  $q\bar{q}g$
- Glueball: gg, ggg, ...

 $\square$  Radiative J/ $\psi$  decays provide ideal laboratory to search for glueballs and hybrids

□ Many new hadrons have been observed at BESIII, but unclear nature

-  $X(p\bar{p})$ , X(1810), X(1835), X(1840), X(1870), X(2120), X(2370), ...

 $\square$  BESIII has collected the largest J/ $\psi$  data sample in the world

- 1.3 billion  $J/\psi$  events taken in 2009 and 2012

## **X(1835) review**

- Observed in  $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$  at BESII in 2005
- Nature unclear, interpretations include  $p\bar{p}$  bound state, excited  $\eta$ ', glueball
- Confirmed in  $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$  at BESIII
- Angular distribution consists with pseudoscalar, but other spin-parity assignments not excluded



## **X(1835) review**

- Simulated by  $p\bar{p}$  threshold enhancement  $X(p\bar{p})$  in  $J/\psi \rightarrow \gamma p\bar{p}$
- Results in the observations of X(1870) in  $J/\psi \rightarrow \omega(\eta \pi^+ \pi^-)$  and X(1840) in  $J/\psi \rightarrow \gamma 3(\pi^+ \pi^-)$
- Are these states observed around 1.8  $\text{GeV/c}^2$  from the same origin?
- Further investigations on different production and decay mechanisms, precise physical parameters measurement are necessary

### Possible channels: $J/\psi \rightarrow \gamma / \omega / \phi + \eta^{(')}\pi\pi / K\overline{K}\eta / K\overline{K}\pi_{a}$



## Observation of X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$

1.3 billion J/ψ events **PRL** 115, 091803 (2015) □ Why this channel? 350 500 - Unlike  $I/\psi \rightarrow \gamma K^+ K^- \eta$ , no background +Data 300 +Data 200 ge//c 200 ge//c GeV/c<sup>2</sup> Background Background from two potential but forbidden channels -MC -MC of  $J/\psi \rightarrow K_s K_s \eta$  and  $J/\psi \rightarrow K_s K_s \eta \pi^0$ Events / 0.02 20 300 Events , □ Clear structure on mass spectrum 200 100 of  $K_s K_s \eta$  around 1.85 GeV/c<sup>2</sup> 100 50 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4  $M_{K_{e}^{0}K_{e}^{0}n}$  (GeV/c<sup>2</sup>)  $M_{K_{c}^{0}K_{c}^{0}}$  (GeV/c<sup>2</sup>) □ Strong correlation with the enhancement near K<sub>s</sub>K<sub>s</sub> mass 2.4  $M(K_{\rm S}K_{\rm S}) < 1.1 \ {\rm GeV/c^{2-}}$ 70ŀ threshold (interpreted as  $f_0(980)$ ) +Data 2.2 Data 60 Background GeV/c<sup>z</sup> -MC 50 0.02 40 □ Structure is enhanced for Events / 30  $M(K_{S}K_{S}) < 1.1 \text{ GeV/c}^{2}$ 20 1.2 1.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  $M_{K_{c}^{0}K_{c}^{0}n}$  (GeV/c<sup>2</sup>)  $M_{K_s^0K_s^0\eta}$  (GeV/c<sup>2</sup>)

### Observation of X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$

### **D** PWA for $M(K_S K_S) < 1.1 \text{ GeV/c}^2$

### Two resonant pseudoscalar components are required in nominal solution

X(1835) → K<sub>s</sub>K<sub>s</sub>η (> 12.9  $\sigma$ ) dominated by f<sub>0</sub>(980) production m = 1844±9<sup>+16</sup><sub>-25</sub> MeV/c<sup>2</sup>  $\Gamma = 192^{+20+62}_{-17-43}$  MeV  $\mathcal{B}(J/\psi \rightarrow \gamma X(1835)*\mathcal{B}(X(1835) \rightarrow K_sK_s\eta))$ =(3.31<sup>+0.33</sup>+1.96)</sup>\*10<sup>-5</sup>

X(1560) → 
$$f_0(980)\eta$$
 (> 8.9 σ)  
m = 1565±8<sup>+0</sup><sub>-63</sub> MeV/c<sup>2</sup>  
Γ = 45<sup>+14+21</sup><sub>-13-28</sub> MeV

### 80 $\chi^2/n_{\rm bin} = 1.40$ + Data Events / 0.02 GeV/c<sup>2</sup> 70 MC Projection Background 60Ē ---- X(1835) ---- X(1560) 50Ē ··· Phase space 40Ē 30Ē 20 10

1.8

2.0

2.2

 $M_{K_e^0K_e^0n}$  (GeV/c<sup>2</sup>)

24

2.6

2.8

PRL 115, 091803 (2015)

## Observation of X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$

**The** X(1835)  $0^{-+}$  hypothesis is significantly better than the  $1^{++}$  or  $2^{-+}$  hypotheses

**Compared with previous measurements:** 

- ✓ Consistent with the values obtained from  $J/\psi \rightarrow \gamma \eta^{*} \pi^{+} \pi^{-}$
- ✓ The mass of X(1835) consists with the X( $p\bar{p}$ ) mass, while the width of X( $p\bar{p}$ ) is significantly narrower
- ✓ Both  $X(p\overline{p})$  and X(1835) are pseudoscalars

| State   | Jpc | Decay Mode                          | Mass (MeV/c <sup>2</sup> )           | Width (MeV)                     | Product Branching Ratio                               | Significance    |
|---------|-----|-------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------------------|-----------------|
| X(1835) | 0-+ | <i>K<sub>s</sub>K<sub>s</sub></i> η | $1844 \pm 9^{+16}_{-25}$             | $192^{+20}_{-17}{}^{+62}_{-43}$ | $(3.31^{+0.33}_{-0.30} {}^{+1.96}_{-1.29})*10^{-5}$   | > <b>12.9</b> σ |
| X(1835) |     | <b>π</b> + <b>π</b> -η′             | $1836.5 \pm 3.0^{+5.6}_{-2.1}$       | $190 {\pm} 9^{+38}_{-36}$       | $(2.87 \pm 0.09 \substack{+0.49 \\ -0.52})*10^{-4}$   | > 20 σ          |
| X(pp)   | 0-+ | р <del>р</del>                      | $1832^{+19}_{-5}{}^{+18}_{-17}\pm19$ | <76@90%C.L.                     | $(9.0^{+0.4}_{-1.1}{}^{+1.5}_{-5.0}{\pm}2.3)*10^{-5}$ | > <b>30</b> σ   |

red: PRL 115, 091803 (2015) blue: PRL 106, 072002 (2011) black: PRL 108, 112003 (2012)

- □ The mass and width of the X(1560) are consistent with those of  $\eta(1405) / \eta(1475)$  within 2.0  $\sigma$
- More statistics in this channel and an amplitude analysis of  $J/\psi \rightarrow \gamma \eta \pi^0 \pi^0$  and  $J/\psi \rightarrow \gamma K_s K_s \pi^0$  processes may help to understand the nature of the X(1560)

### Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

- □ The lowest glueball predicted by LQCD should be a scalar state lying at 1.5-1.7 GeV/c<sup>2</sup>
- □ J/ψ radiative decays into two pseudoscalar mesons (ηη, ππ, ηη') offers a clean environment to search for scalar and tensor glueballs
- □ BESIII has analyzed the  $J/\psi \rightarrow \gamma \eta \eta$  channel using model-dependent PWA
  - ✓  $f_0(1710)$  and  $f_0(2100)$  are dominant scalars,  $f_0(1500)$  exists
  - ✓  $f_2'(1525)$  is the dominant tensor,  $f_2(1810)$  and  $f_2(2340)$  exist
  - ✓ Production rate of  $f_0(1710)$  is compatible with LQCD's prediction on scalar glueball



### Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

### $\square$ $\pi^0\pi^0$ system: only significant 0<sup>++</sup> and 2<sup>++</sup> contributions

- Very **clean** channel, while  $J/\psi \rightarrow \gamma \pi^+ \pi^-$  suffers from large ratio of  $\rho \pi$  background
- Compared with  $\eta\eta$  system, larger statistics and more open channels
- Many broad and overlapping resonances (parameterization challenging)
- Model independent PWA



### Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$



# **PWA of J/\psi \rightarrow \gamma \phi \phi**

- □ Ground-state glueball mass prediction by LQCD
  - 0<sup>-+</sup>: 2.3~2.6 GeV/c<sup>2</sup>
  - $2^{++}$ : 2.3 ~2.4 GeV/c<sup>2</sup>
- $\Box$   $\phi\phi$  system observations
  - $0^{-+}$ :  $\eta(2225)$  was observed in  $J/\psi \rightarrow \gamma \phi \phi$ , very little knowledge for those above 2 GeV/c<sup>2</sup>
  - $2^{++}$ : broad structures around 2.3 GeV/c<sup>2</sup> in  $\pi$ -N reactions and  $p\bar{p}$  central collisions

### | J/ψ→γφφ @ BESIII

both  $\phi$  are reconstructed from K<sup>+</sup>K<sup>-</sup> (one Kaon is missing)

### **1.3 billion** $J/\psi$ **events**



### PWA of $J/\psi \rightarrow \gamma \phi \phi$



 $(2.74 \pm 0.15^{+0.16}_{-1.48})$ 

 $6.8\sigma$ 

 $0^{-+}$  PHSP

Dominant 0<sup>-+</sup> contribution - η(2225) is confirmed - η(2100) and X(2500) are observed

■ The three tensors  $f_2(2010)$ ,  $f_2(2300)$  and  $f_2(2340)$  stated in  $\pi$ -p reactions are also observed with a strong production of  $f_2(2340)$ 

Model dependent PWA results are well consistent with the results from model independent PWA

The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for a  $0^{-+}$  glueball

## **Summary**

- BESIII is successfully operating since 2008
  - World's largest data sample at the  $J/\psi$  resonance recorded
  - Clean and rich source for light hadrons
- Systematic studies to understand X(1835) and other structures observed near pp
  threshold
  - Nature unclear:  $p\overline{p}$  bound state, glueball, excited  $\eta$  meson?
- Sophisticated model-independent analysis of  $J/\psi \rightarrow \gamma \pi^0 \pi^0$ - Improve our understanding of the rich structures in  $\pi\pi$  system
- $\phi \phi$  system investigation to search for glueballs
- ◆ More results are expected to come soon!

