

ATLAS Λ_b^0 Baryon Studies

Dongliang Zhang (University of Michigan) on behalf of ATLAS Collaboration

> Hadron2015, Jefferson Lab September 13-18, 2015

Λ_b^0 baryon

- \Box Λ_b^0 is the lightest *b*-baryon
 - \Box m \sim 5620 MeV
 - □ Beyond the reach of *B*-factories
 - Was less studied
 - Lifetime
 - Polarization
 - Decay properties
- Included in this talk:

- □ Mass and lifetime measurement [Phys. Rev. D 87 (2013) 032002]
- □ $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$ decay asymmetry parameter and helicity amplitude measurement [Phys. Rev. D 89 (2014) 092009]
- □ Observation of $\Lambda_b^0 \to \psi(2S)\Lambda^0$ decay and $\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)$ measurement [arXiv:1507.08202 [hep-ex], submitted to Phys. Lett. B.]

ATLAS detector

Introduction Λ_b^0 reconstruction Lifetime measurement Helicity study $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ Summary

3/18

J/ψ and Λ^0 candidates

Λ_b^0 reconstruction

- $m_{\mu^+\mu^-} \text{ and } m_{p\pi^-} (m_{\bar{p}\pi^+}) \text{ fixed to } J/\psi \text{ and } \Lambda^0 \text{ mass values}$ Dihadron vertex point to dimuon vertex p
- $\Box \chi^2/N_{dof} < 3$
- □ Also fitted to $B_d^0 \to J/\psi(\mu^+\mu^-)K_S^0(\pi^+\pi^-)$ hypothesis for B_d^0 background rejection cuts
- In lifetime measurement
 - \Box Refitted Λ^0
 - $\begin{array}{c|c} p_{T} > 3.5 \text{ GeV} \\ \hline L_{xy} > 10 \text{ mm} \\ \hline \mathcal{P}_{\Lambda^{0}_{L}} \mathcal{P}_{B^{0}_{d}} > 0.05 \end{array}$

 Λ^{0}

p

 Λ_b^0

Introduction Λ_b^0 reconstruction Lifetime measurement Helicity study $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ Summary

5/18

Λ_b^0 lifetime measurement

Proper decay time

$$\tau = \frac{L_{xy}m^{\text{PDG}}}{p_{\text{T}}}$$

Mass-lifetime unbinned likelihood fit

$$L = \prod_{i=1}^{N} [f_{sig} \mathcal{M}_{s}(m_{i}|\delta_{mi}) \mathcal{T}_{s}(\tau_{i}|\delta_{\tau_{i}}) w_{s}(\delta_{mi}, \delta_{\tau_{i}}) + (1 - f_{sig}) \mathcal{M}_{b}(m_{i}|\delta_{mi}) \mathcal{T}_{b}(\tau_{i}|\delta_{\tau_{i}}) w_{b}(\delta_{mi}, \delta_{\tau_{i}})]$$

Mass

 $\Box \mathcal{M}_{s}(m_{i}|\delta_{mi})$: Gaussian

 $\square \mathcal{M}_{b}(m_{i}|\delta_{mi})$: 1st order polynomial

Proper decay time

 $\Box \mathcal{T}_{s}(\tau_{i}|\delta_{\tau i})$: exponential with efficiency correction

 $\Box \ \mathcal{T}_{\mathsf{b}}(\tau_i | \delta_{\tau_i}):$

- prompt: Dirac delta + symmetric exponential
- non-prompt: two exponential
- \Box $w_{s,b}(\delta_{mi}, \delta_{\tau i})$ is the PDF for δ_{mi} and $\delta_{\tau i}$, from data and same for signal and background

Λ_b^0 mass and lifetime

 $au_{\Lambda_b^0} = 1.449 \pm 0.036(ext{stat}) \pm 0.017(ext{syst}) ext{ ps}$

□ Consistent with results from other experiments and theoretical predictions

 Main systematic uncertainty from muon trigger efficiency and Λ⁰ reconstruction bias

Dongliang Zhang [UM]

Hadron2015

7/18

- $\Lambda_b^0 o J/\psi(\mu^+\mu^-) \Lambda^0(
 ho\pi^-)$ decay
 - Asymmetric decay

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{1}{2}(1 + P \cdot \alpha_b \cos\theta)$$

- □ In subsequent decay:
 - 4 helicity combination

$$\begin{array}{c|c} \mbox{Amplitude} & \lambda_{\Lambda} & \lambda_{J/\psi} \\ \hline a_{+} = |a_{+}|e^{i\omega_{+}} & 1/2 & 0 \\ a_{-} = |a_{-}|e^{i\omega_{-}} & -1/2 & 0 \\ b_{+} = |b_{+}|e^{i\rho_{+}} & -1/2 & -1 \\ b_{-} = |b_{-}|e^{i\rho_{-}} & 1/2 & 1 \end{array}$$

 $\Box \text{ Full PDF of } \Omega = (\cos \theta, \phi, \cos \theta_1, \phi_1, \cos \theta_2, \phi_2):$

$$w(\Omega) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega)$$

 \Box 7 free parameters: *P*, 6 helicity parameters in \vec{A}

Dongliang Zhang [UM]

Parametrization

- □ For α_b measurement, using P = 0, reduced to 6 terms (i = 0, 2, 4, 6, 18, and 19)
- \Box Parameters \vec{A}

$$\begin{array}{l} \square \ \alpha_b = |a_+|^2 - |a_-|^2 + |b_+|^2 - |b_-|^2 \\ \square \ k_+ = \frac{|a_+|}{\sqrt{|a_+|^2 + |b_+|^2}} \\ \square \ k_- = \frac{|b_-|}{\sqrt{|a_-|^2 + |b_-|^2}} \\ \square \ \Delta_+ = \omega_+ - \rho_+ \\ \square \ \Delta_- = \omega_- - \rho_- \end{array}$$

i	f_{1i}	F _i
0	1	1
2	$(k_+^2 + k^2 - 1) + lpha_b (k_+^2 - k^2)$	$\cos heta_1$
4	$\frac{1}{4}[(3k_{-}^2 - 3k_{+}^2 - 1) + 3\alpha_b(1 - k_{-}^2 - k_{+}^2)]$	$0.5(3\cos^2 heta_2 - 1)$
6	$-rac{1}{4}[(k_+^2+k^2-1)+lpha_b(3+k_+^2-k^2)]$	$0.5(3\cos^2 heta_2-1)\cos heta_1$
18	$rac{3}{\sqrt{2}}[rac{1-lpha_b}{2}\sqrt{k^2(1-k^2)}\cos(-\Delta)-rac{1+lpha_b}{2}\sqrt{k_+^2(1-k_+^2)}\cos(\Delta_+)]$	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
19	$-\frac{3}{\sqrt{2}}\left[\frac{1-\alpha_b}{2}\sqrt{k^2(1-k^2)}\sin(-\Delta)-\frac{1+\alpha_b}{2}\sqrt{k_+^2(1-k_+^2)}\sin(\Delta_+)\right]$	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$

8/18

Method of moments

Least square fit

$$\chi^{2} = \sum_{i} \sum_{j} (\langle F_{i} \rangle^{\text{expected}} - \langle F_{i} \rangle) V_{ij}^{-1} (\langle F_{j} \rangle^{\text{expected}} - \langle F_{j} \rangle)$$

 \Box $\langle F_j \rangle$ measured from data

 \Box V_{ij} is the covariance matrix

 $\Box \langle F_i \rangle^{\text{expected}}$ depends on the parameters \vec{A}

$$\langle F_i \rangle^{\text{expected}} (\vec{A}) = \int F_i(\Omega') \int T(\Omega', \Omega) w(\vec{A}, \Omega) \, d\Omega d\Omega' = \sum_j \frac{1}{(4\pi)^3} \iint f_{1j}(\vec{A}) f_{2j}(\alpha_\Lambda) F_i(\Omega') T(\Omega', \Omega) F_j(\Omega) \, d\Omega' d\Omega = \sum_j f_{1j}(\vec{A}) f_{2j}(\alpha_\Lambda) \mathbf{C}_{ij}$$

- \Box The effects of detector are in C_{ij}
- $\hfill\square$ $\mathcal{T}(\Omega',\Omega)$ is the resolution and efficiency function

10/18

Efficiency correction from MC

$$\mathbf{C}_{ij} = \frac{1}{(4\pi)^3} \iint F_i(\Omega') F_j(\Omega) T(\Omega', \Omega) \, \mathrm{d}\Omega' \mathrm{d}\Omega$$
$$\approx \frac{\epsilon_{\mathrm{T}}}{N^{\mathrm{mc}}} \sum_{n=1}^{N^{\mathrm{mc}}} F_i(\Omega'_n) F_j(\Omega_n)$$

Dongliang Zhang [UM]

11/18

Event selection & Background

- 2011 7 TeV data
- \Box Λ_b^0 selection
 - □ Exclude tracks from primary vertex
 - $\ \ \Box \ \ \tau > 0.35 \ \rm ps$
 - $\Box \text{ Loose } B_d^0 \text{ veto: } \mathcal{P}_{\Lambda_b^0} > \mathcal{P}_{B_d^0}$
 - □ 5560 < *m* < 5680 MeV
- Combinatorial background
 - □ Estimated from sidebands (SB)
- Peaking background

$$\Box \ B^{0}_{d} \to J/\psi(\mu^{+}\mu^{-})K^{0}_{S}(\pi^{+}\pi^{-})$$

- Yield from the mass fit
- \Box $\langle F_i \rangle$ from Mont Carlo

Parameter	[5340, 5900] MeV	[5560, 5680] MeV
N _{sig}	1400 ± 50	1240 ± 40
$N_{\rm Comb}$	1090 ± 80	234 ± 16
$N_{B^0_d}$	210 ± 90	73 ± 30

Hadron2015

Results

Fit results

 $\begin{aligned} \alpha_b &= 0.30 \pm 0.16(\text{stat}) \pm 0.06(\text{syst}) \\ k_+ &= 0.21^{+0.14}_{-0.21}(\text{stat}) \pm 0.13(\text{syst}) \\ k_- &= 0.13^{+0.20}_{-0.13}(\text{stat}) \pm 0.15(\text{syst}) \end{aligned}$

corresponding to

$$\begin{split} |A(1/2, 0)| &= 0.17^{+0.12}_{-0.17} \pm 0.09 \\ |A(-1/2, -1)| &= 0.59^{+0.06}_{-0.07} \pm 0.03 \\ |A(-1/2, 0)| &= 0.79^{+0.04}_{-0.05} \pm 0.02 \\ |A(1/2, 1)| &= 0.08^{+0.13}_{-0.08} \pm 0.06 \end{split}$$

Main **systematic uncertainties** MC statistics

Background shape modeling

Correlation

Parameter	α_b	k_+	k_
α_b	1	0.41	-0.19
k_+		1	0.20
k_			1

Ref: LHCb [Phys. Lett. B 724 (2013) 27]; pQCD [Phys. Rev. D 65 (2002) 074030]; HEQT [Phys. Lett. B 614 (2005) 165173];

12/18

Introduction Λ_b^0 reconstruction Lifetime measurement Helicity study $\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0$ Summary

13/18

$\Lambda_b^0 \to \psi(2S) \Lambda^0$ selection

$\Lambda_b^0 \to \psi(2S) \Lambda^0$ selection

 \Box Simultaneous Λ_b^0 and B_d^0 mass fit

- □ Signal: modified Gaussian $p(x) = \exp[-0.5 \cdot x^{1+1/(1+0.5 \cdot x)}]$, $x = |(m m_0)/\sigma|$
- \Box B_d^0 and Λ_b^0 reflection using MC templates
- Non-resonant background: exponential functions

Dongliang Zhang [UM]

Hadron2015

16/18

Branching ratio

Yields from fits

	$\Lambda_b^0 \to J/\psi \Lambda^0$	$B^0 \to J/\psi K_S^0$	$\Lambda^0_b \to \psi(2S) \Lambda^0$	$B^0 o \psi(2S) K_S^0$
$N_{ m sig}$	6940 ± 130	854 ± 84	603 ± 38	124 ± 28
$m_{\rm sig}[{ m MeV}]$	5620.4 ± 0.4	5274.7 ± 2.3	5618.2 ± 1.2	5272.4 ± 4.9
$\sigma_{\rm sig}[{\rm MeV}]$	19.7 ± 0.5	19.2 ± 2.2	14.3 ± 1.1	16.7 ± 4.1

$$\Box \text{ Acceptance correction } N_{cor} = N_{sig} / \mathcal{A}$$

 \square Efficiency (\mathcal{A}_{eff}) and acceptance (\mathcal{A}_{kin}) in fiducial range

$$p_{T}(\Lambda_{b}^{0}) > 10 \text{ GeV}, |\eta(\Lambda_{b}^{0})| < 2.1$$

 $p_{T}(\mu^{\pm}) > 4 \text{ GeV}, |\eta(\mu^{\pm})| < 2.3$
 $p_{T}(\Lambda^{0}) > 2.5 \text{ GeV}$

Channel	\mathcal{A}_{eff} [%]	\mathcal{A}_{kin} [%]
$\Lambda^0_b ightarrow J/\psi \Lambda^0$	4.16 ± 0.02	7.57 ± 0.06
$\Lambda_b^0 o \psi(2S) \Lambda^0$	4.30 ± 0.03	9.61 ± 0.07

_

Branching ratio

In kinematic range $p_{\mathsf{T}}(\Lambda_b^0) > 10$ GeV, $|\eta(\Lambda_b^0)| < 2.1$:

$$\frac{\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)} = \frac{N_{\rm cor}(\Lambda_b^0 \to \psi(\mu^+\mu^-)\Lambda^0)}{N_{\rm cor}(\Lambda_b^0 \to J/\psi(\mu^+\mu^-)\Lambda^0)} \cdot \frac{\mathcal{B}(J/\psi \to \ell^+\ell^-)}{\mathcal{B}(\psi(2S) \to \ell^+\ell^-)} \\ = 0.501 \pm 0.033(\text{stat}) \pm 0.016(\text{syst}) \pm 0.011(\mathcal{B})$$

$$\Box \mathcal{B}(J/\psi \to \mu^+ \mu^-) = 0.05961 \pm 0.00033 \text{ [PDG]}$$

$$\Box$$
 $\mathcal{B}(\psi(2S) \to \mu^+ \mu^-) = \mathcal{B}(\psi(2S) \to e^+ e^-) = 0.00789 \pm 0.00017$ [PDG]

- □ Systematic uncertainties
 - □ Signal extraction fits (2.8%)
 - □ MC statistics (1.3%)
 - \Box Λ_b^0 polarization model (1.1%)
- □ In the range 0.5–0.8 for B meson decays; smaller than calculation 0.8 ± 0.1 [Phys. Rev. D 88 (2013) 114018]

17/18

18/18

Summary

Studying Λ_b^0 production and decay using ATLAS data
 Lifetime measurement

$$egin{aligned} m_{\Lambda^0_b} &= 5619.7 \pm 0.7(ext{stat}) \pm 1.1(ext{syst}) \; ext{MeV} \ au_{\Lambda^0_b} &= 1.449 \pm 0.036(ext{stat}) \pm 0.017(ext{syst}) \; ext{ps} \end{aligned}$$

 $\square \alpha_b$ measurement

$$egin{aligned} &lpha_b = 0.30 \pm 0.16(ext{stat}) \pm 0.06(ext{syst}) \ &|a_+| = 0.17^{+0.12}_{-0.17}(ext{stat}) \pm 0.09(ext{syst}) \ &|a_-| = 0.59^{+0.06}_{-0.07}(ext{stat}) \pm 0.03(ext{syst}) \ &|b_+| = 0.79^{+0.04}_{-0.06}(ext{stat}) \pm 0.02(ext{syst}) \ &|b_-| = 0.08^{+0.13}_{-0.08}(ext{stat}) \pm 0.06(ext{syst}) \end{aligned}$$

 \square Observation of $\Lambda^0_b \to \psi(2S)\Lambda^0$ and the measured branching ratio

$$\frac{\Gamma(\Lambda_b^0 \to \psi(2S)\Lambda^0)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda^0)} = 0.501 \pm 0.033(\text{stat}) \pm 0.016(\text{syst}) \pm 0.011(\mathcal{B})$$

Backup: Efficiency correction of lifetime measurement

19/18

Backup: B_d^0 lifetime measurement

Backup

Backup: full PDF

i	f _{1i}	f_{2i}	F _i
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	Р	$\cos heta$
2	$a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-b_{+}b_{+}^{*}+b_{-}b_{-}^{*}$	α_{Λ}	$\cos \theta_1$
3	$a_+a_+^st + aa^st - b_+b_+^st - bb^st$	$P \alpha_{\Lambda}$	$\cos\theta\cos\theta_1$
4	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3\cos^2 heta_2 - 1)$
5	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+rac{1}{2}b_{+}b_{+}^{*}-rac{1}{2}b_{-}b_{-}^{*}$	Р	$\frac{1}{2} \left(3 \cos^2 \theta_2 - 1 \right) \cos \theta$
6	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta\cos\theta_1$
8	$-3Re(a_+a^*)$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos \phi_1$
9	$3Im(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin heta\sin heta_1\sin^2 heta_2\sin\phi_1$
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos(\phi_1 + 2 \phi_2)$
11	$\frac{3}{2}Im(b_{+}b_{+})$	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \sin (\phi_1 + 2 \phi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_a^*+a_b^*)$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\phi_2$
13	$\frac{3}{\sqrt{2}}Im(b_a^* + a_b^*)$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\phi_2$
14	$-\frac{3}{\sqrt{2}}Re(b_a^*+a_+b_+^*)$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\cos(\phi_1+\phi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$
16	$\frac{3}{\sqrt{2}}Re(a_b_+^*-b_a_+^*)$	Р	$\sin\theta\sin\theta_2\cos\theta_2\cos\phi_2$
17	$-\frac{3}{\sqrt{2}}Im(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	Р	$\sin\theta\sin\theta_2\cos\theta_2\sin\phi_2$
18	$\frac{3}{\sqrt{2}}$ Re $(b_a_{-}^* - a_{+}b_{+}^*)$	α_{Λ}	$\sin heta_1 \sin heta_2 \cos heta_2 \cos (\phi_1 + \phi_2)$
19	$-\frac{3}{\sqrt{2}}$ Im $(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	α_{Λ}	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\phi_1+\phi_2)$

Dongliang Zhang [UM]

22/18

□ MC weighted using the fit results

Dongliang Zhang [UM]

Hadron2015

Sidebands comparison

Dongliang Zhang [UM]

23/18

24/18

Other angular variables

14/09/2015

25/18

Backup: $\Lambda^0_b \to \psi(2S)\Lambda^0$ selection $\underline{\Lambda^0_b \text{ and } \bar{\Lambda}^0_b}$

Threshold function

$$A \cdot (m - m_p - m_{\pi^-})^B \cdot \exp[C \cdot (m - m_p - m_{\pi^-}) + D \cdot (m - m_p - m_{\pi^-})^2]$$

Dongliang Zhang [UM]