A Comprehensive Study of the Radiative Decay of J/ψ and ψ(2S) to Pseudoscalar Meson Pairs and Search for Glueballs

Sean Dobbs Northwestern U.

Hadron 2015 Jefferson Lab, Newport News, VA Sept. 14, 2015

Introduction

- QCD predicts the existence of glueballs, gg and ggg bound states.
- Glue-rich radiative decays of heavy quarkonia, ψ,Y → γ + gg, are expected to couple strongly to these states (C=+, J even).
- The lowest mass glueballs, J^{PC} = 0⁺⁺, 2⁺⁺, are naively expected to have decay patterns into two pseudoscalars based on flavor SU(3).
- However, the physical states we observe are mixtures of normal mesons and glueballs with the same quantum numbers.

Glueball spectrum from Chen et al.

- To disentangle these contributions and understand the contribution of glueballs to the meson spectrum, we need to make comprehensive and systematic measurements of these different final states.
- We have done so in decays of J/ψ and $\psi(2S)$.

Introduction

- We measure decays J/ψ , $\psi(2S) \rightarrow \gamma + [\pi^+\pi^-, \pi^0\pi^0, K^+K^-, K_8K_8, \eta\eta]$ using e⁺e⁻ annihilation data taken with the CLEO-c detector:
 - **25** M directly produced $\psi(2S)$
 - **5** M J/ ψ produced via $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$ Tagging via $\pi^+\pi^-$ provides clean J/ ψ sample.
- We fully reconstruct these decays and kinematically fit them.
- Previous J/ψ measurements by CB, Mark III, DM2, BES:
 - BES II, **58** M J/ ψ , decays to $\gamma + [\pi\pi, KK]$
 - BES III, 228 M J/ ψ , decays to $\gamma + \eta\eta$
- No previously published $\psi(2S)$ results, results shown here are the **first**.
 - Unpublished BES II results from 14 M $\psi(2S)$

CLEO-c Detector

 Precision charged and neutral particle reconstruction and identification leads to clean mass spectra with small backgrounds.

Dalitz Plots in J/Ψ Decay

• Cut on $\pi^+\pi^-$ and K+K⁻ Dalitz plots to reject $\rho\pi$ and KK* decays.

S. Dobbs — HADRON2015 — Sept. 15, 2015 — Decay of J/ ψ and ψ (2S) to Pseudoscalar Meson Pairs

Dalitz Plots in Ψ(2S) Decay

• Strong bands due to χ_{cJ} decays, $\rho\pi$ and KK* decays suppressed.

m Mass Spectra

KK Mass Spectra

ηη Mass Spectra

• Small statistics in $\eta\eta$, only fit $\pi\pi$ and KK spectra.

Fits to Mass Spectra

- We fit the mass spectra with relativistic, non-interfering Breit-Wigner shapes, and a constant or linear background.
 - **π**: ρ(770), f₂(1270), f₀(1500), f₀(1710), f₀(2100)
 - **KK**: f₀(1370), f₂′(1525), f₀(1710), f₀(2200)
 - Resonance widths fixed to PDG values. Mass and normalization float freely.
- Fit results are consistent between charged and neutral modes, also with simultaneous fits of charged and neutral spectra where isospin conservation is assumed.

m Mass Spectra Fit Results

KK Mass Spectra Fit Results

Branching Fraction Results

	From J/ψ		From	n $\psi(2S)$	$rac{{\mathcal B}_2(\psi(2S))}{{\mathcal B}_2(J/\psi)}$
	$M ({\rm MeV})$	$\mathcal{B}_1 imes \mathcal{B}_2 imes 10^5$	$M ({\rm MeV})$	$\mathcal{B}_1 imes \mathcal{B}_2 imes 10^5$	(%)
$f_2(1270) \rightarrow \pi\pi$	1259(4)(4)	174.4(52)(122)	1267(4)(3)	23.9(9)(9)	13.7(7)(11)
$f_0(1370) \to K\overline{K}$	1360(31)(28)	41.9(73)(134)	1350(48)(15)	3.1(10)(14)	7.4(27)(41)
$f_0(1500) \rightarrow \pi\pi$	1447(16)(13)	12.1(29)(24)	1442(9)(4)	3.2(6)(2)	26.4(80)(55)
$f'_2(1525) \to K\overline{K}$	1532(3)(6)	70.9(46)(67)	1557(9)(3)	2.9(6)(3)	4.1(9)(6)
$f_0(1710) \rightarrow \pi\pi$	1744(7)(5)	37.2(30)(43)	1705(11)(5)	3.6(4)(5)	9.7(13)(18)
$\rightarrow K\overline{K}$	1706(4)(5)	117.6(54)(94)	1690(8)(3)	6.7(6)(6)	5.7(6)(7)
$f_0(2100) \rightarrow \pi\pi$	2090(10)(6)	62.4(48)(87)	2099(17)(8)	4.8(5)(9)	7.7(10)(18)
$f_0(2200) \to K\overline{K}$	2206(12)(8)	58.6(49)(120)	2188(17)(16)	3.2(6)(8)	5.5(11)(18)

• Masses are generally consistent with PDG values.

 Branching fractions generally consistent with those measured by BES II PWA analyses.

Branching Fraction Results

	${\rm From}~J/\psi$		From	m $\psi(2S)$	$rac{{\cal B}_2(\psi(2S))}{{\cal B}_2(J/\psi)}$	
	$M ({\rm MeV})$	$\mathcal{B}_1 imes \mathcal{B}_2 imes 10^5$	$M ({\rm MeV})$	$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^5$	(%)	
$f_2(1270) \rightarrow \pi\pi$	1259(4)(4)	174.4(52)(122)	1267(4)(3)	23.9(9)(9)	13.7(7)(11)	
$f_0(1370) \to K\overline{K}$	1360(31)(28)	41.9(73)(134)	1350(48)(15)	3.1(10)(14)	7.4(27)(41)	
$f_0(1500) \rightarrow \pi\pi$	1447(16)(13)	12.1(29)(24)	1442(9)(4)	3.2(6)(2)	26.4(80)(55)	
$f'_2(1525) \to K\overline{K}$	1532(3)(6)	70.9(46)(67)	1557(9)(3)	2.9(6)(3)	4.1(9)(6)	
$f_0(1710) \rightarrow \pi\pi$	1744(7)(5)	37.2(30)(43)	1705(11)(5)	3.6(4)(5)	9.7(13)(18)	
$\rightarrow K\overline{K}$	1706(4)(5)	117.6(54)(94)	1690(8)(3)	6.7(6)(6)	5.7(6)(7)	
$f_0(2100) \rightarrow \pi\pi$	2090(10)(6)	62.4(48)(87)	2099(17)(8)	4.8(5)(9)	7.7(10)(18)	
$f_0(2200) \to K\overline{K}$	2206(12)(8)	58.6(49)(120)	2188(17)(16)	3.2(6)(8)	5.5(11)(18)	

• Measured the ratio of $f_0(1710)$ decay to $\pi\pi$ and KK: $R = \frac{Br(f_0(1710) \rightarrow KK)}{Br(f_0(1710) \rightarrow \pi\pi)} = 3.2 \pm 0.4$

- Agrees with $R(BES) = 2.9 \pm 0.9$, R(Mk. III) = 3.7 + 1.6 2.3
- Differs significantly from pure glueball expectation of 1.33.
 Useful to check different models of f₀(1710) decay.

Upper Limits for f₂(2200) Production

- The narrow f₂(2200) has a long history of observations and nonobservations.
- We do not observe this state, and set competitive upper limits on its production from J/ ψ , first upper limits from $\psi(2S)$.

			90% (CL UL	
		$\Gamma(\xi), \text{ MeV}$	N	$\mathcal{B}_1 imes \mathcal{B}_2$	$\mathcal{B}_1 imes \mathcal{B}_2$ (ref.)
				$\times 10^5$	$\times 10^5$
J/ψ	$\rightarrow \gamma(\pi^+\pi^-)$	20/50	23.0/45.1	2.6/5.2	$5.6\binom{27}{26}$ [18]
	$\rightarrow \gamma(\pi^0\pi^0)$	20/50	16.0/23.2	1.3/1.9	
	$\rightarrow \gamma(K^+K^-)$	20/50	25.4/44.6	1.7/3.1	$3.3(^{16}_{13})$ [18], $4.2(^{19}_{16})$ [15]
					2.3 (95% CL) [17]
	$\rightarrow \gamma (K_S^0 K_S^0)$	20/50	11.5/19.1	1.2/2.0	$3.1(^{17}_{15})$ [18], $2.7(^{14}_{12})$ [15]
					1.6 (95% CL) [17]
$\psi(2S)$	$ ightarrow \gamma(\pi^+\pi^-)$	20/50	22.9/31.1	0.32/0.43	
	$ ightarrow \gamma(\pi^0\pi^0)$	20/50	15.7/23.6	0.26/0.40	
	$\rightarrow \gamma (K^+ K^-)$	20/50	18.9/38.0	0.21/0.43	
	$\rightarrow \gamma (K_S^0 K_S^0)$	20/50	10.7/15.6	0.37/0.55	—

X_{CJ} Mass Spectra

 Branching fractions consistent with PDG values and previous CLEO publications.

X_{cJ} Branching Fraction Ratios

- Ochs [J.Phys.G.Nucl.Part.Phys. 40, 04301 (2013)] has pointed out that the χ_{c0} and χ_{c2} decays are mediated by 2 gluons, and thus provide an opportunity to test the flavor independence of these decays.
- CLEO-c data are consistent with the theoretical expectations, except η'η' decays.
 [see also PRD 75, 071101(R) (2007), PRD 79, 072007 (2009)].

Pseudoscalar pairs	$\pi\pi$	$K\overline{K}$	$\eta\eta$	$\eta'\eta'$	$\eta\eta^\prime$
Two-gluon decays (theoretical)	= 1	1.33	0.33	0.33	0
χ_{c0} decays χ_{c2} decays	= 1.00(5) = 1.00(5)	$1.41(6) \\ 0.98(6)$	$\begin{array}{c} 0.34(4) \\ 0.23(4) \end{array}$	$\begin{array}{c} 0.23(3) \ 0.025(15) \end{array}$	$\begin{array}{c} 0.02(1) \\ 0.006(15) \end{array}$
χ_{c0} decays (divided by phase space factor p) χ_{c2} decays (divided by phase space factor p^5)	= 1.00(5) = 1.00(5)	1.47(9) 1.18(8)	$0.36(4) \\ 0.28(4)$	$0.27(3) \\ 0.058(34)$	0.02(1) 0.010(22)

Upper limits on higher mass glueball production

Upper limits on the productions of such states were determined.

Summary

- We analyzed 25 M $\psi(2S)$ and 5M J/ ψ of CLEO-c data for the reaction

 J/ψ , $\psi(2S) \rightarrow \gamma + [\pi^+\pi^-, \pi^0\pi^0, K^+K^-, K_SK_S, \eta\eta]$

- Results published as PRD 91, 052006 (2015).
 ψ(2S) results are the world's first.
- Branching fractions for radiative decays to scalar and tensor mesons were measured.
 - The measured ratio R(f₀(17100))_{ππ/KK} = 3.2 gives insight into its composition.
- No evidence for the narrow tensor glueball or higher mass glueballs was seen, upper limits on their production were established.

Backup Slides

Basic Event Selections

Decay Mode		# tracks	# showers
Ψ(2S) →	γ π+π-	2	≥ 1
	γ K+K-	2	≥ 1
	γ π ⁰ π ⁰	0	≥ 5
	չ դդ	0	≥ 5
	γ K _S K _S	≥ 4	≥ 1
$J/\Psi \rightarrow$	γ π+π-	4	≥ 1
	γ K+K-	4	≥ 1
	γ π ⁰ π ⁰	2	≥ 5
	ɣ ໗໗	2	≥ 5
	γ KsKs	≥ 6	≥ 1

Background Studies

S. Dobbs — HADRON2015 — Sept. 15, 2015 — Decay of J/ ψ and ψ (2S) to Pseudoscalar Meson Pairs