Part I: Signature of an h_1 state in the $J/\psi ightarrow \eta h_1 ightarrow \eta K^{*0} ar{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

Part II: The low lying scalar resonances in the D^0 decays into K_5^0 and $f_0(500), f_0(980), a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363 (2015)]

Miguel Albaladejo (IFIC, Valencia)

Hadron 2015 Newport News, Sept. 13-18, 2015

Part I

Signature of an h_1 state in the $J/\psi o \eta h_1 o \eta K^{*0} ar{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

2 Formalism

Part I

Signature of an h_1 state in the $J/\psi o \eta h_1 o \eta K^{*0} ar{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

2 Formalism

Introduction ●	Formalism	Results	Summary and conclusions

Introduction

About the experiments

- BES studied the decay $J/\psi \rightarrow \eta K^{*0} \bar{K}^{*0}$ in search of Y(2175). "No evidence of a signal is seen" [BES Collab.,Phys.Lett.,B685,27(2010)]
- Y(2175), now $\phi(2170)$, has $0^{-}(1^{--})$, and does not couple to $K^{*0}\bar{K}^{*0}$
- Since J/ψ is $0^{-}(1^{--})$ and η is $0^{+}(0^{-+})$, the reaction is ideal to study h_1 states, $0^{-}(1^{+-})$, coupling to S-wave $K^*\bar{K}^*$.
- Experimental information is scarce (see PDG)

Meanwhile, in the theory side...

- A h₁ state around 1.8 GeV is predicted in the K^{*}K^{*} interaction predicted by an approach using unitarity and the hidden gauge lagrangian [Geng, Oset, Phys.Rev.,D79,074009 (2009)]
- Elusive states: Do not couple to most W ($\rho\rho$, $\omega\omega$, $\omega\phi$,...) or *PP*. It can decay to *VP*, but thresholds are far, far away...

Part I

Signature of an h_1 state in the $J/\psi o \eta h_1 o \eta K^{*0} ar{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

Introduction	Formalism ●○○	Results	Summary and conclusions

$K^*\bar{K}^*$ interaction

• The amplitude for $K^*\bar{K}^*$ can be written as:

v(s) is the potential (to be discussed later)
 G̃(s) the loop function for the K^{*}K̄^{*} pair,

$$\widetilde{G}(s) = \int_{m_{-}^2}^{m_{+}^2} \mathrm{d}m_1^2 \mathrm{d}m_2^2 \,\omega(m_1^2)\omega(m_2^2)G(s,m_1^2,m_2^2) \;,$$

• The loop function G(s) is **convoluted** with the mass distribution functions $\omega(m_{1,2}^2)$ to take into account the large width of K^* ($\Gamma_{K^*} \simeq 50$ MeV). The range is taken to be $m_{\pm} = m_{K^*} \pm 2\Gamma_{K^*}$.

$$\omega(m_1^2) \propto \mathrm{Im} \frac{1}{m_1^2 - m_{K^*}^2 + i\Gamma(m_1^2)m_1} \qquad \Gamma(m_1^2) = \Gamma_{K^*} \frac{p^3(m_1^2)}{p^3(m_{K^*}^2)}$$

Introduction O	Formalism ○●○	Results	Summary and conclusions

Two forms for the potential

I Hidden gauge potential: completely fixed (no new free parameters):

$$v(s) = \left(9 + b\left(1 - \frac{3s}{4m_{K^*}^2}\right)\right)g^2$$

- $g = m_{
 ho}/2f_{\pi} \simeq 4$. The term 9 g^2 comes from the four vector contact term
- The term proportional to *b* comes from the **exchange** of vector mesons.
- *b* is determined by the masses of the vector mesons (ρ , ω , ϕ and K^*), b = 6.8.
- We use the values a(µ) = (−1.0, −0.8, −0.6).
 a(µ) = −1.7 is used in [Geng, Oset, Phys.Rev.,D79,074009 (2009)]

2 Constant potential:

- Reasonable in the small range of energies we are using
- Quite model independent
- In the amplitude there appears the linear combination $1/v a(\mu)$, so any shift in $a(\mu)$ can be reabsorbed in $v \Longrightarrow$ Fix $a(\mu) = -0.8$.

Introduction O	Formalism ○○●	Results	Summary and conclusions

• Let us denote with V_P the bare production vertex for $J/\psi \to \eta K^* \bar{K}^*$

• The full amplitude T_P for the process takes into account the FSI of K^*K^*

$$T_P = V_P(1 + \tilde{G}(s)t(s)) = V_P rac{t(s)}{v(s)}$$

• The invariant mass spectrum is (C is a normalization constant, absorbing V_P):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\sqrt{s}} = \frac{C}{M_{J/\psi}} p_1 \tilde{p}_2 \frac{|t(s)|^2}{|v(s)|^2}$$

Momenta:

Introduction O	Formalism ○○●	Results	Summary and conclusions

• Let us denote with V_P the bare production vertex for $J/\psi \rightarrow \eta K^* \bar{K}^*$

• The full amplitude T_P for the process takes into account the FSI of $K^*\bar{K}^*$

$$T_P = V_P(1 + \tilde{G}(s)t(s)) = V_P \frac{t(s)}{v(s)}$$

• The invariant mass spectrum is (C is a normalization constant, absorbing V_P):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\sqrt{s}} = \frac{C}{M_{J/\psi}} p_1 \tilde{p}_2 \frac{|t(s)|^2}{|v(s)|^2}$$

Momenta:

Introduction O	Formalism ○○●	Results	Summary and conclusions

- Let us denote with V_P the bare production vertex for $J/\psi \rightarrow \eta K^* \bar{K}^*$
- The full amplitude T_P for the process takes into account the FSI of $K^*\bar{K}^*$

$$T_P = V_P(1 + \tilde{G}(s)t(s)) = V_P \frac{t(s)}{v(s)}$$

• The invariant mass spectrum is (C is a normalization constant, absorbing V_P):

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\sqrt{s}} = \frac{C}{M_{J/\psi}} p_1 \tilde{p}_2 \frac{|t(s)|^2}{|v(s)|^2}$$

Momenta:

$$\tilde{p}_2(s) = \int_{m_-^2}^{m_+^2} \mathrm{d}m_1^2 \mathrm{d}m_2^2 \omega(m_1^2) \omega(m_2^2) \frac{\lambda^{1/2}(s, m_1^2, m_2^2)}{2\sqrt{s}}, \qquad p_1(s) = \frac{\lambda^{1/2}(M_{J/\psi^2}, s, m_\eta^2)}{2\sqrt{s}}$$

Part I

Signature of an h_1 state in the $J/\psi o \eta h_1 o \eta K^{*0} ar{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

1 Introduction

2 Formalism

Summary and conclusions

Introduction O	Formalism	Results ● ○	Summary and conclusions

Results Constant potential

- Error bands $\chi^2 \leqslant \chi^2_{\min} + 1$
- Good reproduction of the data
- Rather model independent (no underlying model)

Hidden gauge potential

• Three values for $a(\mu) = (-1.0, -0.8, -0.6)$ ([Geng,Oset,PR,D70,074009] take -1.7)

Phase space

- Can pure phase space distribution explain the data? Set *t* = *v* = 1
- $\chi^2/d.o.f. = 0.9$ (good, but larger than in our fits)
- But systematically wrong, does not follow the trend of the data

Potential	C (GeV ⁻¹)	a_{μ}	v/g^2	$\chi^2/d.o.f.$
Constant	42 ± 6	-0.8	-6.2 ± 1.2	0.45
Hidden gauge	42 ± 6	-1.0	fixed	0.56
Hidden gauge	53 ± 7	-0.8	fixed	0.47
Hidden gauge	67 ± 9	-0.6	fixed	0.42

Introduction O	Formalism	Results ● ○	Summary and conclusions

Results Constant potential

- Error bands $\chi^2 \leqslant \chi^2_{\min} + 1$
- Good reproduction of the data
- Rather model independent (no underlying model)

Hidden gauge potential

• Three values for $a(\mu) = (-1.0, -0.8, -0.6)$ ([Geng,Oset,PR,D70,074009] take -1.7)

Phase space

- Can pure phase space distribution explain the data? Set *t* = *v* = 1
- $\chi^2/d.o.f. = 0.9$ (good, but larger than in our fits)
- But systematically wrong, does not follow the trend of the data

• Constant: $M \simeq 1810$ MeV, $\Gamma \simeq 100$ MeV

• Dynamical: $M\simeq 1850$ MeV, $\Gamma\simeq 120$ MeV

Introduction O	Formalism	Results ●○	Summary and conclusions

Results Constant potential

- Error bands $\chi^2 \leqslant \chi^2_{\min} + 1$
- Good reproduction of the data
- Rather model independent (no underlying model)

Hidden gauge potential

• Three values for $a(\mu) = (-1.0, -0.8, -0.6)$ ([Geng,Oset,PR,D70,074009] take -1.7)

Phase space

- Can pure phase space distribution explain the data? Set *t* = *v* = 1
- $\chi^2/d.o.f. = 0.9$ (good, but larger than in our fits)
- But systematically wrong, does not follow the trend of the data

Conclusions

- The inclusion of a h_1 state, generated by $K^*\bar{K}^*$ dynamics, is crucial to reproduce the data (phase space is not enough)
- Definitely, an experimental study with more statistics is needed

Introduction	Formalism	Results ○●	Summary and conclusions

Some checks

Width

- Vary the K^* width ($\Gamma_{K^*} = 50, 30, 0$ MeV)
- The effect and the state still persist: it is not due to a threshold effect, softened by the large *K*^{*} width.

FSI

- Even without considering whether there is a resonance or not, it can be shown that the enhancement is due to the strong final state interactions in the $K^*\bar{K}^*$ pair
- Change $v \rightarrow v/\alpha$ ($\alpha = 1$ physical case, $\alpha \rightarrow \infty$ no interaction)
- A small or zero interaction cannot describe the spectrum

Part I

Signature of an h_1 state in the $J/\psi o \eta h_1 o \eta K^{*0} ar{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

1 Introduction

2 Formalism

Introduction	Formalism 000	Results	Summary and conclusions

Summary and conclusions

- In the BES data regarding $J/\psi \rightarrow \eta K^{*0} \bar{K}^{*0}$ there is an **enhancement** in the $K^{*0} \bar{K}^{*0}$ distribution [BES Collab.,Phys.Lett.,B685,27(2010)]
- In the hidden gauge approach to K^{*}K^{*} [Geng,Oset,Phys.Rev.,D79,074009(2009)] a dynamically generated h₁ state [0⁻(1⁺⁻)] is predicted around 1.8 GeV with a width 80 MeV
- Idea! [Xie,Albaladejo,Oset, Phys.Lett.,B728,319(2014)] Put both pieces together. We show in our work that:
 - The enhancement is due to a state with mass (1810, 1850) MeV, and a width (100, 120) MeV (two different "models")
 - ② Experimental studies with more statistics would be appreciated
- There is another reaction $(\eta_c \rightarrow \phi K^* \bar{K}^*)$ proposed to look for this elusive state [Ren,Geng,Oset,Meng, Eur.Phys.J.,A50,133(2014)].

Part II

The low lying scalar resonances in the D^0 decays into K_5^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363 (2015)]

2 Formalism

Part II

The low lying scalar resonances in the D^0 decays into K_5^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363 (2015)]

2 Formalism

3 Results

4 Summary and conclusions

Introduction ●○	Formalism 00000	Results	Summary and conclusions

Introduction

The nature of the light scalar mesons (0^{++}) is a topic of long-standing debate

- Scalar mesons below 1 GeV: f₀(500), f₀(980), a₀(980), κ(800)
- Possible structures of quark model: normal meson[qq̄], tetraquark[q²q̄²], molecule[(qq̄)(qq̄)], glueball[gg, ggg], hybrid[qq̄g],...
 ([M. Albaladejo,J.A. Oller, Phys.Rev.,D86,034003(2012)] on the nature of σ meson)

Chiral unitary approach

- f₀(500), f₀(980), a₀(980) resonances are dynamically generated from the interaction of pseudoscalar mesons and could be interpreted as a kind of molecular states of meson-meson
- 2 Test this possibility:
 - Hadronic decay and Radiative decay ⇒ successful
 - Weak decay? novel and interesting test \Rightarrow our motivation

Introduction ○●	Formalism	Results	Summary and conclusions

Introduction

We study the D^0 weak decay to K_S^0 and a scalar resonance ($D^0 \rightarrow K_S^0 S$) as a novel test of the nature of $f_0(500)$, $f_0(980)$, $a_0(980)$

- Experimental data from CLEO collaboration [PRL89(2002)251802;PRL90(2003)059901;PRL93(2004)111801;also PRD86(2012)010001]
- 2 Theoretical work is scarce:
 - mostly devoted to issues related to CP violation or $D^0 D^{*0}$ mixing
 - A thorough study for the $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ reaction with 33 free parameters is presented in [Dedonder, Kaminski, Lesniak, Loiseau, Phys. Rev. D 89,094018 (2014)]
- In the present work:
 - Rates are large compared to \overline{B}^0 decay
 - $D^0 \rightarrow K_s^0 a_0(980)$ Cabibbo-allowed

 $\bar{B}_{s}^{0} \rightarrow J/\psi a_{0}$ (980) doubly Cabibbo-suppressed [Liang, Oset, Phys.Lett., B737, 70 (2015)]

- Isospin non-conservation: same decay for l = 0 and l = 1.
- No free parameters, only shapes and relative weight are computed

Part II

The low lying scalar resonances in the D^0 decays into K_5^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363 (2015)]

3 Results

Introduction	Formalism ●○○○○	Results	Summary and conclusions

Chiral unitary approach

- Bethe-Salpeter equation: $T = V + VGT \Longrightarrow T = (I VG)^{-1} V$
- I = 0 $\pi^{+}\pi^{-}, \pi^{0}\pi^{0}, K^{+}K^{-}, K^{0}\bar{K}^{0}$ and $\eta\eta = T, V, G: 5 \times 5$

$$I = 1$$
 K^+K^- , $K^0\bar{K}^0$ and $\pi^0\eta$ $T, V, G: 3 \times 3$

 Relevant V-matrix elements computed from Chiral Lagrangians (references: [Liang, Oset, Phys.Lett.B,737,70])

• *G*-function is the two-meson (m_1, m_2) propagator for the *k*-channel:

$$G_k(s) = i \int_{|q| < q_{\max}} \frac{d^4 q}{(2\pi)^4} \frac{1}{(P-q)^2 - m_1^2 + i\varepsilon} \frac{1}{q^2 - m_2^2 + i\varepsilon}$$

Introduction	Formalism ○●○○○	Results	Summary and conclusions

 $D^0 \rightarrow K^0_S S$: general idea

Goal: $D^0 \rightarrow K_s^0 R$. At the quark level:

- Start from the dominant diagram for $D^0 o ar{K}^0 uar{u}$
- The process is Cabibbo allowed
- The $s\bar{d}$ pair produces the \bar{K}^0 , which will convert to the observed K_s^0
- **Hadronization** of the *uū* through an extra *q̄q* with vacuum quantum numbers gives two mesons

Introduction	Formalism ○●○○○	Results	Summary and conclusions

 $D^0 \rightarrow K^0_S S$: general idea

Goal: $D^0 \rightarrow K_s^0 R$. At the quark level:

- Start from the dominant diagram for $D^0
 ightarrow ar{K}^0 u ar{u}$
- The process is Cabibbo allowed
- The $s\bar{d}$ pair produces the \bar{K}^0 , which will convert to the observed K_s^0
- **Hadronization** of the $u\bar{u}$ through an extra $\bar{q}q$ with vacuum quantum numbers gives two mesons

Introduction	Formalism	Results	Summary and conclusions

$D^0 \rightarrow K^0_S S$: hadronization

Let us introduce the following qq matrix, M:

$$M = \begin{pmatrix} u\bar{u} & u\bar{d} & u\bar{s} \\ d\bar{u} & d\bar{d} & d\bar{s} \\ s\bar{u} & s\bar{d} & s\bar{s} \end{pmatrix}, \text{ satisfying } M \cdot M = M \times \underbrace{(\bar{u}u + \bar{d}d + \bar{s}s)}_{\bar{a}g \text{ pair from vacuum}}$$

• There is a relation between $q\bar{q}$ *M*-matrix and the **meson** ϕ -matrix:

$$\phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{3}}\eta + \frac{1}{\sqrt{6}}\eta' & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{3}}\eta + \frac{1}{\sqrt{6}}\eta' & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{1}{\sqrt{3}}\eta + \sqrt{\frac{2}{3}}\eta' \end{pmatrix}$$

• Hadronization proceeds via $M \cdot M \Rightarrow \phi \cdot \phi$. For the $u\bar{u}$ pair,

$$u\overline{u}\underbrace{(\overline{u}u+\overline{d}d+\overline{s}s)}_{\overline{q}q \text{ pair from vacuum}} = (M \cdot M)_{11} \Rightarrow (\phi \cdot \phi)_{11}$$

 Hence upon hadronization of the uū (M) component, in terms of mesons (φ), we shall have:

$$(M \cdot M)_{11} \Rightarrow (\phi \cdot \phi)_{11} = \frac{1}{2}\pi^0 \pi^0 + \frac{1}{3}\eta\eta + \frac{2}{\sqrt{6}}\pi^0 \eta + \pi^+ \pi^- + K^+ K^-$$

12/18

Introduction	Formalism	Results	Summary and conclusions

 $D^0
ightarrow K^0_S$ S: diagrams for $\pi^+\pi^-$ and $\pi^0\eta^-$

- Top: direct $\pi^+\pi^-$ production + $\pi^+\pi^-$ production through primary production of a *PP'* pair and rescattering
- Bottom: direct $\pi^0 \eta$ production + $\pi^0 \eta$ production through primary production of a *PP'* pair and rescattering

000 0000 000	00

$$D^0 o K^0_S$$
 S: amplitudes for $\pi^+\pi^-$ and $\pi^0\eta^-$

The **production amplitudes** of the mesons taking into account rescattering are:

$$t(D^{0} \to \bar{K}^{0}\pi^{+}\pi^{-}) = V_{P} \left(1 + G_{\pi^{+}\pi^{-}}T_{\pi^{+}\pi^{-} \to \pi^{+}\pi^{-}} + \frac{1}{2} \frac{1}{2} G_{\pi^{0}\pi^{0}}T_{\pi^{0}\pi^{0} \to \pi^{+}\pi^{-}} \right)$$

$$+ \frac{1}{3} \frac{1}{2} G_{\eta\eta}T_{\eta\eta \to \pi^{+}\pi^{-}} + G_{K^{+}K^{-}}T_{K^{+}K^{-} \to \pi^{+}\pi^{-}} \right)$$

$$t(D^{0} \to \bar{K}^{0}\pi^{0}\eta) = V_{P} \left(\sqrt{\frac{2}{3}} + \sqrt{\frac{2}{3}} G_{\pi^{0}\eta}T_{\pi^{0}\eta \to \pi^{0}\eta} + G_{K^{+}K^{-}}T_{K^{+}K^{-} \to \pi^{0}\eta} \right)$$

- V_P is an unknown production vertex, containing the quark-level dynamics which is common to both amplitudes.
- **G** is the loop function of two mesons, and regularized by a **cutoff** q_{max} .
- T_{ij} are the **PP** ' scattering matrices (seen before).

Part II

The low lying scalar resonances in the D^0 decays into K_c^0 and $f_0(500)$, $f_0(980), a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363(2015)]

Results

Introduction	Formalism	Results ●○○	Summary and conclusions

Results: distribution (shapes)

$$rac{{
m d}\Gamma}{{
m d}M_{
m inv}} = rac{1}{(2\pi)^3} rac{p_{ar k^0} ilde p_\pi}{4M_{D^0}^2} \, |t_{D^0 o ar K^0 \pi^+ \pi^-}|^2 \quad ({
m for} \ \pi^+ \pi^- \ {
m reaction})$$

here $p_{\bar{k}^0}$ is the \bar{k}^0 momentum in the global CM frame (D^0 at rest) and \tilde{p}_{π} is the pion momentum in the $\pi^+\pi^-$ rest frame. Similarly for the $\pi^0\eta$ production.

- (1) solid line: $\pi^+\pi^-$ in $D^0 \to \bar{K}^0\pi^+\pi^-$
- 2 dashed line: $\pi^0 \eta$ in $D^0 \to \overline{K}^0 \pi^0 \eta$
- **3** smooth background (squares, triangles, circles) below the $a_0(980)$ and $f_0(980)$ peaks

Introduction	Formalism	Results ○●○	Summary and conclusions

Results: ratios (relative weights)

 Integrating the area below these structures in the previous figure we obtain the theoretical ratio:

$$R_{\rm th} = \frac{\Gamma(D^0 \to \bar{K}^0 a_0(980), a_0(980) \to \pi^0 \eta)}{\Gamma(D^0 \to \bar{K}^0 f_0(980), f_0(980) \to \pi^+ \pi^-)} = 6.7 \pm 1.3$$

• Experimental data from the PDG and [PRL89,251802;PRL93,111801]:

$$\begin{aligned} &\mathsf{BR}(D^0\to\bar{K}^0a_0(980),a_0(980)\to\pi^0\eta)=(6.5\pm2.0)\times10^{-3},\\ &\mathsf{BR}(D^0\to\bar{K}^0f_0(980),f_0(980)\to\pi^+\pi^-)=(1.22^{+0.40}_{-0.24})\times10^{-3}.\end{aligned}$$

• The experimental ratio that one obtains from there is:

$$R_{\rm exp} = 5.3^{+2.4}_{-1.9}$$

- Good agreement between theoretical value and experimental data (within errors)
- Genuine prediction without any free parameter

Introduction	Formalism 00000	Results ○○●	Summary and conclusions

Results: checks

By performing a similar estimate of the background, even within this broad range of q_{max} , the theoretical value R_{th} remains within the errors \Rightarrow a solid prediction

Part II

The low lying scalar resonances in the D^0 decays into K_S^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363 (2015)]

2 Formalism

3 Results

Introduction	Formalism 00000	Results	Summary and conclusions ●○

Summary and conclusions

We have studied the decay of the D^0 decay into K_S^0 and $f_0(500)$, $f_0(980)$, $a_0(980)$:

- These are weak decays \Rightarrow (strong) isospin violation \Rightarrow test simultaneously the production of the $a_0(980)$ and $f_0(980)$ resonances in the decay $D^0 \rightarrow K_S^0 S$
- New test for the chiral unitary approach
- New and novel test about the nature of the lightest scalar mesons
- **Cabibbo-allowed** \Rightarrow rates of D^0 decay are **large** compared to \overline{B}^0 decay
- No free parameters ⇒ genuine predictions
- Only shapes and relative weight can be computed

Part I: Signature of an h_1 state in the $J/\psi \rightarrow \eta h_1 \rightarrow \eta K^{*0} \overline{K}^{*0}$ decay

[J. J. Xie, M. Albaladejo, E. Oset, Phys.Lett., B728, 319(2014)]

Part II: The low lying scalar resonances in the D^0 decays into K_S^0 and $f_0(500), f_0(980), a_0(980)$

[J. J. Xie, L. R. Dai, E. Oset, Phys.Lett., B742, 363 (2015)]

Miguel Albaladejo (IFIC, Valencia)

Hadron 2015 Newport News, Sept. 13-18, 2015

Thanks for your attention

