First Measurements of Hyperon Timelike Form Factors at Large Q² and Evidence of Diquark Correlations

Sean Dobbs Northwestern U.

Hadron 2015 Jefferson Lab, Newport News, VA Sept. 14, 2015

Introduction

- Electromagnetic form factors of hadrons give some of the most transparent insight into their structure.
- Timelike (Q² < 0) form factors are analytic continuations of spacelike (Q² > 0) form factors and give complementary information. Comparing the two can lead to unexpected questions.
- Example: Why are measurements of proton timelike form factors at large |Q²| are factor ~2 larger than corresponding spacelike form factors?
 - SL and TL FF expected to be equal in asymptotic limit (Q² → ∞).
 - Are measured Q² not high enough?
 - Models with diquarks can also explain this discrepancy [e.g. Kroll et al.].
- Studying timelike FFs of hyperons gives us another window to look for potential effects of diquarks, and how FFs vary with differing quark composition.

Data Sets & Hyperon Reconstruction

- We use e+e⁻ annihilation data taken with the CLEO-c detector at
 - $\psi(2S)$ [$\sqrt{s} = 3686 \text{ MeV}$]: 48 pb⁻¹, 25 M $\psi(2S)$
 - ψ(3770) [√s = 3772 MeV]: 805 pb⁻¹
 - $\sqrt{s} = 4170 \text{ MeV}$: 586 pb⁻¹
- We identify the hyperons by their dominant decays:

 $\begin{array}{ll} \Lambda^{0} \rightarrow p\pi^{-} & (64 \%) & \Sigma^{+} \rightarrow p\pi^{0} & (52 \%) & \Sigma^{0} \rightarrow \Lambda^{0} \mathbf{y} & (100 \%) \\ \Xi^{-} \rightarrow \Lambda^{0} \pi^{-} & (100 \%) & \Xi^{0} \rightarrow \Lambda^{0} \pi^{0} & (100 \%) & \Omega^{-} \rightarrow \Lambda^{0} \text{ K}^{-} & (68 \%) \end{array}$

- There are two methods we can use to reconstruct $e^+e^- \rightarrow B\bar{B}$ events
 - Full reconstruction small backgrounds, low efficiency
 - Partial reconstruction high efficiency, larger backgrounds

Inclusive Hyperon Mass Spectra From ψ(2S)

 Well reconstructed particles with a vertex displaced from the e+e-IP are selected. Strong peaks are seen in each channel.

Fully Reconstructed $\psi(2S) \rightarrow$ Hyperon + Antihyperon

 $[N(\psi(2S)) = 24.5M, \text{ published in PLB 739, 90 (2014)}]$

 $\psi(2S) \rightarrow B\bar{B}$ Branching Fractions

3	N _{data}	ϵ_B (%)	σ_B (pb)	$\mathcal{B} \times 10^4$
	4475(78)	63.1	196(3)(12)	3.08(5)(18)
0	1901(44)	20.7	247(6)(15)	3.75(9)(23)
20	439(21)	7.96	148(7)(11)	2.25(11)(16)
2+	281(17)	4.54	165(10)(11)	2.51(15)(16)
-	548(23)	8.37	176(8)(13)	2.66(12)(20)
0	112(11)	2.26	135(13)(10)	2.02(19)(15)
2-	27(5)	2.32	31(6)(3)	0.47(9)(5)

- **BB** pairs with total momentum consistent with zero are selected.
- Branching fraction results obtained are consistent with previous measurements, with 3 times smaller uncertainties.
- First significant observation of $\psi(2S) \rightarrow \Omega^{-} \overline{\Omega^{-}}$

Timelike Form Factor Measurements

• EM form factors are determined from e⁺e⁻ annihilation through

$$\sigma_0^B = \left(\frac{4\pi\alpha^2\beta_B}{3s}\right) \left[\left| G_M^B(s) \right|^2 + \tau/2 \left| G_E^B(s) \right|^2 \right]$$

Baryon pair production in e⁺e⁻ annihilation can proceed through two primary processes:

To estimate the contribution from gluonic decays of higher resonances (e.g. ψ(3770)), we can use the pQCD prediction:

$$\frac{\psi(n') \to ggg \to \text{hadrons}}{\psi(n) \to ggg \to \text{hadrons}} = \frac{\psi(n') \to \gamma^* \to \text{leptons}}{\psi(n) \to \gamma^* \to \text{leptons}}$$

• Thus we obtain, for example, the following yields for fully reconstructed hyperon pair production from $\psi(3770)$:

$\mathbf{p}\overline{\mathbf{p}} \quad \mathbf{\Lambda}^{0}\overline{\mathbf{\Lambda}^{0}} \quad \mathbf{\Sigma}^{+}\overline{\mathbf{\Sigma}^{+}} \quad \mathbf{\Sigma}^{0}\overline{\mathbf{\Sigma}^{0}} \quad \Xi^{-}\overline{\Xi^{-}} \quad \Xi^{0}\overline{\Xi^{0}} \quad \mathbf{\Omega}^{-}\overline{\mathbf{\Omega}}$ 1.3 0.9 0.2 0.2 0.2 0.2 0.05 0.03

• The expected yields are minimal, and we can use these data for form factor measurements.

Fully Reconstructed $\psi(3770) \rightarrow$ Hyperon + Antihyperon

 $[\mathscr{L}(3770) = 805 \text{ pb}^{-1}, \text{ published in PLB 739, 90 (2014)}]$

- Event yields and cross sections are ~1 and ~2 orders of magnitude smaller than from $\psi(2S)$, respectively.
- **First** measurements of hyperon EM form factors at large momentum transfer.

Unequal Baryons — Form Factors of $\Lambda^0 \Sigma^0$

- $\psi(2S)$: N = 30 ± 5, Br = (0.12 ± 0.02(stat)) x 10⁻⁴ This is 20 – 30 times smaller than Br($\psi(2S) \rightarrow \wedge^0 \wedge^0, \Sigma^0 \Sigma^0$)
- Form factor @ |Q²| = 14.2 GeV²: N = 30 ± 5, G_M(Λ⁰ Σ⁰) = (0.79 ± 0.07(stat)) x 10⁻²

 This is consistent with G_M(Σ⁰) = (0.79 ± 0.07) x 10⁻²

Partially Reconstructed $\psi(2S) \rightarrow$ Hyperon + Antihyperon

 $[N(\psi(2S)) = 24.5M, preliminary]$

- Next step: try to improve form factor results using partial reconstruction.
- Clear peaks due to pair production are seen in the $\psi(2S)$ hyperon energy spectrum.
- Select hyperon candidates with $X_B = 0.99 1.01$.
- Branching fraction results obtained are consistent with those obtained from fully reconstructed events, with efficiencies ~3-5 times larger.

Partially Reconstructed $\psi(3770) \rightarrow$ Hyperon + Antihyperon

 $[\mathscr{L}(3770) = 805 \text{ pb}^{-1}, \text{ preliminary}]$

 Mass spectra show peaks in all decays with larger statistics than with fully reconstructed events.

 Partially reconstructed events show clean peaks with larger statistics than fully reconstructed events.

Partially Reconstructed $\psi(3770) \rightarrow$ Hyperon + Antihyperon

 $[\mathscr{L}(3770) = 805 \text{ pb}^{-1}, \text{ preliminary, stat. uncertainty only}]$

	N(obs) B or Ē	3 %	σ pb	G _M × 10²	
p (uud)	213(15)		0.46(4)	0.88(4)	
Λ ⁰ (uds)	405(28)	65.7	0.99(7)	1.31(5)	2
Σ ⁰ (uds)	128(17)	43.2	0.48(6)	0.92(6)	x 10
Σ+ (uus)	166(16)	25.9	1.03(10)	1.34(6)	۲ د
Ξ ⁰ (uss)	107(12)	20.4	0.85(10)	1.25(7)	
Ξ⁻ (dss)	228(16)	47.6	0.77(5)	1.19(4)	
Ω– (sss)	8(4)	20.3	0.06(3)	0.39(9)	

- Event yields ~3—5 times larger than fully reconstructed decays.
 Only statistical uncertainties shown.
- Note: $G_M(\Lambda^0) / G_M(\Sigma^0) = 1.4(1)$.

Partially Reconstructed $\psi(4170) \rightarrow$ Hyperon + Antihyperon

 $[\mathscr{L}(4170) = 586 \text{ pb}^{-1}, \text{ preliminary}]$

• With larger efficiencies, we can extend our measurements to $\sqrt{s} = 4170$ MeV. Expected cross sections are much smaller due to s⁻⁵ dependence.

Partially Reconstructed $\psi(4170) \rightarrow$ Hyperon + Antihyperon

$[\mathscr{L}(4170) = 586 \text{ pb}^{-1}, \text{ preliminary, stat. uncertainty only}]$

	N(obs) B or Ē	3 %	σ pb	G _м × 10²
p (uud)	92(10)		0.29(4)	0.76(4)
Λ ⁰ (uds)	47(16)	72.2	0.18(6)	0.61(10)
Σ ⁰ (uds)	14(6)	49.0	0.08(3)	0.40(7)
Σ+ (uus)	28(7)	31.3	0.26(6)	0.73(9)
Ξº (uss)	6(3)	24.1	0.07(3)	0.38(9)
Ξ⁻ (dss)	13(4)	56.5	0.06(2)	0.35(6)
Ω– (sss)	8(3)	34.9	0.06(2)	0.38(9)

Hyperon EM Form Factors for $|Q^2| = 17.4 \text{ GeV}^2$

- Form factor ratios similar to those at |Q²| = 14.2 GeV², except for cascades.
- Note: $G_M(\Lambda^0) / G_M(\Sigma^0) \sim 1.6$

Hyperon Form Factors

Discussion

- No calculations of timelike hyperon form factors exist besides the VDM predictions of Körner and Kuroda [PRD 16, 2165 (1977)], which differ from our measurements by factor ~10.
- The Λ⁰ (*uds*, I=0) and Σ⁰ (*uds*, I=1) have same quark content but different isospin. Overall antisymmetrization of the wave function requires:
 - Isoscalar Λ^0 has *ud* in S=0 "good diquark" configuration.
 - Isovector Σ^0 has *ud* in S=1 "bad diquark" configuration.
- Jaffe, Selem, Wilczek et al. have discussed the potential effects of diquark correlations in detail, including a predicted large Λ⁰/Σ⁰ ratio in production in e⁺e⁻ annihilation (seen e.g. in LEP measurements). We find:
 - $Br(\psi(2S) \rightarrow \Lambda^0 \Lambda^0) / Br(\psi(2S) \rightarrow \Sigma^0 \Sigma^0) = 1.51 \pm 0.03$ (stat)
 - $\psi(3770)$: $G_M(\Lambda^0) / G_M(\Sigma^0) = 1.4 \pm 0.1$ (stat)
- We believe these measurements provide evidence for important diquark correlations in Λ^0 / Σ^0 hyperons.

Backup Slides

S. Dobbs — HADRON2015 — Sept. 15, 2015 — First Measurements of Hyperon Timelike FF at Large Q²

CLEO-c Detector

В	μ_B	$N_{\rm res}({\rm est.})$	$N_{\rm ff}$	$\epsilon_B, \%$	σ_0^B , pb	$ G_M^B imes 10^2$
p	2.79	1.3	215(15)	71.3	0.46(3)(3)	0.88(3)(2)
Λ^0	0.61	0.9	105(10)	21.1	0.80(8)(5)	1.18(6)(4)
Σ^0	0.78	0.2	15(4)	8.36	0.29(7)(2)	0.71(9)(3)
Σ^+	2.46	0.2	29(5)	4.68	0.99(18)(6)	1.32(13)(4)
Ξ^{-}	0.65	0.2	38(6)	8.69	0.71(11)(5)	1.14(9)(4)
Ξ^0	1.25	0.05	$5^{+2.8}_{-2.3}$	2.30	$0.35^{+0.20}_{-0.16}(3)$	0.81(21)(3)
Ω^{-}	2.02	0.03	$3^{+2.3}_{-1.9}$	2.94	$0.16^{+0.13}_{-0.10}(2)$	$0.64^{+0.21}_{-0.25}(3)$
$\Lambda^0 \Sigma^0$	1.61		30(5)	10.8	0.45(8)(3)	0.79(7)(3)

Partially Reconstructed $\psi(2S) \rightarrow Hyperon - Antihyperon$

 $[N(\psi(2S)) = 24.5M, preliminary, statistical uncertainty only]$

	N(obs) B or Ē	3 %	σ nb	Br × 10 ⁴
p (uud)			0.196(12)	3.08(19)
Λ ⁰ (uds)	5762(78)	67.5	0.230(3)	3.49(5)
Σ ⁰ (uds)	2361(52)	41.9	0.151(3)	2.31(5)
Σ+ (uus)	1520(42)	25.5	0.160(4)	2.44(7)
Ξ ⁰ (uss)	1108(36)	21.0	0.144(5)	2.16(7)
Ξ⁻ (dss)	3089(57)	49.5	0.169(3)	2.55(5)
Ω– (sss)	171(14)	15.9	0.029(2)	0.44(4)