

Jan Hartmann

for the CBELSA/TAPS collaboration

HISKP, University of Bonn

September 17, 2015

Baryon Spectroscopy

Recent Results from the CBELSA/TAPS Experiment

- Light Baryon Spectroscopy
- 2 The Crystal Barrel/TAPS experiment

3 Data Analysis

4 Results

- Single-Meson Photoproduction
- Multi-Meson Photoproduction

Light Baryon Spectroscopy

- Until 2010: Almost all resonances from πN scattering
- Resonances with small πN coupling?
 - photoproduction
 - different final states

Baryon Spectroscopy – Recent Results from the CBELSA/TAPS Experiment

Light Baryon Spectroscopy

- Until 2010: Almost all resonances from πN scattering
- Resonances with small πN coupling?
 - photoproduction
 - different final states
- PDG 2012: photoproduction data included ~~ new baryons

	PDG 2010	BnGa PWA	PDG 2012
$N(1860) 5/2^+$		*	**
$N(1875) 3/2^{-}$		* * *	* * *
$N(1880) 1/2^+$		**	**
$N(1895) 1/2^{-}$		**	**
$N(1900) 3/2^+$	**	* * *	* * *
$N(2060) 5/2^{-}$		* * *	**
$N(2160) 3/2^{-}$		**	**
$\Delta(1940) 3/2^{-}$	*	*	**

A.V. Anisovich et al., Eur. Phys. J. A48 (2012) 15

Baryon Spectroscopy - Recent Results from the CBELSA/TAPS Experiment

Polarization Observables

Single pseudoscalar meson photoproduction:

Photon		T	arge	et	F	Reco	il	Target - Recoil								
		x	y	z	-	_	_	x	y	z	x	y	z	x	y	z
		-	_	_	x'	y'	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
unpolarized	σ_0		T			P		$T_{x'}$		$L_{x'}$				$T_{z'}$		$L_{z'}$
linear pol.	Σ	H		G	$O_{x'}$		$O_{z'}$									
circular pol.		F		E	$C_{x'}$		$C_{z'}$									

- 1 unpolarized observable: σ_0
- 3 single polarization observables: \varSigma , T, P
- 12 double polarization observables: 4 BT, 4 BR, 4 TR

Polarization Observables

Single pseudoscalar meson photoproduction:

Photon		Т	arge	et	Recoil			Target - Recoil								
		x	y	z	-	_	-	x	y	z	x	y	z	x	y	z
		-	_	_	x'	y'	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
unpolarized	σ_0		T			P		$T_{x'}$		$L_{x'}$		Σ		$T_{z'}$		$L_{z'}$
linear pol.	Σ	H	P	G	$O_{x'}$	T	$O_{z'}$	$L_{z'}$	$C_{z'}$	$T_{z'}$	E	σ_0	F	$L_{x'}$	$C_{x'}$	$T_{x'}$
circular pol.		F		E	$C_{x'}$		$C_{z'}$		$O_{z'}$		G		H		$O_{x'}$	

- 1 unpolarized observable: σ_0
- 3 single polarization observables: \varSigma , T, P
- 12 double polarization observables: 4 BT, 4 BR, 4 TR
- redundant observables:
 - \bullet single pol. observables \longleftrightarrow double pol. experiment
 - \bullet double pol. observables \longleftrightarrow triple pol. experiment

Complete experiment: at least 8 (carefully chosen) observables

Event Reconstruction

Event Reconstruction

Multi-meson final states, e.g. $\pi^0 \pi^0$ or $\pi^0 \eta$:

Single-Meson Photoproduction

 $\gamma \mathbf{p} \rightarrow \mathbf{p} \pi^0$:

- π^0 : lightest meson
- well measured differential cross section
- $\bullet\,$ precise data on beam asymmetry $\varSigma\,$ available
- $\bullet\,$ contains πN coupling measured using elastic scattering
- \rightsquigarrow should be well understood

Jan Hartmann

$\gamma p \rightarrow p \pi^0$: Helicity Asymmetry E

9/21

$\gamma p \rightarrow p \pi^0$: Helicity Asymmetry E

J. Hartmann, H. Dutz, A. Anisovich et al., Phys. Rev. Lett. 113 (2014) 062001

Jan Hartmann

Baryon Spectroscopy – Recent Results from the CBELSA/TAPS Experiment

Impact of the New Double Polarization Data

J. Hartmann, H. Dutz et al., Phys. Lett. B748 (2015) 212 Baryon Spectroscopy – Recent Results from the CBELSA/TAPS Experiment 11/ 21

Single-Meson Photoproduction

 $\gamma p \rightarrow p \eta$:

- η : I = 0
- $\bullet\,$ only N^* resonances contribute
- ideal to investigate resonances with very small πN , but large ηN coupling.

Jan Hartmann

Baryon Spectroscopy – Recent Results from the CBELSA/TAPS Experiment

 $\gamma p \rightarrow p \eta$: Target Asymmetry T

- old ELSA data PRL 81 (1998) 534
- MAMI data PRL 113 (2014) 102001
- our data
- SAID
- MAID
- JüBo 2015
- BnGa 2011
- BnGa 2014

Jan Hartmann

Baryon Spectroscopy – Recent Results from the CBELSA/TAPS Experiment

$\gamma p \rightarrow p\eta$: Recoil Polarization P and Observable H

Jan Hartmann

Baryon Spectroscopy – Recent Results from the CBELSA/TAPS Experiment

$\gamma p \rightarrow p \eta$: Helicity Asymmetry E

Jan Hartmann

Baryon Spectroscopy - Recent Results from the CBELSA/TAPS Experiment

15/21

Impact of the New Double Polarization Data

BnGa 2014 refit to the new $\gamma p \rightarrow p\eta$ data:

• Indications for new resonance around 2.2 GeV

• Changed $N^* \to N\eta$ branching ratios

Res.	$N(1535)\frac{1}{2}^{-}$	$N(1650)\frac{1}{2}^{-}$	$N(1710)\frac{1}{2}^+$	$N(1720)\frac{3}{2}^+$	$N(1900)\frac{3}{2}^+$
BnGa	0.42 ± 0.04	0.32 ± 0.04	0.27 ± 0.09	0.03 ± 0.02	0.03 ± 0.01
PDG	0.42 ± 0.10	0.05 to 0.15	$0.10 \ \mathrm{to} \ 0.30$	0.021 ± 0.014	≈ 0.12

• Still preliminary, systematic studies in progress

Multi-Meson Photoproduction

- Resonances can decay into $\Delta^{\!\!*}\pi^0$, $N^*\pi^0$, $N\sigma$
- $\gamma p \rightarrow p \pi^0 \pi^0$ provides access to baryon cascade decays
- Rich environment to find new resonances

V. Sokhoyan et al., Eur. Phys. J. A51 (2015) 95

Baryon Spectroscopy - Recent Results from the CBELSA/TAPS Experiment

3-Body Kinematics

photon pol.		targ	et pol.	axis
		x	y	z
unpol.	σ	P_x	P_y	P_z
linear $\sin(2\phi)$	I^s	P_x^s	P_y^s	P_z^s
linear $\cos(2\phi)$	I^c	P_x^c	P_y^c	P_z^c
circular	I^{\odot}	P_x^{\odot}	P_y^{\odot}	P_z^{\odot}

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= \frac{\mathrm{d}\sigma_0}{\mathrm{d}\Omega} \cdot \left\{ \left(1 + \Lambda_x P_x + \Lambda_y P_y \right) + \delta_\ell \cdot \left[\sin(2\phi) \cdot \left(I^s + \Lambda_x P_x^s + \Lambda_y P_y^s \right) \right. \right. \\ &\left. \text{W. Roberts, T. Oed, Phys. Rev. C 71 (2005)} \right. \\ &\left. + \cos(2\phi) \cdot \left(I^c + \Lambda_x P_x^c + \Lambda_y P_y^c \right) \right] \right\} \end{aligned}$$

symmetry properties

$$I^{s}(2\pi - \phi^{*}) = -I^{s}(\phi^{*}) \qquad P_{x}(2\pi - \phi^{*}) = -P_{x}(\phi^{*})$$
$$I^{c}(2\pi - \phi^{*}) = +I^{c}(\phi^{*}) \qquad P_{y}(2\pi - \phi^{*}) = +P_{y}(\phi^{*})$$

in case of identical particles in the decay plane: $O(\phi^*) = O(\phi^* + \pi)$

Jan Hartmann

Baryon Spectroscopy - Recent Results from the CBELSA/TAPS Experiment

$\gamma p \rightarrow p \pi^0 \pi^0$: Target Asymmetries P_x and P_y

- predictions do not match data
- many more polarization observables under analysis

T. Seifen, to be published

Summary

- Double polarization data has been taken with the Crystal Barrel/TAPS experiment at ELSA:
 - longitudinally or transversely polarized target
 - linearly or circularly polarized photon beam
- π^0 photoproduction: precision measurements
 - \rightsquigarrow large impact on PWA:
 - significantly smaller errors on multipoles
 - better determination of resonance parameters
- η photoproduction: first data for many observables \rightsquigarrow important constraints for the PWA
 - $N^* \to \eta N$ branching ratios
- Multi-meson photoproduction, e.g. $\pi^0\pi^0$:
 - \rightsquigarrow just the tip of the iceberg
- Detector upgrade in progress Access to more final states (including off the neutron)

Thank you for your attention!

Jan Hartmann

Baryon Spectroscopy - Recent Results from the CBELSA/TAPS Experiment