

Recent results from Belle

Chang-Zheng Yuan (IHEP, Beijing) (for the Belle collaboration) Hadron'15, Newport News Sept. 13-18, 2015

The Belle experiment

Integrated luminosity of B factories

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

e⁺e⁻ annihilation of vector bottomonia

ISR production of vector charmonia

Outline

- R_b measurement $R_b = \frac{\sigma(e^+e^- \to b\bar{b})}{\sigma^0(e^+e^- \to \mu^+\mu^-)}$
- $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS), \pi^+\pi^- h_b(nP), B^{(*)}B^{(*)}\pi$

 $-\Upsilon(5S), \Upsilon(6S), Z_{b}$

• $e^+e^- \rightarrow \pi^+\pi^-\psi(nS)$, K^+K^-J/ψ

– Y(4260), Y(4360), Y(4660), Z_c & Z_{cs}

Summary

$e^+e^- \rightarrow bb$ inclusive & exclusive

7

Previous results on Z_b states

BELLE

Belle: arXiv:1501.01137

$$\mathcal{F} = |A_{\rm nr}|^2 + |A_{\rm r} + A_{5\rm S}e^{i\phi_{5\rm S}}f_{5\rm S} + A_{6\rm S}e^{i\phi_{6\rm S}}f_{6\rm S}|^2$$

```
\begin{split} &\Upsilon(5S):\\ &Mass = (10881.9 \pm 1.0 \pm 1.2) \text{ MeV}\\ &Width = (49.8 \pm 1.9 \pm^{2.1}_{2.8}) \text{ MeV}\\ &\Upsilon(6S):\\ &Mass = (11002.9 \pm 1.1 \pm^{0.8}_{0.9}) \text{ MeV}\\ &Width = (38.5 \pm^{1.6}_{1.5} \pm^{1.3}_{2.4}) \text{ MeV}\\ &\text{Width} = (38.5 \pm^{0.24}_{0.10} \pm 0.10 \text{ rad}) \end{split}
```

Results agree with previous measurements
 Suffers from model uncertainties (signal, background parametrization, interference, thresholds, coupled channel effect)

Belle: arXiv:1501.01137

 $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)$

121 fb⁻¹ data, tag $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ and select $\pi^+ \pi^-$

Final state	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
Signal yield	2090 ± 115	2476 ± 97	628 ± 41
Efficiency, $\%$	45.9	39.0	24.4
$\mathcal{B}_{\Upsilon(nS)\to\mu^+\mu^-}, \% [\underline{14}]$	2.48 ± 0.05	1.93 ± 0.17	2.18 ± 0.21
$\sigma_{e^+e^- \to \Upsilon(nS)\pi^+\pi^-}^{\rm vis}$, pb	$1.51 \pm 0.08 \pm 0.09$	$2.71 \pm 0.11 \pm 0.30$	$0.97 \pm 0.06 \pm 0.11$
$\sigma_{e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-}$, pb	$2.27 \pm 0.12 \pm 0.14$	$4.07 \pm 0.16 \pm 0.45$	$1.46 \pm 0.09 \pm 0.16$
$\sigma_{e^+e^- \to \Upsilon(nS)\pi^+\pi^-}^{\mathrm{vis}}, \mathrm{pb} [\underline{1}]$	$1.61 \pm 0.10 \pm 0.12$	$2.35 \pm 0.19 \pm 0.32$	$1.44^{+0.55}_{-0.45} \pm 0.19$

Belle: PRD91, 072003 (2015)

Z_{b} in $\Upsilon(5S) \rightarrow \pi^{+}\pi^{-}\Upsilon(nS)$

Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z_{\tau}^{\mp}(10610)\pi^{\pm}},\%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0 \pm 6.3^{+5.4}_{-7.1}$
$Z_b(10610)$ mass, MeV/ c^2	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$Z_b(10610)$ width, MeV/ c^2	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7 \pm 3.4^{+2.5}_{-1.3}$
$f_{Z_{L}^{\mp}(10650)\pi^{\pm}},\%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$Z_b(10650)$ mass, MeV/ c^2	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$Z_b(10650)$ width, MeV/ c^2	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2 \pm 3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$
ϕ_Z , degrees	$67 \pm 36^{+24}_{-52}$	$-10 \pm 13^{+34}_{-12}$	$-5 \pm 22^{+15}_{-33}$
$c_{Z_b(10650)}/c_{Z_b(10610)}$	$0.40 \pm 0.12^{+0.05}_{-0.11}$	$0.53 \pm 0.07^{+0.32}_{-0.11}$	$0.69 \pm 0.09^{+0.18}_{-0.07}$
$f_{\Upsilon(nS)f_2(1270)}, \%$	$14.6 \pm 1.5^{+6.3}_{-0.7}$	$4.09 \pm 1.0^{+0.33}_{-1.0}$	—
$f_{\Upsilon(nS)(\pi^+\pi^-)S}, \%$	$86.5 \pm 3.2^{+3.3}_{-4.9}$	$101.0 \pm 4.2^{+6.5}_{-3.5}$	$44.0 \pm 6.2^{+1.8}_{-4.3}$
$f_{\Upsilon(nS)f_0(980)}, \%$	$6.9 \pm 1.6^{+0.8}_{-2.8}$	_	_

$$\begin{split} \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 109 \pm 27^{+35}_{-10} \quad \text{fb} \quad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(1S)\pi^{\mp}} &= 20 \pm 7^{+4}_{-3} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 737 \pm 126^{+188}_{-85} \quad \text{fb} \quad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(2S)\pi^{\mp}} &= 165 \pm 49^{+43}_{-20} \quad \text{fb} \\ \sigma_{Z_{b}^{\pm}(10610)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 438 \pm 92^{+92}_{-114} \quad \text{fb} \quad \sigma_{Z_{b}^{\pm}(10650)\pi^{\mp}} \times \mathcal{B}_{\Upsilon(3S)\pi^{\mp}} &= 194 \pm 53^{+43}_{-25} \quad \text{fb} \end{split}$$

Relative BR of Z_b decays

Belle: PRD91, 072003 (2015)

14

 $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$

 Reconstruct π⁺π⁻, require π⁺/π⁻ recoil mass in Z_b region: 10.59 < M_{miss}(π) < 10.67 GeV/c²
 check the π⁺π⁻ recoil mass for h_b(nP)

Belle: arXiv:1508.06562

 $e^+e^- \rightarrow \pi^+\pi^-h_b(nP)$

Events mainly from Z_b intermediate states not clear if only one Z_b or both.

Belle II will tell us.

Belle: arXiv:1508.06562

Belle preliminary

 $Z_{b}(10610)$ saturates BB^{*} π and $Z_{b}(10650)$ saturates B^{*}B^{*} π

Assuming Z_b decays are saturated by observed channels, $B^{(*)}B^*$ channels dominate the Z_b decays

- 1. Fit with two coherent resonances $|BW_1+BW_2*exp(i\phi)|^2+bkg$.
- 2. Mass of Y(4008) is lower than before
- 3. Fit quality: χ^2 /ndf=101/84, confidence level is 9.3% 22

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ from ISR

(b)

40

35

30

20

10

Events / 20 MeV/c²

PRL110, 252002 (2013)

- M²(ππ) vs. M²(πJ/ψ) for
 4.15<M(ππJ/ψ) <4.45 GeV
- (inset) Background events in J/ψ-mass sidebands
- Structures both in ππ and πJ/ψ systems
- 689 events in J/ψ signal region, purity~80%

Events / 30 MeV/c²

60

50

40

30

20

10

ŏ.2

0.4

(a)

🕂 data

— MC

--- Z(3900) MC

Sideband

0.6

0.8

 $M(\pi^+\pi^-)$ (GeV/c²)

1.2

1.4

Z(3900)⁺ observed in two experiments!

Belle with ISR: PRL110,252002

BESIII at 4.260 GeV: PRL110,252001

- M = 3894.5±6.6±4.5 MeV
- Γ = 63±24±26 MeV
- 159 ± 49 events
- >5.2σ

3.7

70

60

50

40

30

20

10 F

0

Events / 0.02 GeV/c²

• M = 3899.0±3.6±4.9 MeV

24

- Γ = 46±10±20 MeV
- 307 ± 48 events
- >8o

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR

25

• Clear signal of missed massless particle $(M_{rec}^2(\psi'\pi\pi)\sim 0)$

a few events at Y(4260)

 $\psi' (\rightarrow J/\psi \pi \pi \text{ or } \mu \mu) + \pi \pi$

- Polar angle distribution agrees well with ISR expectation
- Combinatorial background estimated by ψ' sidebands
 - Bkgs from real $(\psi'\pi\pi)_{non ISR}$ or $\psi' X_{non \pi\pi}$ are negligibly small

Belle: arXiv:1410.7641, PRD91_112007

Fit with Three BWs

Fit with Three BWs

 $\psi' \rightarrow J/\psi \pi \pi + \mu \mu$

Belle: arXiv:1410.7641, PRD91_112007

Parameters	Solution III	Solution IV	Solution V	Solution VI	
$M_{Y(4260)}$	4259 (fixed)				
$\Gamma_{Y(4260)}$	134 (fixed)				
$\mathcal{B}[Y(4260) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4260)}^{e^+ e^-}$	$1.5\pm0.6\pm0.4$	$1.7\pm0.7\pm0.5$	$10.4\pm1.3\pm0.8$	$8.9\pm1.2\pm0.8$	
$M_{Y(4360)}$	$4365\pm7\pm4$				
$\Gamma_{Y(4360)}$	$74 \pm 14 \pm 4$				
$\mathcal{B}[Y(4360) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4360)}^{e^+ e^-}$	$4.1\pm1.0\pm0.6$	$4.9\pm1.3\pm0.6$	$21.1\pm3.5\pm1.4$	$17.7 \pm 2.6 \pm 1.5$	
$M_{Y(4660)}$	$4660 \pm 9 \pm 12$				
$\Gamma_{Y(4660)}$	$74 \pm 12 \pm 4$				
$\mathcal{B}[Y(4660) \to \pi^+ \pi^- \psi(2S)] \cdot \Gamma_{Y(4660)}^{e^+ e^-}$	$2.2\pm0.4\pm0.2$	$8.4\pm0.9\pm0.9$	$9.3\pm1.2\pm1.0$	$2.4\pm0.5\pm0.3$	
ϕ_1	$304\pm24\pm21$	$294\pm25\pm23$	$130\pm4\pm2$	$141\pm5\pm4$	
ϕ_2	$26\pm19\pm10$	$238\pm14\pm21$	$329\pm8\pm5$	$117\pm23\pm25$	

Significance of Y(4260) is 2.4σ Affect the parameters of Y(4360) and Y(4660) significantly! ²⁸

Z_c states from Y(4360) decays?

BELLE

Belle: arXiv:1410.7641, PRD91_112007

Z_c(4050)[±]→πψ'

No significant Z_c in Y(4660) decays!

Belle: arXiv:1410.7641, PRD91, 112007

$e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

BELLE

Event selections are almost the same as in Phys. Rev. D 77,
011105(R) (2008)Shaded hist.: J/ ψ mass sidebands

BELLE

under current statistics

33

Summary

- With the world's largest data samples in bottomonium energy region Belle achieved a lot
 - improved knowledge on $\Upsilon(5S)$ and $\Upsilon(6S)$
 - New results on the Z_b states
- With ISR events, Belle studied charmoniumlike states
 - Improved measurement of Y(4360) & Y(4660)
 - Evidence for $Z_c(4050) \rightarrow \pi \psi'$ but no Z_{cs} yet
- Still lots of analyses on going, results soon
- Belle II is coming

The end

$M(\pi^+\pi^-)$ distributions

