

The η -Meson Decay Program at WASA-at-COSY

15.09.2015 | Daniel Lersch for the WASA-at-COSY collaboration XVI International Conference on Hadron Spectroscopy

The η -Meson

- $m_{\eta} = 0.5478 \,\mathrm{GeV/c^2}, \, \bar{\tau} \approx 5 \cdot 10^{-19} \,\mathrm{s}$
 - $(\Gamma_{\eta} = (1.31 \pm 0.05) \,\mathrm{keV})$

$$J^{PC} = 0^{-+} \Rightarrow \eta$$
-meson is:
C-, P-, G- and CP- eigenstate

 All strong and electromagnetic decays are forbidden to first order

\Rightarrow Access to rare decay processes:

- Explore anomalous sector of QCD
- Determine electromagnetic transition form factors
- Study of symmetry-breaking-phenomena

η -Meson production at WASA-at-COSY:

$$pd
ightarrow {}^{3} ext{He}\eta[\eta
ightarrow ...] \parallel \sigma(\eta) = (0.412 \pm 0.016) \, \mu ext{b}$$
 at $T_{beam} = 1 \, ext{GeV}$

$$pp
ightarrow pp\eta[\eta
ightarrow ...] ~ \parallel \sigma(\eta) = (9.8 \pm 1) \, \mu \mathrm{b}$$
 at $T_{beam} = 1.4 \, \mathrm{GeV}$

2

The data sets

Reconstruct η-meson via missing mass: |P_{in} - P_{out}|

Background contributions from direct pion production reactions: $pd \rightarrow {}^{3}\text{HeX}, pp \rightarrow ppX$ $X = \pi^{+}\pi^{-}, X = \pi^{0}\pi^{0}$ and $X = \pi^{+}\pi^{-}\pi^{0}$

	$pd \rightarrow$	$^{3}\text{He}\eta$		$pp ightarrow pp\eta$	
Data taken in	2008	2009	2008	2010	2012
Duration of beam time	4 weeks	8 weeks	2 weeks	7 weeks	8 weeks
η -mesons detected / produced	$\sim 1 \cdot 10^7$	$\sim 2 \cdot 10^7$	$\sim 1 \cdot 10^8$	$\sim 4 \cdot 10^8$	$\sim 5 \cdot 10^8$

Wide Angle Shower Apparatus - WASA

Example: $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\gamma]$

$\left(\eta ightarrow \pi^+\pi^-\pi^0 ight)$ Dalitz plot analysis

Dalitz plot variables:	
$X = \sqrt{3}rac{T_{\pi +} - T_{\pi -}}{T_{\pi +} + T_{\pi -} + T_{\pi 0}}$ $Y = rac{3T_{\pi 0}}{T_{\pi +} + T_{\pi -} + T_{\pi 0}}$	

• Decay via strong isospin violation: $\Gamma_{meas} = \left(\frac{Q_D}{Q}\right)^4 \overline{\Gamma}$

•
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}, \, \hat{m} = \frac{1}{2}(m_u + m_d)$$

- $\overline{\Gamma}$ calculated with ChPT at Dashen limit, $Q_D = 24.2$
- Dalitz plot analysis: $\frac{d\Gamma}{dXdY} \propto (1 + aY + bY^2 + dX^2 + fY^3 + gX^2Y + ...)$ $\rightarrow c, e \text{ and } h \text{ would imply C-violation}$

$\eta \to \pi^+ \pi^- \pi^0$ Results from $pd \to {}^{3}\text{He}\eta$

	Parameter:	—a	b	d	f
eo.	ChPT (NNLO) ^(b)	1.271(75)	0.394(102)	0.055(57)	0.025(160)
ㅂ	NREFT ^(c)	1.213(14)	0.308(23)	0.050(3)	0.083(19)
ġ	KLOE ^(a)	1.090(5)(+8)	0.124(6)(10)	$0.057(6)(^{+7}_{-16})$	0.14(1)(2)
ш	WASA ^(d)	1.144(18)	0.219(19)(47)	0.086(18)(15)	0.115(37)

(b) J. Biinens and K. Ghorbani, JHEP 11 (2007)

(c) S- P. Schneider et al., JHEP, 028, (2011)

(d) WASA-at-COSY coll., Phys. Rev., C90(045207), 2014

- $\sim 1.2 \cdot 10^5 \ \eta \rightarrow \pi^+ \pi^- \pi^0$ events selected via a kinematic fit for the final event sample
- Dalitz plot analysis for $pp \rightarrow pp\eta[\eta \rightarrow \pi^+\pi^-\pi^0]$ in progress

$ig(\eta o \pi^+\pi^-\gammaig)$ The box anomaly and $\pi^+\pi^-$ FSI

Beyond chiral limit:

- Include $\pi^+\pi^-$ Final State Interactions
- Modification of decay amplitude:^(a)

(a) F.Stollenwerk et al., Phys. Lett., B707:184-190, 2012

$$\mathbf{A}_{\eta \to \pi^+ \pi^- \gamma} \times [\mathbf{F}_{PV}(\mathbf{s}_{\pi\pi}) \cdot (1 + \alpha \mathbf{s}_{\pi\pi})]$$

$$\Rightarrow \text{Description of FSI:} \begin{cases} \text{by } F_{PV} & \alpha = 0\\ \text{reaction specific}^* & \alpha \neq 0 \end{cases}$$

*Input from theory

- $\Gamma^{\text{Theory}}(\eta
 ightarrow \pi^+\pi^-\gamma) = 35.7\,\mathrm{eV^{(b)}}$
- $\Gamma^{\text{Exp.}}(\eta \to \pi^+ \pi^- \gamma) = (55.3 \pm 2.4) \, \mathrm{eV}^{(c)}$

(b) B.R. Holstein, Phys. Scripta, T99:55-67, 2002

(c) PDG, Chin. Phys., 090001, 2014

Photon energy distribution E_{γ} :^(d)

(d) WASA-at-COSY coll. Phys. Lett., B707:243-249, 2012

 $\implies \text{Determine } \frac{\Gamma(\eta \to \pi^+ \pi^- \gamma)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} \text{ and } \alpha \text{ via } E_{\gamma} \text{-distribution in } pp \to pp\eta[\eta \to \pi^+ \pi^- \gamma]$ 15.09.2015 Daniel Lersch for the WASA-at-COSY collaboration

 $n \rightarrow \pi^+ \pi^- \gamma$ Status in $pp \rightarrow pp\eta$

- $\sim 209 \,\mathrm{k} \,\eta \rightarrow \pi^+ \pi^- \gamma$ events reconstructed
 - i) Rejection of wrongly reconstructed photons \Rightarrow Reduce background from $pp \rightarrow pp\pi^+\pi^-$ ii) Kinematic fit \Rightarrow Further reduction of multi pion background and improvement of E_{γ} resolution
- E_{γ} distribution after background correction from direct pion production
- Next steps (ongoing):
 - 1.) Include efficiency corrections for different assumptions on α
 - 2.) Calculate $\frac{\Gamma(\eta \to \pi^+ \pi^- \gamma)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)}$ and determine α

$$\left(\eta
ightarrow \pi^+\pi^- e^+ e^-
ight)$$
CP-Violation

$\eta \to \pi^+ \pi^- \gamma$

- CP-conserving for M₁ and E₂ transitions
- Access to CP-violation:
 - \Rightarrow Measure E_1 transition
 - ⇒ Need information about polarisation of single photon

$$\eta
ightarrow \pi^+ \pi^- \gamma^* [\gamma^*
ightarrow {\pmb e}^+ {\pmb e}^-]$$

Look at asymmetry A_Φ^(a) of angle Φ between decay planes of electrons and pions:

 $A_{\Phi} = \frac{N(\sin[\Phi]\cos[\Phi]>0) - N(\sin[\Phi]\cos[\Phi]<0)}{N(\sin[\Phi]\cos[\Phi]>0) + N(\sin[\Phi]\cos[\Phi]<0)}$

- Upper limit predicted by theory^(a): ~ 1%
- Results found by KLOE:^(b) 1.) $A_{\Phi} = (-0.6 \pm 2.5_{stat} \pm 1.8_{sys}) \cdot 10^{-2}$ 2.) $\frac{\Gamma(\eta \rightarrow \pi^+ \pi^- e^+ e^-)}{\Gamma_{\eta}} = (2.68 \pm 0.09_{stat} \pm 0.07_{sys}) \cdot 10^{-4}$ (a) D. Gao. Mod. Phys. Lett. A17:1583-1588, 2002

(b) KLOE coll, Phys. Lett., B675:283-288-914, 2009

$\left[\eta ightarrow \pi^+\pi^- m{e}^+m{e}^ight]$ Results from $m{ hod} ightarrow {}^3 ext{He}\eta$

• 251 \pm 17 $\eta \rightarrow \pi^+\pi^-e^+e^-$ events in the final sample

- i) Rejection of photon conversion events \Rightarrow Reduce contributions from $\eta \rightarrow \pi^+ \pi^- \gamma / \eta \rightarrow \pi^+ \pi^- \pi^0$
- ii) Identification of π^{\pm} and e^{\pm} in the mixed final state \Rightarrow Crucial for the determination of A_{Φ}
- iii) Kinematic fit \Rightarrow Reduction of $\eta \rightarrow \pi^+\pi^-\pi^0[\pi^0 \rightarrow e^+e^-\gamma]$

Preliminary:

1.)
$$A_{\Phi} = (-1.1 \pm 6.6_{stat} \pm 0.2_{sys}) \cdot 10^{-2}$$

- 2.) $\frac{\Gamma(\eta \to \pi^+ \pi^- e^+ e^-)}{\Gamma_{\eta}} = (2.7 \pm 0.2_{stat} \pm 0.2_{sys}) \cdot 10^{-4}$
- Need more statistics $\Rightarrow pp\eta$ data set

15.09.2015

$ig(\eta o \pi^+\pi^- m{e}^+m{e}^-ig)$ Status in $m{pp} o m{pp}\eta$

- Analysis procedure shown above done for a fraction of 2010 pp → ppη data set:^(c)
 - \sim 220 $\eta \rightarrow \pi^+\pi^- e^+ e^-$ events reconstructed
 - \sim 1,000 events expected for full $pp \rightarrow pp\eta$ data sample
- Analysis in $pp \rightarrow pp\eta$ needs to be continued

(c) D. Coderre, PhD Thesis, 2012

$(\eta ightarrow m{e^+e^-}\gamma$ and $\eta ightarrow m{e^+e^-e^+e^-})$ Dalitz decays

Single off-shell transition form factor $F(q^2)$

•
$$\frac{d\Gamma}{dq^2} = \left[\frac{d\Gamma}{dq^2}\right]_{QED} \cdot |F(q^2)|^2$$

• Observables to test: $\frac{\Gamma(\eta \rightarrow e^+e^-\gamma)}{\Gamma_{\eta}}$ and Dilepton mass

 $\begin{array}{ll} & \text{Recent result: } \frac{\Gamma(\eta \to e^+ e^- \gamma)}{\Gamma_{\eta}} = (6.9 \pm 0.4) \cdot 10^{-3(a)} \\ & \text{ (a) K. Olive et al. Chin. Phys., C38, 090001, 2014} \end{array}$

Double off-shell transition form factor $F(q_1^2, q_2^2)$

- Different approaches for calculation of F^(b)
- Observable to test: $\frac{\Gamma(\eta \rightarrow e^+ e^- e^+ e^-)}{\Gamma_n}$
- Current result measured by KLOE:^(c) $\frac{\Gamma(\eta \rightarrow e^+ e^- e^+ e^-)}{\Gamma_{\eta}} = (2.4 \pm 0.2_{stat} \pm 0.1_{sys}) \cdot 10^{-5}$

(b) J. Bijnens et al. arXiv:hep-ph/0106130v1, 2001 (c) KLOE coll. Phys. Lett., B702:324-328, 2011

15.09.2015

$$(\eta
ightarrow m{e^+e^-}\gamma$$
 and $\eta
ightarrow m{e^+e^-e^+e^-}$

Results from $pd \rightarrow {}^{3}\mathrm{He}\eta$

- 14,040 \pm 120 events $\eta \rightarrow e^+e^-\gamma$ events reconstructed
- Preliminary: $\frac{\Gamma(\eta \rightarrow e^+ e^- \gamma)}{\Gamma_{\eta}} = (6.72 \pm 0.07_{stat} \pm 0.31_{sys}) \cdot 10^{-3}$

- $18 \pm 5 \eta \rightarrow e^+e^-e^+e^-$ events reconstructed
- Preliminary: $\frac{\Gamma(\eta \rightarrow e^+e^-e^+e^-)}{\Gamma_{\eta}} = (3.2 \pm 0.9_{stat} \pm 0.5_{sys}) \cdot 10^{-5}$
- Need more statistics $\Rightarrow pp\eta$ data set

- Challenges in analysis:
 - i) Dilepton pairs from conversion events at the beam pipe
- ii) Handling of large pion background

15.09.2015

$ig(\eta o oldsymbol{e}^+ oldsymbol{e}^- \gammaig)$ Status in $oldsymbol{pp} o oldsymbol{pp} \eta$

- Reduce uncertainty of $F(q^2)$ at high q^2 : Increase statistics $\Rightarrow pp\eta$ data set
- $\sim 29 \text{ k} \eta \rightarrow e^+e^-\gamma$ events reconstructed in current $pp \rightarrow pp\eta[\eta \rightarrow e^+e^-\gamma]$ analysis i) PID \Rightarrow Reduction of pions ii) Rejection of conversion events
 - \Rightarrow Suppression of $\eta \rightarrow \gamma \gamma$
 - iii) Check for energy and momentum conservation
 - In preparation:
 - 1.) Calculation of $\frac{\Gamma(\eta \rightarrow e^+ e^- \gamma)}{\Gamma_n}$
 - 2.) Dilepton invariant mass distribution $\Rightarrow F(q^2)$

Analysis of $pp \rightarrow pp\eta[\eta \rightarrow e^+e^-e^+e^-]$ in preparation

$$(\eta
ightarrow \pi^{0} e^{+} e^{-})$$
 C-Violation

Different decay models:

- Forbidden by SM: $BR(\eta \rightarrow \pi^0 e^+ e^-) < 4 \cdot 10^{-5}$ (a)
- Investigate existing upper limit *BR* with hight statistics $pp \rightarrow pp\eta$ data set

(a) K. Olive et al. Chin. Phys., C38, 090001, 2014

15.09.2015

Summary and Outlook

Decay mode	$\Gamma(\eta ightarrow)/\Gamma_{\eta}{}^{(a)}$	Issue
$\eta \to \pi^0 \pi^0 \pi^{0(\mathbf{b})}$	$(32.68 \pm 0.23)\%$	Dalitz plot analysis
$\eta ightarrow \pi^+ \pi^- \pi^{0(c)}$	$(22.92\pm 0.28)\%$	Dalitz plot analysis
$\eta \to \pi^+\pi^-\gamma^{\rm (d)}$	$(4.22 \pm 0.08)\%$	Box anomaly, $\pi^+\pi^-$ -FSI
$\eta ightarrow {m e^+ m e^- \gamma^{(m e)}}$	$(0.69 \pm 0.11)\%$	Single-off-shell transition form factor
$\eta ightarrow \pi^0 \gamma \gamma$	$(2.7\pm0.5)\cdot10^{-4}$	Test of ChPT
$\eta ightarrow \pi^+\pi^- e^+ e^{-({ m e})}$	$(2.68 \pm 0.11) \cdot 10^{-4}$	CP-Violation
$\eta ightarrow {m e^+ e^- e^+ e^{-({m e})}}$	$(2.40\pm0.22)\cdot10^{-5}$	Double-off-shell transition form factor
$\eta ightarrow \pi^{0} e^{+} e^{-}$	$< 4 \cdot 10^{-5}$	C-Violation
$\eta ightarrow {m e^+ e^-}$	$< 5.6 \cdot 10^{-6}$	Physics beyond the SM

1 $pd \rightarrow {}^{3}\text{He}\eta[\eta \rightarrow ...]$ 2 $pp \rightarrow pp\eta[\eta \rightarrow ...] \Rightarrow$ Analysis ongoing

(a): PDG, Chin. Phys., 090001, 2014

(b): WASA-at-COSY coll., Phys. Lett., B677:24-29, 2009

(c): WASA-at-COSY coll., Phys. Rev., C90(045207), 2014

(d): WASA-at-COSY coll., Phys. Lett., B707:243-249, 2012

(e): Publication in preparation

 \Rightarrow More fun with η -decays: See talk by M. Kunkel (1F1)

Contents

Slide 17

Backup

- N/D-Model:^{a)}
 - One-loop chiral corrections and VMD
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[\frac{1+0.5m_{\rho}^2 s_{\pi\pi}}{D_1(s_{\pi\pi})}\right]$

a) B.R. Holstein, Phys. Scripta, T99:55-67, 2002

 $\overline{\left(\eta
ightarrow\pi^{+}\pi^{-}\gamma
ight)}$ Theoretical Models

- N/D-Model:a)
 - One-loop chiral corrections and VMD
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[\frac{1+0.5m_{\rho}^2 s_{\pi\pi}}{D_1(s_{\pi\pi})}\right]$
- HLS (Hidden Local Symmetries)-Model:^{b)}
 - γV Transitions
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[1 + \frac{3m_{\rho}^2}{D_{\rho}(s_{\pi\pi})}\right]$

a) B.R. Holstein, Phys. Scripta, T99:55-67, 2002

b) M.Benayoun et al., Europ. Phys. Journal, C31:525-547, 2003

 $\overline{\left(\eta
ightarrow\pi^{+}\pi^{-}\gamma
ight)}$ Theoretical Models

- N/D-Model:^{a)}
 - One-loop chiral corrections and VMD
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[\frac{1+0.5m_{\rho}^2 s_{\pi\pi}}{D_1(s_{\pi\pi})}\right]$
- HLS (Hidden Local Symmetries)-Model:^{b)}
 - γV Transitions
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[1 + \frac{3m_{\rho}^2}{D_{\rho}(s_{\pi\pi})}\right]$

- Higher momentum orders O(p⁶) and one loop chiral corrections
- $\begin{array}{l} \bullet \quad \operatorname{Modify} \ A_{\eta \to \pi^+ \pi^- \gamma} \ \text{with:} \\ \left[1 + C^{\text{loops}} + \frac{3}{2m_\rho^2} (\rho_{\pi^+} + \rho_{\pi^-})^2 \right] \end{array}$

- a) B.R. Holstein, Phys. Scripta, T99:55-67, 2002
- b) M.Benayoun et al., Europ. Phys. Journal, C31:525-547, 2003
- c) J.Bijnens et al., Phys. Lett., B237:488-494, 1990

$\overline{\left(\eta ightarrow\pi^{+}\pi^{-}\gamma ight)}$ Theoretical Models

- N/D-Model:^{a)}
 - One-loop chiral corrections and VMD
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[\frac{1+0.5m_{\rho}^2 s_{\pi\pi}}{D_1(s_{\pi\pi})}\right]$
- HLS (Hidden Local Symmetries)-Model:^{b)}
 - γV Transitions
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $\left[1 + \frac{3m_{\rho}^2}{D_{\rho}(s_{\pi\pi})}\right]$

- Higher momentum orders O(p⁶) and one loop chiral corrections
- $\begin{array}{ll} \bullet & \operatorname{Modify} A_{\eta \to \pi^+ \pi^- \gamma} \text{ with:} \\ \left[1 + C^{\operatorname{loops}} + \frac{3}{2m_{\rho}^2} (\rho_{\pi^+} + \rho_{\pi^-})^2 \right] \end{array}$
- Pion-Vektor-Formfactor:^d
 - π⁺π⁻-interactions (universal)
 - Modify $A_{\eta \to \pi^+ \pi^- \gamma}$ with: $F_{PV}(s_{\pi\pi}) \approx a \cdot s_{\pi\pi}^3 + b \cdot s_{\pi\pi}^2 + c \cdot s_{\pi\pi} + d$

- a) B.R. Holstein, Phys. Scripta, T99:55-67, 2002
- b) M.Benayoun et al., Europ. Phys. Journal, C31:525-547, 2003
- c) J.Bijnens et al., Phys. Lett., B237:488-494, 1990
- d) F.Stollenwerk et al., Phys. Lett., B707:184-190, 2012

$(\eta \rightarrow \pi^+ \pi^- \gamma)$ Theoretical Predictions and Recent Measurements

		$\Gamma(\eta ightarrow \pi^+\pi^-\gamma)/\Gamma(\eta ightarrow \pi^+\pi^-\pi^0)$	$lpha [{ m GeV^{-2}}]$
	Gormley et al.	0.202 ± 0.006	1.8 ± 0.4
	Thaler et al.	0.209 ± 0.004	-
jut j	Layter et al.	-	-0.9 ± 0.1
Ĕ	GAMS-200*	-	2.7 ± 0.1
eri	CRYSTAL BARREL*	-	1.8 ± 0.53
d X	CLEO	0.175 ± 0.013	-
ш	WASA-at-COSY	Preliminary: 0.206 \pm 0.011	1.89 ± 0.86
	KLOE	0.1856 ± 0.003	1.32 ± 0.2
	CLAS	Analysis ongoing	-
~	N/D	0.2188 ± 0.0088	0.64 ± 0.02
-De	HLS	0.1875 ± 0.0094	0.23 ± 0.01
Ľ	$(O(p^6) + 1 - loop)$	0.1565 ± 0.0063	-0.7 ± 0.1
•	Box anomaly	0.119 ± 0.0048	-1.7 ± 0.02

*Measured $\eta' \rightarrow \pi^+ \pi^- \gamma$

15.09.2015

$(\eta \rightarrow \pi^+ \pi^- \gamma)$ Theoretical Predictions and Recent Measurements

		$\Gamma(\eta ightarrow \pi^+\pi^-\gamma)/\Gamma(\eta ightarrow \pi^+\pi^-\pi^0)$	$\alpha [{ m GeV^{-2}}]$
ant	Phys. Rev.,D2:501-505, 1970	0.202 ± 0.006	1.8 ± 0.4
	Phys. Rev., D7:2569-2571, 1973	0.209 ± 0.004	-
	Phys. Rev., D7:2565-2568, 1973	-	-0.9 ± 0.1
Ĕ	Phys.,C50:451-454, 1991 *	-	2.7 ± 0.1
eri	Phys. Lett.,B402:195, 1997*	-	1.8 ± 0.53
, x	Phys. Rev. Lett.,99(122001), 2007	0.175 ± 0.013	-
ш	Phys. Rev. Lett.,B707:243-249, 2013	-	1.89 ± 0.86
	Phys. Lett.,B718:910-914, 2013	0.1856 ± 0.003	1.32 ± 0.2
	Chin. Phys., 090001, 2014	0.1847 ± 0.003	-
~	Phys. Scripta, T99:55-67, 2002	0.2188 ± 0.0088	0.64 ± 0.02
Theol	Europ. Phys. Journal, C31:525-547, 2003	0.1875 ± 0.0094	0.23 ± 0.01
	Phys. Lett., B237:488-494, 1990	0.1565 ± 0.0063	-0.7 ± 0.1
	Phys. Scripta, T99:55-67, 2002	0.119 ± 0.0048	-1.7 ± 0.02

*Measured $\eta' \to \pi^+\pi^-\gamma$

15.09.2015

$$\eta
ightarrow \pi^+\pi^-\gamma$$
 Analysis
i) Rejection of split-offs

One (charged) particle in the calorimeter

- Hit in calorimeter is assigned to a cluster
- Split-off: Satellite cluster with close distance to primary cluster → low energy fake photon
- Predominant background: $pp \rightarrow pp\pi^+\pi^-(\gamma)$
- Reject low energy fake photons with close distance to primary cluster

$$\overline{\left(\eta
ightarrow\pi^+\pi^-\gamma
ight)}$$
 Analysis

Use kinematic fit to:

- a) Improve resolution
- b) Suppress background

- $\begin{array}{l} \textbf{Least squares fit:} \\ \chi^2 = \sum\limits_{l=1}^{N_p} \sum\limits_{j=1}^{N_v} \Big(\frac{v_{j1}^{\text{fit}} v_{jj}^{\text{meas}}}{\sigma_{j1}^{\text{meas}}} \Big)^2 + 2 \cdot \sum\limits_{\mu} \lambda_{\mu} \mathcal{F}_{\mu}(v_{11}^{\text{fit}}, ..., v_{N_pN_v}^{\text{fit}}) \end{array}$
- *F_µ*: energy and momentum conservation → 4 constraints

•
$$P(\chi^2, N) = \frac{1}{\sqrt{2^N \cdot \Gamma(\frac{1}{2}N)}} \int_{\chi^2}^{\infty} e^{-\frac{t}{2}} \cdot t^{\frac{1}{2}N-1} dt$$

$ig(\eta o \pi^+\pi^-\gammaig)$ Determining the E_γ -distribution

- Scan two proton missing mass distribution in E_{γ} -intervals
- Subtract background for each *E*_γ-interval
- Obtain number of $\eta \to \pi^+ \pi^- \gamma$ events

$ig(\eta o oldsymbol{e}^+oldsymbol{e}^-\gammaig)$ Form factor $oldsymbol{F}(oldsymbol{q}^2)$

Single-pole formula: $F_P(q^2) = (1 - b_P^2 q^2)^{-1}, b_P \equiv \frac{1}{\Lambda_P}$

15.09.2015

$$ig(\eta
ightarrow oldsymbol{e}^+ oldsymbol{e}^- oldsymbol{e}^+ oldsymbol{e}^-$$

Theoretical predictions for $\Gamma(\eta \rightarrow e^+e^-e^+e^-)/\Gamma(\eta)$

- Double transition form factor $F(q_1^2, q_2^2)$
- Different approaches for calculation of F^(a):

$F(q_1^2, q_2^2)$	$\Gamma(\eta ightarrow e^+ e^- e^+ e^-) / \Gamma(\eta) [10^{-5}]$
1	2.52 ± 0.02
$\frac{m_{\rho}^4}{(m_{\rho}^2-q_1^2)(m_{\rho}^2-q_2^2)}$	2.65 ± 0.02
$\frac{m_{\rho}^2}{(m_{\rho}^2 - q_1^2 - q_2^2)}$	2.64 ± 0.02
$\frac{m_{\rho}^4\!-\!\frac{4\pi^2F_{\pi}^2}{N_C}(q_1^2\!+\!q_2^2)}{(m_{\rho}^2\!-\!q_1^2)(m_{\rho}^2\!-\!q_2^2)}$	2.61 ± 0.02

(a) J. Bijnens et al. arXiv:hep-ph/0106130v1, 2001

Conversion events

- Conversion events: small opening angle and origin at beam pipe
- Non-Conversion events: large opening angle and origin at reaction vertex

η Production mechanisms

	$pd ightarrow {}^{3}\mathrm{He}\eta$	$pp o pp\eta$
T _{beam}	1 GeV	1.4 GeV
$\sigma(\eta)^{a),b)}$	$(0.412 \pm 0.016)\mu{ m b}$	$(9.8 \pm 1) \mu \mathrm{b}$
Suited for	study of not-so-rare η decays	study of (not-so-) rare η decays
Background	low multi-pion background	high multi-pion background

Reaction	T _{beam} [GeV]	$\sigma[\mu \mathrm{b}]^{\scriptscriptstyle b), c)}$
$pd ightarrow {}^{3}\mathrm{He}\pi^{0}\pi^{0}$	0.893	$\textbf{2.8}\pm\textbf{0.3}$
$pd ightarrow {}^{3}\mathrm{He}\pi^{+}\pi^{-}$	0.893	5.1 ± 0.5
$pp ightarrow pp \pi^+ \pi^- \pi^0$	1.36	4.6 ± 1.5
$pp ightarrow pp \pi^0 \pi^0$	1.36	200 ± 30
$pp \rightarrow pp\pi^+\pi^-$	1.36	660 ± 100

a) R. Bilger et al., Phys. Rev., C65(044608), 2002

b) CELSIUS/WASA coll.., Phys. Lett., B649:122-127, 2007

c) M. Bashkanov et al., Phys. Lett., B637:223-228, 2006

Preselection of the $pp \rightarrow pp\eta$ data set

Preselection done in two steps:

- i) Condition on missing mass \Rightarrow Rejection of multi-pion background
- ii) Condition on charged tracks in the Central Detector \Rightarrow Selection of charged η decay modes

PID at WASA

