First Results from LHC 13 TeV Run and other Recent Production Measurements

Svende Braun on behalf of the LHCb collaboration

Heidelberg University, Physikalisches Institut

Hadron 2015, Newport News September 13-18, 2015

S. Braun (Heidelberg University)

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Recent Production Measurements

Measurements covered in this talk

Recent Production Measurements from Run-I

- Λ_b^0 and \overline{B}^0 production at $\sqrt{s} = 7$ and 8 TeV- arXiv:1509.00292
- Υ production at $\sqrt{s} = 7$ and 8 TeV- arXiv:1509.02372
- 2 First Results from LHC Run-II
 - J/ ψ production cross-sections at $\sqrt{s} =$ 13 TeV arXiv:1509.00771
 - prompt charm production cross-sections at $\sqrt{s}=$ 13 TeV LHCb-PAPER-2015-041

Motivation

- \rightarrow important input to MC model tuning
- \rightarrow direct test of production mechanism \rightarrow test of QCD
- \rightarrow LHCb performs measurements in unique kinematic region: 2 $< \eta <$ 5

LHCb Detector

JINST 3 S08005 (2008), Int. J. Mod. Phys. A 30, 1530022 (2015)

- VELO: primary and secondary vertex
- Tracking: momentum of charged particle
- RICHs: particle identification K^{\pm}, π^{\pm}

- MUON: trigger on high $p_{\mathrm{T}}~\mu^{\pm}$ & PID
- Calorimeter: ECAL and HCAL for γ , e^{\pm} and hadronic energy

Measurement strategy

differential production cross-section in each ($p_{\rm T}$, y) bin

$\frac{\mathrm{d}^2\sigma}{\mathrm{d}y\mathrm{d}p_{\mathrm{T}}} = \frac{N(H \rightarrow f)}{L_{\mathrm{int}} \times \epsilon_{\mathrm{tot}}(H \rightarrow f) \times \mathcal{B}(H \rightarrow f) \times \Delta y \times \Delta p_{\mathrm{T}}}$

- $N(H \rightarrow f)$: signal yield in each bin
- L_{int}: the integrated luminosity
- $\epsilon_{tot}(H \rightarrow f)$: total efficiency
- B: the absolute branching fraction of the reconstructed initial state hadron H into its final state f
- Δy and Δp_{T} are the rapidity and p_{T} bin widths

Λ^0_b and $ar{B}^0$ production at $\sqrt{s}=7$ and 8 $\,{ m TeV}$

arXiv:1509.00292

- $L_{int} = 3 \, fb^{-1}$
- measure $\mathcal{B} \times \frac{\mathrm{d}^2 \sigma}{\mathrm{d} y \mathrm{d} \rho_T}$ using decays $\Lambda_b^0 \to \mathrm{J}/\psi p K^$ and $\overline{B}^0 \to \mathrm{J}/\psi \overline{K}^* (892)^0$
- kinematic range: $p_{\rm T}$ < 20 GeV/*c*, 2<y<4.5 of *b*-hadron
- branching fractions including $\overline{B}^0 \to J/\psi \overline{K}^{*0}$ and $f_{\Lambda_b^0}/f_d$:

$$\begin{split} \mathcal{B}(\Lambda_b^0 \to \mathrm{J}/\psi \rho K^-) &= (3.04 \pm 0.04 \pm 0.06 \pm 0.33^{+0.43}_{-0.27}) \times 10^{-5} \\ \mathcal{B}(\Lambda_b^0 \to \mathrm{J}/\psi \rho \pi^-) &= (2.51 \pm 0.08 \pm 0.13^{+0.45}_{-0.35}) \times 10^{-5} \end{split}$$

Λ_b^0 and $\overline{B}{}^0$ production at $\sqrt{s} = 7$ and 8 TeV

arXiv:1509.00292

(Cacciari et al., JHEP 05 (1998) 007, JHEP 03 (2001) 006, JHEP 10 (2012) 137)

integrated cross-sections

$$\begin{split} &\sigma(A_b^0, \sqrt{s}=7\,\text{TeV}) \; \mathcal{B}(A_b^0 \to J/\psi \, p K^-) = 6.12 \pm 0.10 \; (\text{stat}) \pm 0.25 \; (\text{syst}) \; \text{nb}, \\ &\sigma(A_b^0, \sqrt{s}=8\,\text{TeV}) \; \mathcal{B}(A_b^0 \to J/\psi \, p K^-) = 7.51 \pm 0.08 \; (\text{stat}) \pm 0.31 \; (\text{syst}) \; \text{nb}, \\ &\sigma(\overline{B}^0, \sqrt{s}=7\,\text{TeV}) \; \mathcal{B}(\overline{B}^0 \to J/\psi \, \overline{K}^{*0}) = 55.6 \pm 0.3 \; \; (\text{stat}) \pm 2.1 \; \; (\text{syst}) \; \text{nb}, \\ &\sigma(\overline{B}^0, \sqrt{s}=8\,\text{TeV}) \; \mathcal{B}(\overline{B}^0 \to J/\psi \, \overline{K}^{*0}) = 66.2 \pm 0.3 \; \; (\text{stat}) \pm 2.3 \; \; (\text{syst}) \; \text{nb}. \end{split}$$

S. Braun (Heidelberg University)

Recent Production Measurements

Υ production at $\sqrt{s} =$ 7 and 8 TeV

arXiv:1509.02372

Υ production at $\sqrt{s} =$ 7 and 8 TeV

others given in backup $\begin{array}{c} \frac{1}{2} \\ \frac{1}{$

double-differential cross-section for $\Upsilon(1S)$

total cross-section in LHCb acceptance (in pb):

 $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$

$\sigma^{\Upsilon(1S)\to\mu^+\mu^-}$	$2510\pm3\pm80$	$3280 \pm 3 \pm 100$
$\sigma^{\Upsilon(2S)\to\mu^+\mu^-}$	$635\pm2\pm20$	$837\pm2\pm25$
$\sigma^{\Upsilon(\mathrm{3S})\to\mu^+\mu^-}$	$313 \pm 2 \pm 10$	$393 \pm 1 \pm 12$

arXiv:1509.02372 ratios between 8 and 7 TeV results

- *p*_T compared to NRQCD predictions (H. Han et al. arXiv:1410.8537)
- y compared to CO model Υ(1S), Υ(2S), Υ(3S) (L. S. Kisslinger et al., Mod. Phys. Lett. A28 (2013) 1350120, Mod. Phys. Lett. A29 (2014) 1450082)
- increase of bottomonium production of 30% from \sqrt{s} =7 to 8 TeV

Run-II

LHCb Run-II Trigger

- software trigger optimised for Run-II
- offline quality alignment and calibration done in quasi real-time before 2nd stage of trigger level

Turbo Stream

- ightarrow 20% of total rate
- \rightarrow offline-quality analysis directly out of trigger
- \rightarrow no offline reprocessing needed \rightarrow very fast
- \rightarrow only saves information of selected candidates
- ightarrow reduced event size, increased efficiency
- ightarrow ideal for high signal yield analysis

J/ψ production at $\sqrt{s} = 13$ TeV

arXiv:1509.00771

- $L_{\text{int}} = 3.05 \pm 0.12 \, \text{pb}^{-1}$
- using $J/\psi
 ightarrow \mu^+\mu^-$ decays
- kinematic range: $p_{\rm T}$ <14 GeV/c, 2<y<4.5
- separate prompt and J/ ψ -from-*b* decays using pseudo decay-time $t_z = \frac{(z_{J/\psi} z_{PV}) \times M_{J/\psi}}{p_z}$

• unbinned extended maximum likelihood fit in mass and t_z

J/ψ production at $\sqrt{s} = 13$ TeV

prompt J/ψ

b-fraction

integrated cross-section in LHCb acceptance

 $\begin{array}{l} \sigma(\mathrm{prompt}) = 15.40 \pm 0.03(\mathrm{stat}) \pm 0.86(\mathrm{syst})\,\mu\mathrm{b} \\ \sigma(\mathrm{J}/\psi\text{-from-}b) = 2.36 \pm 0.01(\mathrm{stat}) \pm 0.13(\mathrm{syst})\,\mu\mathrm{b} \end{array}$

 $b\bar{b}$ cross-section with 4π extrapolation*

 $\sigma(b\bar{b}) = 519 \pm 2$ (stat) ± 53 (syst) μb

*'naive' extrapolation factor using LHCb tuning of PYTHIA 6

S. Braun (Heidelberg University)

J/ψ production at $\sqrt{s} = 13$ TeV

NRQCD (Shao et al., JHEP 05 (2015) 103), FONLL (Cacciari et al., JHEP 05 (1998) 007, Cacciari et al., arXiv:1507.06197)

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

- $L_{\text{int}} = 4.98 \pm 0.19 \, \text{pb}^{-1}$
- use charm decays: $D^0 \to K^-\pi^+$, $D^+ \to K^-\pi^+\pi^+$, $D_s^+ \to K^-\pi^+\pi^+$, $D^{*+} \to D^0\pi^+$ (here only D^0 others given in backup)
- kinematic range: $p_{\rm T}$ < 15 GeV/*c*, 2<y<4.5
- separate prompt from secondary signal using impact parameter (IP) significance

- candidates selected in mass window around nominal charm hadron mass
- signal yield extracted from fit to $log(\chi^2_{IP})$ in each bin

Hadron	Prompt signal yield
D^0	$(2.577 \pm 0.002) \times 10^{6}$
D^+	$(1.974 \pm 0.002) \times 10^{6}$
D_s^+	$(1.13 \pm 0.4) \times 10^5$
D^{*+}	$(3.01 \pm 0.6) \times 10^5$

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

- POWHEG+NNPDF3.0L (Gauld et al., arXiv:1506.08025)
- FONLL (Cacciari et al.,arXiv:1507.06197)
- General-mass variable-flavor-number (GMVFNS) (Spiesberger et al., arXiv:1202.0439)

- good agreement with theory predictions of shape
- central value lies consistently above calculations, agree within uncertainties

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

integrated cross-section $\sigma(c\bar{c})$ calculated in region 0<p_T <8 GeV/c, 2<y<4.5 use integrated D^0 and D^+ cross-sections ٠ combined with fragmentation fractions $f(c \rightarrow H_c)$ from e^+e^- colliders (C. Amsler et al., doi:10.1016/i.physletb.2008.07.018.) extrapolate into bins with no measurements using theory predictions $\sigma(c\bar{c})$ production cross-section $\sigma(c\bar{c}) = 2850 \pm 3(\text{stat}) \pm 180(\text{syst}) \pm 144(\text{frag}) \ \mu \text{b}$ 0

 $\sigma(c\overline{c}) \; [\mu b]$

Conclusions

- selection of recent production measurement from Run-I by LHCb shown
- first Run-II results on production measurements are ready
 - thanks to the excellent detector performance and new trigger strategy
 - \rightarrow allows for quick results:
 - J/ ψ cross-section is submitted to JHEP (arXiv:1509.00771)
 - prompt charm cross-section will be released soon LHCb-PAPER-2015-041
- agreement with theory predictions is reasonable, some tension in the cross-section ratio measurements

more analyses are in the pipeline, stay tuned!

Thanks for your attention!

Backup Slides

LHCb Trigger in Run-I

S. Braun (Heidelberg University)

Λ^0_b and $ar{B}^0$ production at $\sqrt{s}=7$ and 8 $\,{ m TeV}$

systematic uncertainties:

arXiv:1509.00292

	$\Lambda_b^0 \ (7 \text{ TeV})$	$\Lambda_b^0 \ (8 \mathrm{TeV})$	$\overline{B}{}^0$ (7 TeV)	$\overline{B}{}^0$ (8 TeV)
Uncorrelated between bins				
Signal shape	0.4 - 15.4	0.2 - 6.2	0.2 - 1.5	0.2 - 1.5
Background shape	0.0 - 1.9	0.0 - 4.3	0.0 - 0.9	0.0 - 0.9
Simulation sample size	4.1 - 16.5	3.9 - 14.3	1.7 - 9.5	2.2 - 14.9
BDT efficiency	0.4 - 2.5	0.4 - 2.8	0.1 - 0.5	0.1 - 0.5
Trigger efficiency	0.0 - 4.6	0.0 - 14.9	0.0 - 2.1	0.0 - 4.0
PID efficiency	0.4 - 8.4	0.4 - 15.8	0.2 - 4.6	0.2 - 2.7
Resonance in $\Lambda_b^0 \to J/\psi p K^-$	0.1 - 7.7	0.4 - 2.4		
Correlated between bins				
Tracking efficiency	3.0	3.0	3.0	3.0
Mass veto efficiency	1.3	1.9		
Luminosity	1.7	1.2	1.7	1.2
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	0.6	0.6	0.6	0.6
S-wave in $K^-\pi^+$			1.1	1.1

Λ^0_b and $ar{B}^0$ production at $\sqrt{s}=7$ and 8 $\,{ m TeV}$

arXiv:1509.00292

• mis-identified bkg from $\overline{B}^0 \to J/\psi K^- \pi^+$ and $\overline{B}^0_s \to J/\psi K^- K^+$ reduced using mass-vetoes

• $\overline{K}^{*0} \to K^- \pi^+$ s-wave contribution is subtracted

integrated cross sections

S. Braun (Heidelberg University)

Λ_b^0 and \bar{B}^0 production at $\sqrt{s} = 7$ and 8 TeV

branching fraction results

arXiv:1509.00292

$$\begin{split} R_{A_b^0/\bar{B}^0}(p_{\rm T}) &= \frac{N_{\rm sig}^{A_b^0}(p_{\rm T})}{N_{\rm sig}^{B_0}(p_{\rm T})} \frac{\varepsilon_{\rm tot}^{B_0}(p_{\rm T})}{\mathcal{S}_{\rm tot}^{A_b^0}(p_{\rm T})} \ \mathcal{B}(\overline{K}^{*0} \to K^-\pi^+) \\ \text{can be related to } f_{A_b^0}/f_d \text{ through} \ R_{A_b^0/\bar{B}^0}(p_{\rm T}) &= \frac{\mathcal{B}(A_b^0 \to J/\psi pK^-)}{\mathcal{B}(\bar{B}^0 \to J/\psi \bar{K}^{*0})} f_{A_b^0}/f_d(p_{\rm T}) \equiv \mathcal{S} \ f_{A_b^0}/f_d(p_{\rm T}) \\ \text{with S as a constant factor obtained from fit, gives:} \\ \mathcal{B}(A_b^0 \to J/\psi pK^-) &= (3.04 \pm 0.04 \pm 0.06 \pm 0.33^{+0.43}_{-0.27}) \times 10^{-5} \\ \text{together with the ratio } \mathcal{B}(A_b^0 \to J/\psi pK^-)/\mathcal{B}(A_b^0 \to J/\psi pK^-) = 0 \end{split}$$

together with the ratio $\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)/\mathcal{B}(\Lambda_b^0 \to J/\psi p \pi^-)$ measured in JHEP 07 (2014) 103 it gives: $\mathcal{B}(\Lambda_b^0 \to J/\psi p \pi^-) = (2.51 \pm 0.08 \pm 0.13^{+0.45}_{-0.35}) \times 10^{-5}$

with the fraction of Pentaquarks observed in $m(J/\psi p)$ (Phys. Rev. Lett. 115 (2015) 072001, see Zhenwei's talk), gives the branching ratio:

$$\mathcal{B}(\Lambda_b^0 \to \mathcal{P}_c^+ \mathcal{K}^-) \mathcal{B}(\mathcal{P}_c^+ \to \mathrm{J}/\psi p) = \begin{cases} (2.56 \pm 0.22 \pm 1.28^{+0.46}_{-0.36}) \times 10^{-5} & \text{for } \mathcal{P}_c(4380)^+ \\ (1.25 \pm 0.15 \pm 0.33^{+0.12}_{-0.18}) \times 10^{-5} & \text{for } \mathcal{P}_c(4450)^+ \end{cases}$$

Λ^0_b and $ar{B}^0$ production at $\sqrt{s}=$ 7 and 8 $\,{ m TeV}$

fit results give $T = 1.12 \pm 0.04(1.13 \pm 0.03)$ GeV and $N = 7.3 \pm 0.5(7.5 \pm 0.4)$ at 7(8) TeV and are consistent with results from CMS

arXiv:1509.00292

Λ_b^0 and $ar{B}^0$ production at $\sqrt{s}=7$ and 8 TeV

fitted with linear function, slope as function of $\rho_{\rm T}$ consistent with zero slope of $a_{\rho+\sigma}(y) = (-0.001 \pm 0.007) + (0.058 \pm 0.014)(y - \langle y \rangle)$ with $\langle y \rangle = 3.1$ is the average rapidity of Λ_b^0

 \rightarrow suggests baryon number transport from beam particles to less central produced Λ_b^0 , interpreted by string drag effect or leading quark effect (Phys. Rev. D90 (2014) 014023, Phys. Rev. D86 (2012) 014011)

Λ_b^0 and $ar{B}^0$ production at $\sqrt{s}=7$ and 8 TeV

it decreases for $p_T > 5 \text{ GeV}/c$, fitted with fragmentation function ratio $f_{\Lambda_b^0}/f_d(p_T)$ for $p_T > 3 \text{ GeV}/c$

		2011	2012
	PID efficiency	0.4 - 4.4	0.0 - 2.6
	Signal shape	0.0 - 0.8	0.0 - 0.9
	Background shape	0.0 - 0.1	0.0 - 0.3
	MC statistics	0.7 - 5.4	0.3 - 4.2
systematic uncertainties:	Tracking asymmetry of proton	0.1-1.9	0.1-1.9

Υ production at $\sqrt{s}=$ 7 and 8 $\,{ m TeV}$

arXiv:1509.02372

systematic uncertainties:

Table 2: Summary of relative systematic uncertainties (in %) for the differential production cross-sections, their ratios, integrated cross-sections and the ratios $\mathscr{R}_{8/7}$. The ranges indicate variations depending on the (p_T, y) bin and the Υ state.

Source	$\sigma_{\rm bin}^{\Upsilon \to \mu^+ \mu^-}$	$\mathscr{R}_{\mathrm{i,j}}$	$\sigma^{\Upsilon \to \mu^+ \mu^-}$	$\mathscr{R}_{8/7}$
Fit model and range	0.1 - 4.8	0.1 - 2.9	0.1	
Efficiency correction	0.2 - 0.6	0.1 - 1.1	0.4	
Efficiency uncertainty	0.2 - 0.3		0.2	0.3
Muon identification	0.3 - 0.5		0.3	0.2
Data-simulation agreement	t			
Radiative tails	1.0		1.0	
Selection efficiency	1.0	0.5	1.0	0.5
Tracking efficiency	$0.5 \oplus (2 \times 0.4)$		$0.5 \oplus (2 \times 0.4)$	
Trigger efficiency	2.0		2.0	1.0
Luminosity	$1.7 \left(\sqrt{s} = 7 \text{ TeV}\right)$ $1.2 \left(\sqrt{s} = 8 \text{ TeV}\right)$		$1.7 \left(\sqrt{s} = 7 \text{ TeV}\right)$ $1.2 \left(\sqrt{s} = 8 \text{ TeV}\right)$	1.4

Υ production at $\sqrt{s} = 7$ and 8 TeV

GeV/c Dpp CaV/c . LHCb LHCb $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\frac{d^2}{d^2} \sigma^{\Upsilon(1S) \to \mu^+ \mu}$ $-\frac{1}{dy}\sigma^{T(1S)}$ < y < 4.03.5 < y < 4.04.0 < y < 4.5**Υ**(1*S*) 20 [GeV/c][GeV/c] p_{T} p_{T} pb GeV/c GaV/c LHCb LHCb $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\frac{dy}{dy}\sigma^{\Upsilon(2S)\to\mu^+\mu^-}$ t σ^{T(2S)} y < 3.5**Υ**(2*S*) < u < 4.03.5 < y < 4.0[GeV/c][GeV/c] $p_{\rm T}$ p_{T} CleV/c Db GaV/c LHCb LHCb $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\frac{1}{1y}\sigma^{\Upsilon(3S)\to}$ $\sigma^{T(3S)}$ ²PLa < 3.5 < 3.5 < y < 4.03.5 < y < 4.0**Υ**(3*S*) 4.0 < u< 4.54.0 < < 420 [GeV/c][GeV/c] p_{T}

double-differential production cross-sections

arXiv:1509.02372

Υ production at $\sqrt{s}=$ 7 and 8 $\,{ m TeV}$

arXiv:1509.02372

fit gives N 8 consistent with high $p_{\rm T}$ asymptotic behaviour from CS model, T increases with mass of Υ state

shape of rapidity compared to CM model

S. Braun (Heidelberg University)

Υ production at $\sqrt{s} = 7$ and 8 TeV

arXiv:1509.02372

S. Braun (Heidelberg University)

Recent Production Measurements

J/ψ production at $\sqrt{s} = 13$ TeV

arXiv:1509.00771

details on included theoretical uncertainties in ratios:

- NRQCD: includes CO LDME uncertainties which are dominant for the absolute measurement, not included here are contributions from renormalization/factorization scale, relativistic corrections, charm mass uncertainty and PDF uncertainty almost cancel in ratio
- FONLL: b-quark mass, renormalisation and factorisation scales, for ratio also gluon PDF uncertainty included

J/ψ production at $\sqrt{s} = 13$ TeV

arXiv:1509.00771

Systematic uncertainties

Table 1: Relative systematic uncertainties (in %) on the J/ψ cross-section measurements. The uncertainty from the t_z fit only affects J/ψ -from-*b* mesons. Most of the uncertainties are fully correlated between bins, with the exception of the $p_{\rm T}$, *y* spectrum dependence and the simulation statistics, which are considered uncorrelated.

Source	Systematic uncertainty $(\%)$
Luminosity	3.9
Hardware trigger	0.1 - 5.9
Software trigger	1.5
Muon ID	1.8
Tracking	1.1 - 3.4
Radiative tail	1.0
J/ψ vertex fit	0.4
Signal mass shape	1.0
$\mathcal{B}(J/\psi \to \mu^+\mu^-)$	0.6
$p_{\rm T}, y$ spectrum	0.1 - 5.0
Simulation statistics	0.3 - 5.0
t_z fit $(J\!/\!\psi\text{-from-}b$ only)	0.1

J/ψ production at $\sqrt{s} = 13$ TeV

arXiv:1509.00771

Recent Production Measurements

S. Braun (Heidelberg University)

J/ψ production at $\sqrt{s} = 13$ TeV

arXiv:1509.00771

cross-section as function of \sqrt{s}

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

Systematic uncertainties

Table 2: Overview of systematic uncertainties and their values, expressed as relative fractions of the cross-section measurements in percent. Uncertainties that are computed bin-by-bin are expressed as ranges giving the minimum to maximum values of the bin uncertainties. Ranges for the correlations between p_{T-y} bins and between modes are given, expressed in percent.

	D^0	D^+	D_s^+	D^{*+}	Bins	Modes
Luminosity		55	3.9		100	100
Tracking	3 - 5	5 - 11	4 - 11	5 - 12	90 - 100	90 - 100
Branching fractions	1.2	2.1	4.5	1.5	100	0 - 95
MC sample size	2-50	1 - 50	3 - 180	2 - 170	-	-
MC modelling	2	1	1	1	-	-
PID sample size	0 - 1	0 - 1	0 - 1	0 - 1	0 - 100	-
PID binning	0-42	0 - 11	0 - 18	0-15	100	100
Fit shapes	1 - 3	1 - 3	1 - 2	1 - 2	-	-

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

- POWHEG+NNPDF3.0L (Gauld et al., arXiv:1506.08025)
- FONLL (Cacciari et al.,arXiv:1507.06197)
- General-mass variable-flavor-number (GMVFNS) (Spiesberger et al., arXiv:1202.0439)

- good agreement with theory predictions
- data lies consistently above calculations

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

- POWHEG+NNPDF3.0L (Gauld et al., arXiv:1506.08025)
- FONLL (Cacciari et al.,arXiv:1507.06197)
- General-mass variable-flavor-number (GMVFNS) (Spiesberger et al., arXiv:1202.0439)

- good agreement with theory predictions
- data lies consistently above calculations

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

- POWHEG+NNPDF3.0L (Gauld et al., arXiv:1506.08025)
- FONLL (Cacciari et al.,arXiv:1507.06197)
- General-mass variable-flavor-number (GMVFNS) (Spiesberger et al., arXiv:1202.0439)

- good agreement with theory predictions
- data lies consistently above calculations

prompt charm production at $\sqrt{s} = 13$ TeV

LHCb-PAPER-2015-041

details on included theoretical uncertainties: all performed @NLO precision

• **POWHEG+NNPDF3.0L**: include factorisation, renormalisation scale, charm quark mass and PDF uncertainties

obtained with POWHEG matched to Pythia8 parton showers and an improved version of the NNPDF3.0 NLO parton distribution function set designated NNPDF3.0+LHCb. To produce this improved set, the authors weight the NNPDF3.0 NLO set in order to match FONLL calculations to LHCb's charm cross-section measurements at 7TeV. This results in a significant improvement in the uncertainties for the gluon distribution function at small Bjorken-x.

 FONLL: include factorisation, renormalisation scale, charm quark mass and PDF uncertainties, uses NNPDF3.0 NLO parton densities, assume unit transition probabilities from a primary charm quark to the exclusive hadron state

• General-mass variable-flavor-number (GMVFNS): include factorisation and renormalisation scale uncertainties

Here the CT10 set of parton distributions was used. The GMVFNS theoretical framework includes the convolution with fragmentation functions describing the transition $c \rightarrow H_c$ that are normalised to the respective total transition probabilities. The fragmentation functions are results of a fit to production measurements at e+e- colliders, where no attempt was made in the fit to separate direct production and feed-down from higher resonances.