Recent results on spectroscopy from **BES**II

LIU Beijiang Institute of High Energy Physics, Beijing (for BESIII collaboration)

XVI International Conference on Hadron Spectroscopy, Sept. 13-18, 2015, Newport News, US

Outline

- Introduction
- Selected results from BESIII
 - Light meson spectroscopy
 - Light baryon spectroscopy
 - Charmonium spectroscopy
- Summary

Beijing Electron Positron Collider (BEPC)

beam energy: 1.0 - 2.3 GeV

2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

- 1989-2004 (BEPC):
 - L_{peak}=1.0x10³¹ /cm²s
- 2009-now (BEPCII):

L_{peak}=0.85x10³³/cm²s

Features of the BEPC Energy Region

- Rich of resonances: charmonia and charmed mesons
- Threshold characteristics (pairs of τ, D, D_s, ...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the gluonic excitations and multi-quark states

Physics at BESIII

Charmonium physics:

- spectroscopy
- transitions and decays
- Light hadron physics:
 - meson & baryon spectroscopy
 - glueball, hybrid, multiquark
 - two-photon physics
 - e.m. form factors of nucleon
- Open Charm physics:
- (semi) leptonic + hadronic decays
 - decay constant, form factors
 - CKM matrix: Vcd, Vcs
 - D⁰-D⁰bar mixing and CP violation
 - rare/forbidden decays

Tau physics:

- tau decays near threshold
- tau mass scan

...and many more.

Further presentations at this conference

Xiaocong Ai: Studies of Charmonium at BESIII Dan Bennett: Hadronic Transitions above 4 GeV at BESIII Qing Gao: Radiative Transitions above 4 GeV at BESIII Wei Shan: Exotic Zc states at BESIII Liqing Qin: Light meson decays at BESIII Yao Qin: Recent results on J/ ψ radiative decays at BESIII Jake Bennett: Progress on the baryon spectroscopy at BESIII Mihajlo Kornicer: Study of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ Xiaokang Zhou: Charmed baryon Lambda_c decays Cristina Morales: Form factor measurements at BESIII Zhu Kai: Collins Asymmetry at BESIII

BESIII data samples

World largest J/ψ, ψ(2S), ψ(3770), Y(4260), ... produced directly from e⁺e⁻ collision

- Hadron spectroscopy is a key tool to investigate QCD
- testing QCD in the confinement regime

From V. Crede

- providing insights into the fundamental degrees of freedom

Light meson spectroscopy

- Observation of X(1835) in $J/\psi \rightarrow \gamma K_s K_s \eta$
- PWA of J/ψ→γφφ
- Model independent PWA of $J/\psi o \gamma \pi^0 \pi^0$
- Amplitude analysis of $\chi_{c1}
 ightarrow \eta \pi^+ \pi^-$

Further presentations at this conference

Liqing Qin: Light meson decays at BESIII Yao Qin: Recent results on J/ ψ radiative decays at BESIII Mihajlo Kornicer: Study of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

Charmonium decays provides an ideal hunting ground for light glueballs and hybrids

 $\Gamma(J/\psi \to \gamma G) \sim O(\alpha \alpha_s^2), \Gamma(J/\psi \to \gamma H) \sim O(\alpha \alpha_s^3),$ $\Gamma(J/\psi \to \gamma M) \sim O(\alpha \alpha_s^4), \Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$

"Gluon-rich" process
 Clean high statistics data samples from e⁺e⁻ production
 I(J^{PC}) filter in strong decays of charmonium

Observation and Spin-Parity Determination of the X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$ Phys.Rev.Lett. 115 091803(2015)

The structure around 1.85 GeV/ c^2 in the $K_S K_S \eta$ mass spectrum is strongly correlated to $f_0(980)$

Partial Wave Analysis for $M(K_SK_S)$ <1.1 GeV/c²

X(1835)→K_SK_Sη (the K_SK_S system is dominantly produced through the f₀(980)) J^{PC}=0⁻⁺, (> 12.9 σ)
 M=1844±9(stat)⁺¹⁶₋₂₅(syst) MeV/c², Γ=192⁺²⁰₋₁₇ +62 MeV,
 Consistent with X(1835) observed in J/ψ → γπ⁺π⁻η'
 B(J/ψ→γX(1835)*B(X(1835)→K_sK_sη)=(3.31^{+0.33+1.96}_{-0.30})*10⁻⁵

• **X(1560)** \rightarrow **f**₀(980) η : J^{PC}=0⁻⁺, (> 8.9 σ) M=1565 $\pm 8^{+0}_{-63}$ MeV/c², Γ =45⁺¹⁴₋₁₃ +21 consistent with those of η (1405) / η (1475) within 2.0 σ

10

Diverse structures near $\, \mathbf{p}\overline{p}$ threshold

- Any relations
- What is the role of the ppbar threshold?
 - Non-observation in J/ $\psi
 ightarrow \omega, \eta, \pi^0 \ \overline{p} p$

Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

A sophisticated mass independent amplitude analysis is performed. Significant features of the scalar spectrum include structures near 1.5, 1.7, and 2.1 GeV/ c^2 .

Herefore Partial Wave Analysis of J/ ψ →γφφ (preliminary)

Besides η(2225), very little was known in the sector of pseudoscalar above 2 GeV. The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for 0⁻⁺ glueball

Resonance	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	$B.F.(\times 10^{-4})$	Sig.
$\eta(2225)$	$2216^{+4}_{-5}{}^{+18}_{-11}$	$185^{+12}_{-14}{}^{+44}_{-17}$	$(2.40\pm0.10^{+2.47}_{-0.18})$	28.1σ
$\eta(2100)$	$2050^{+30}_{-24}{}^{+77}_{-26}$	$250^{+36+187}_{-30-164}$	$(3.30\pm0.09^{+0.18}_{-3.04})$	21.5σ
X(2500)	$2470^{+15}_{-19}{}^{+63}_{-23}$	$230^{+64}_{-35}{}^{+53}_{-33}$	$(0.17\pm0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$	2102	211	$(0.43\pm0.04^{+0.24}_{-0.03})$	24.2σ
$f_2(2010)$	2011	202	$(0.35\pm0.05^{+0.28}_{-0.15})$	9.5σ
$f_2(2300)$	2297	149	$(0.44\pm0.07^{+0.09}_{-0.15})$	6.4σ
$f_2(2340)$	2339	319	$(1.91\pm0.07^{+0.72}_{-0.69})$	10.7σ
0^{-+} PHSP			$(2.74\pm0.15^{+0.16}_{-1.48})$	6.8σ

- Dominant contribution from pseudoscalars
 - η(2225) is confirmed;
 - η(2100) and X(2500) are observed with large significance.
- The three tensors f₂(2010), f₂(2300) and f₂(2340) stated in π⁻p reactions are also observed with a strong production of f₂(2340).
- Model-dependent PWA results are well consistent with the results from MIPWA

Herefore Partial Wave Analysis of J/ ψ →γφφ (preliminary)

Besides η(2225), very little was known in the sector of pseudoscalar above 2 GeV. The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for 0⁻⁺ glueball

Glueballs from Quenched LQCD

Phys. Rev. Lett. 110, 021601

$$\Gamma(J/\psi \to \gamma G_{0^+}) = \frac{4}{27} \alpha \frac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.35(8) keV$$

$$\Gamma/\Gamma \quad tot = 0.33(7)/93.2 = 3.8(9) \times 10^{-3}$$

Phys. Rev. Lett. 111, 091601

$$\Gamma(J/\psi \to \gamma G_{2^+}) = 1.01(22) keV$$

$$\Gamma(J/\psi \to \gamma G_{2^+})/\Gamma_{tot} = 1.1(2) \times 10^{-2}$$

Flavor-blindness of glueball decays

$$\frac{1}{P.S.}\Gamma(G \to \pi\pi: K\overline{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$$

 Low lying glueballs have ordinary quantum number→mixing with qqbar mesons

At **BESIII**

- $f_0(1710)$ and $f_0(2100)$ are observed with a strong production in $J/\psi \rightarrow \gamma \eta \eta$ [PRD87, 092009] (as well as MIPWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$)
- $f_2(2340)$ is observed with a strong production in $J/\psi \rightarrow \gamma \eta \eta / \phi \phi$ (as well as MIPWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$)
- Systematic studies ongoing
 - $J/\psi \to \gamma \eta \eta'$
 - $J/\psi \to \gamma \eta' \eta'$
 - $J/\psi \to \gamma K_s K_s$
 - $J/\psi \to \phi X, \omega X$

I Amplitude analysis of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$

- χ_{c1} provides another suitable environment to look for 1⁻⁺
 - $\pi_1(1600)$ studied in χ_{c1} decays by CLEO-c
 - only π_1 (1400) has been reported decays to $\eta\pi$
- Properties of a_0 and a_2 still need further studies

Decay mode	$\mathcal{B}(\chi_{c1} \to \eta \pi^+)$	$\pi^{-}) \times 10^{-3}$		
$\eta \pi^+ \pi^-$	$4.819\pm0.031\pm$	0.088 ± 0.210		
$a_0(980)^{\pm}\pi^{\mp}$	$3.506 \pm 0.034 \pm$	0.182 ± 0.153		
$a_2(1320)^\pm\pi^\mp$	$0.185\pm0.009\pm$	0.038 ± 0.008		
$a_2(1700)^{\pm}\pi^{\mp}$	$0.048\pm0.005\pm$	0.014 ± 0.002		
$S_{kk}\eta$	$0.123\pm0.007\pm$	0.018 ± 0.005		
$S_{pp}\eta$	0.791 \pm 0.019 \pm	0.037 ± 0.035		
$\pi\pi_S\eta$	$0.859\pm0.021\pm$	0.031 ± 0.037		
$f_2(1270)\eta$	0.371 \pm 0.012 \pm	0.054 ± 0.016		
$f_4(2050)\eta$	$0.027\pm$ 0.004 \pm	0.009 ± 0.001		
BESIII Preliminary U.L. [90% c.l.]				
$\pi_1(1400)^{\pm}\pi^{\mp}$	0.028 ± 0.010	< 0.048		
$\pi_1(1600)^{\pm}\pi^{\mp}$	0.005 ± 0.005	< 0.016		
$\pi_1(2015)^{\pm}\pi^{\mp}$	0.003 ± 0.002	< 0.008		

Errors: stat. ± syst. ± extern.

- Clear evidence for $a_2(1700)$ in χ_{c1} decays.
- First measurement of $g'_{\eta'\pi} \neq 0$ using $a_0(980) \rightarrow \eta\pi$ line shape.
- Measured upper limits for $\pi_1(1^{-+})$ in 1.4 2.0 GeV/c² region.

17

Light Baryon spectroscopy

Charmonium decays can provide novel insights into baryons and complementary information to other experiments

- ✓ Missing N* with small couplings to $\pi N \& \gamma N$, but large coupling to gggN : $\psi \to N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- ✓ Not only N^{*}, but also Λ^* , Σ^* , Ξ^*
- ✓ Gluon-rich environment: a favorable place for producing hybrid (qqqg) baryons
- ✓ High statistics of charmonium @ BES III

Further presentations at this conference

Jake Bennett: Progress on the baryon spectroscopy at BESIII

$$\psi(2S) \to K^- \Lambda \overline{\Xi}^+$$

Observation of \Xi(1690)^{-}/\Xi(1820)^{-}

2 New N* are found (1/2+, 5/2-)

- Intriguing phenomena spring up.
- A number of transitions between different exotic states observed, starting to make connections.
- Complexities require complementary studies and global efforts: CDF, D0, LHCb, ATLAS, CMS, CLEO, Babar, Belle(2), BES3, ...

Further presentations at this conference

Xiaocong Ai: Studies of Charmonium at BESIII Dan Bennett: Hadronic Transitions above 4 GeV at BESIII Qing Gao: Radiative Transitions above 4 GeV at BESIII Wei Shan: Exotic Zc states at BESIII

Charmonium and exotics at BESIII

ESI Observation of $e^+e^- \rightarrow \gamma X(3872)$

Strong evidence for $X(3872) \rightarrow \pi \pi J/\psi$

 $M = 3871.9 \pm 0.7 \pm 0.2 MeV/c^2$

PRL 112, 092001 (2014)

Suggestive of $Y(4260) \rightarrow \gamma X(3872)$

★ New mode of production of X(3872) and Y(4260) decay? If we take $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi) \sim 5\%$, (>2.6% in PDG) $\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)} \sim 10\%$ Large transition ratio !

 $e^+e^- \rightarrow \pi^+\pi^- X(3823) \rightarrow \pi^+\pi^- \gamma \chi_{c1}$

X(3823) scattering angle distribution

D-wave is expected. Limited statistics Cross section VS energy

Both Y(4360) and Ψ(4415) line shape give reasonable description Phys. Rev. Lett. 115, 011803 (2015)

Reconstruct $\chi_c \rightarrow \gamma J/\psi \rightarrow \gamma l^+ l^$ look for $\pi^+\pi^-$ recoil

 $\frac{\mathcal{B}(X(3823) \rightarrow \gamma \chi_{c2})}{\mathcal{B}(X(3823) \rightarrow \gamma \chi_{c1})} < 0.42 \text{ at } 90\% \text{ C.L.}$

Good candidate of $\Psi(1^{3}D_{2})$.

₿€SШ

Observation of $e^+e^- \rightarrow \omega \chi_{c0}$

Phys. Rev. Lett. 114, 092003

4.5

 $\sigma(e^+e^- \rightarrow \pi^+\pi^-h_c) \sim \sigma(e^+e^- \rightarrow \pi^+\pi^-J/\psi)$ But line shape is different from Y(4260) in $\pi^+\pi^-J/\psi$

Inconsist with Y(4260) from $\pi\pi J/\psi$ No significant signals for $e^+e^- \rightarrow \omega \chi_{c1,2}$

Observation of $e^+e^- \rightarrow \eta J/\psi$

- Agree with previous results with improved precision
- non-trivial structure around 4.2 GeV

Observation of $e^+e^- \rightarrow \eta' J/\psi$

First observation at 4.23GeV and 4.26GeV, couldn't tell the line-shape due to the statistics. $\sigma(\eta'J/\Psi)$ is much lower than $\sigma(\eta J/\Psi)$ which is in contradiction to the NRQCD calculation. PRD 89, 074006 (2014)

State	Mass(MeV)	Width(MeV)
Z _c (4020)±	4022.9±0.8 ±2.7	$7.9 \pm 2.7 \pm 2.6$
Z _c (4020) ⁰	4023.9±2.2 ±3.8	fixed
Z _c (4025)±	4026.3±2.6±3.7	24.8±5.6±7.7
Z _c (4025) ⁰	$4025.5^{+2.0}_{-4.7}\pm 3.1$	23.0±6.0±1.0

- Near D*D* threshold
- Iso-spin triplet is established
- The Z_c(4020) and Z_c(4025) are consistent within 1.5σ.

•
$$\frac{\Gamma(Z_c(4025) \rightarrow D^*\overline{D}^*)}{\Gamma(Z_c(4020) \rightarrow \pi h_c)} = 12 \pm 5$$

Emerging connections between XYZ?

Resonance parameters (any kinematic dependency?);

...

- BESIII collected world's largest samples of J/ ψ , ψ (2S), ψ (3770), Y(4260), ... from e⁺e⁻ production.
- It will continue to run 6 8 years.

	BESIII	Goal
J/ψ	1.3*10 ⁹ 21x BESII	10*10 ⁹
ψ'	0.6*10 ⁹ 24x CLEO-c	3*10 ⁹
ψ(3770)	2.9 fb ⁻¹ 21x CLEO-c	20 fb ⁻¹
Above open charm threshold	0.5 fb ⁻¹ @ ψ (4040), 1.9 fb ⁻¹ @~4260, 0.5 fb ⁻¹ @4360, 1.0 fb ⁻¹ @4420, 0.5 fb ⁻¹ @4600	5-10 fb ⁻¹
R scan and tau	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)	100 pb ⁻¹ (2015)	
ψ (4170)	3 fb ⁻¹ (next run)	

- High statistics samples at BESIII provide opportunities for hadron spectroscopy of both light quarks and heavy quarks.
 - Systematic investigation of low lying glueballs and hybrids
 - Study excited nucleons and hyperons in charmonium decays
 - Explore XYZ states and their transitions

Thank you