Results on Recent Analyses from \textit{BaBar}

Marcus Ebert
SLAC National Accelerator Laboratory
ebert@slac.stanford.edu

- Search for a dark photon in
 \[e^+e^- \rightarrow \gamma A', \quad A' \rightarrow e^+e^-, \mu^+\mu^- \]

- Search for Long-Lived Particles

- Search for a light Higgs resonance
 \[\Upsilon(1S) \rightarrow \gamma A^0, \quad A^0 \rightarrow c\bar{c} \]

- Search for CP Violation in
 \[\bar{B}^0 \rightarrow D_{CP}^{(*)}h^0 \] decays
Data taking period: 1999-2008

\(\Upsilon(4S) : 424 \text{ fb}^{-1} \)
\(\Upsilon(3S) : 28 \text{ fb}^{-1} \)
\(\Upsilon(2S) : 14 \text{ fb}^{-1} \)

corresponding to: \(471 \times 10^6 B\bar{B} \)

between the \(b\bar{b} \) resonances: \(48 \text{ fb}^{-1} \)

\[E(e^+e^-) = \sqrt{s} \sim 10.58 \text{ GeV} = m(\Upsilon(4S)) \sim 2 \cdot m(B) \]

\[m_{ES} = \frac{1}{c^2} \sqrt{s/4 - p^2(B) \cdot c^2} \]
Search for a dark photon in

\[e^+e^- \rightarrow \gamma A', \quad A' \rightarrow e^+e^-, \mu^+\mu^- \]

Phys. Rev. Lett. 113, 201801 (06/2014)
Motivation

• Dark matter particles don’t interact much with Standard Model (SM) particles

• Possibility: new $U(1)'$ with corresponding dark photon A'

 – Could couple to the SM hypercharge via kinetic mixing

 – Mixing strength: ϵ

 – Effective interaction between dark photon and electromagnetic current: $\epsilon e A'_\mu J^{\mu}_{EM}$

 – These dark photons would mediate annihilation of dark matter particles into SM fermions

• If such A' is the reason for observed anomalies in cosmic rays, the mass of A' should be in the range of MeV/c^2 to about 2 GeV/c^2

 (Positron excess and lack of antiprotons)

 We can probe $0.02 \text{ GeV}/c^2 < m_{A'} < 10 \text{ GeV}/c^2$
Selection Criteria

- Events with 2 oppositely charged tracks and a single photon are selected
- Particle ID requirements for the charged tracks
- Fitted with a beam-energy constraint and charged tracks coming from a common vertex
- Neural network used to suppress $e^+ e^- \rightarrow \gamma e^+ e^-$ SM interactions
- Resonant regions in m_{ll} are excluded in the search
 $(\omega, \phi, J/\psi, \psi(2S), \Upsilon(1S), \text{and } \Upsilon(2S))$
Signal Extraction

- $m_{e^+e^-}$ and reduced muon mass $m_R = \sqrt{m_{\mu\mu}^2 - 4m_{\mu}^2}$ are divided in intervals
 - Interval width: 20σ to 30σ of the expected signal resolution in $m(A')$
 - signal resolution between 1.5 MeV/c^2 and 8 MeV/c^2

- Fit performed in each interval

- Data taken at different beam energies are fitted separately and results combined

- All of BABAR data is used
Results

Grey bands show excluded mass regions due to resonances

\[S_S = +/ - \sqrt{2 \log(L/L_0)} \]

Can be translated to the mixing strength as a function of \(m_{A'} \)...
Results

- BABAR 2009 based on search for light CP-odd Higgs boson using only a subsample of data used in this analysis

- Range of the parameter space motivated by interpretation of the discrepancy between measured and calculated \((g - 2)_\mu\) mostly excluded

- Only 15 MeV/c^2 \(\lesssim m_{A'} \lesssim 30\) MeV/c^2 remains
• *BABAR* 2009 based on search for light CP-odd Higgs boson using only a subsample of data used in this analysis

• Range of the parameter space motivated by interpretation of the discrepancy between measured and calculated $(g - 2)_{\mu}$ completely excluded
Search for Long-Lived Particles

Phys. Rev. Lett. 114, 171801 (02/2015)
Motivation

• Same astrophysical anomalous observations that inspired dark photon search generated general interest in GeV-scale hidden-sector

• Searches for Long-Lived particles have been performed in the sub-GeV and multi-GeV mass range by other experiments

• Dedicated experiments to search for Long-Lived particles have been proposed or under construction

• $O(1 \text{ GeV}/c^2)$ mass range remains mostly unexplored
 – Belle search for a heavy neutralino is only B-factory result on such searches
 – But B-factories are ideal laboratory to probe the $O(1 \text{ GeV}/c^2)$ mass range

• BABAR search: $L \rightarrow f$, with $f = e^+e^-, \mu^+\mu^-, e^\pm\mu^\mp, \pi^+\pi^-, K^+K^-$, or $K^\pm\pi^\mp$
 – Model independent search: $0.5 \text{ GeV}/c^2 \leq m(L) \leq 9.5 \text{ GeV}/c^2$
 – Model dependent search: $0.5 \text{ GeV}/c^2 \leq m(L) \leq 4.5 \text{ GeV}/c^2$
 – All available BABAR data is used
Overview

• Model independent approach
 – Signal MC is produced at 11 different masses $m(L)$
 – Simulated process for $m(L) \leq 4 \text{ GeV}/c^2$: $e^+e^- \to B\bar{B}$, $B \to L + N\pi$
 – Simulated process for $m(L) > 4 \text{ GeV}/c^2$: $\Upsilon(4S) \to L + N\pi$
 – $N = 1, 2, \text{ or } 3$
 – L is produced uniformly throughout available phase space

• Model dependent approach
 – Simulated process: $B \to X_sL$ with $X_s = K, K^*(892)$, or $K^*(1680)$

• PID for charged tracks used and have to form common vertex

• Candidates rejected if vertex is within beam pipe material, support tube, or DCH wall

• Criteria on distance to e^+e^- interaction point

• Mass regions excluded to account for false signal from K_S^0, Λ, and low mass regions where the mass distribution of background MC events is not smooth
Signal Extraction

Signal yield extracted for each final state as function of $m(L)$ using unbinned maximum likelihood fits where $m(L)$ is varied in 2 MeV/c^2 steps and the whole mass range is always fitted
Signal Extraction

Signal yield extracted for each final state as function of $m(L)$ using unbinned maximum likelihood fits where $m(L)$ is varied in 2 MeV/c^2 steps and the whole mass range is always fitted.
Search for a Light Higgs Resonance in

\(\Upsilon(1S) \rightarrow \gamma A^0, \ A^0 \rightarrow c\bar{c} \)

Phys. Rev. D 91, 071102 (02/2015)
Motivation

- New Physics models predict a rich Higgs sector

- Higgs boson discovered at CERN consistent with SM Higgs, but could also one of the heavier Higgs bosons in such theories

- The lightest Higgs boson in such models (A^0) could be produced in an Υ decay

- \textit{BABAR} already ruled out much of the parameter space for A^0 masses below the $c\bar{c}$ threshold

- Above the $c\bar{c}$ threshold some part of the parameter space has been ruled out by \textit{BABAR} in $A^0 \rightarrow \tau^+\tau^-$ searches
Motivation

• New Physics models predict a rich Higgs sector

• Higgs boson discovered at CERN consistent with SM Higgs, but could also one of the heavier Higgs bosons in such theories

• The lightest Higgs boson in such models (A^0) could be produced in an Υ decay

• $BABAR$ already ruled out much of the parameter space for A^0 masses below the $c\bar{c}$ threshold

• Above the $c\bar{c}$ threshold some part of the parameter space has been ruled out by $BABAR$ in $A^0 \rightarrow \tau^+\tau^-$ searches

One of the last channels that has not been explored so far: $A^0 \rightarrow c\bar{c}$

$BABAR$ can probe A^0 masses between 4.00 GeV/c^2 and 9.25 GeV/c^2
Overview

- $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S), \quad \Upsilon(1S) \rightarrow \gamma A^0, \quad A^0 \rightarrow c\bar{c}$
 - Select events with a dipion candidate and a photon
 - Mass of the system recoiling against the dipion, m_R, must be consistent with a $\Upsilon(1S)$
 - Event must contain at least one $D(^*)$ candidate
 - A^0 candidate mass is determined from the mass of the system recoiling against the dipion and photon, m_x

- BDT used to separate signal from background candidates
 - 10 different BDT classifiers
 - 24 variables as BDT input
Signal Extraction

- A^0 should be visible as a peak in the m_x distribution
- Fits on m_x spectrum performed for different $m(A^0)$ hypothesis
 - $m(A^0)$ changed in 10 MeV/c^2 or 2 MeV/c^2 steps depending on the mass region
 - This is at least 3 times smaller than the width of the signal PDF
Signal Extraction

- A^0 should be visible as a peak in the m_x distribution
- Fits on m_x spectrum performed for different $m(A^0)$ hypothesis
 - $m(A^0)$ changed in 10 MeV/c^2 or 2 MeV/c^2 steps depending on the mass region
 - This is at least 3 times smaller than the width of the signal PDF
Search for CP Violation in

\[\mathcal{B}^0 \rightarrow D^{(*)}_{CP} h^0 \]

by combining the \textit{BABAR} and Belle datasets

\textit{arXiv:1505.04147}
(accepted for publication in PRL, 07/2015)
Motivation

• Only tree-level amplitudes contribute to $\overline{B}^0 \to D_{CP}^{(*)} h^0$ with $h^0 = \pi^0, \eta, \omega$

• Theoretically clean and can be compared with measurement from $b \to c\bar{c}s$

• Branching fractions for B and D_{CP} are low

• Reconstruction efficiencies are low, too
Motivation

• Only tree-level amplitudes contribute to $\bar{B}^0 \to D_{CP}^{(*)} h^0$ with $h^0 = \pi^0, \eta, \text{or } \omega$

• Theoretically clean and can be compared with measurement from $b \to c\bar{c}s$

• Branching fractions for B and D_{CP} are low

• Reconstruction efficiencies are low, too

$BABAR$ has not enough statistics for a significant result, same is true for Belle.
Motivation

- Only tree-level amplitudes contribute to $\bar{B}^0 \rightarrow D^{(*)}_{CP}h^0$ with $h^0 = \pi^0, \eta, \text{or} \, \omega$

- Theoretically clean and can be compared with measurement from $b \rightarrow c\bar{c}s$

- Branching fractions for B and D_{CP} are low

- Reconstruction efficiencies are low, too

\textit{BABAR} has not enough statistics for a significant result, same is true for Belle.

New approach: Combine \textit{BABAR} and Belle data!
Overview

- BABAR and Belle $\Upsilon(4S)$ data combined: $1.24 \times 10^9 B\bar{B}$!

$\left(\text{BABAR: } (471 \pm 3) \times 10^6 B\bar{B}, \; \text{Belle: } (772 \pm 11) \times 10^6 B\bar{B}\right)$

- Data is analyzed together with almost the same selection criteria applied

- One B flavor needs to be tagged for the time dependent analysis

- BABAR and Belle specific flavor tagging algorithms and resolution models are used

- Common signal model is used

$$P_{\text{sig}}(\Delta t, q) = \frac{1}{4\tau_{B0}} e^{-|\Delta t|/\tau_{B0}} \left[1 + q(S \sin(\Delta m \Delta t) - C \cos(\Delta m \Delta t)) \right]$$

- SM predictions: $C = 0, -\eta_f S = \sin(2\beta)$

- Combination is done at the Likelihood level

$$\ln L = \sum_i P_i^{\text{BABAR}} + \sum_i P_i^{\text{Belle}}$$
Reconstruction and Signal Extraction

- $\bar{B}^0 \rightarrow D^{(*)}_{CP} h^0$ with $h^0 = \pi^0, \eta, \text{ or } \omega$, reconstructed in 12 final states (7 CP-even, 5 CP-odd final states)
 - $D^* \rightarrow D_{CP} \pi^0$
 - $D_{CP} \rightarrow K^+ K^-, K_S^0 \pi^0, K_S^0 \omega$
 - $\pi^0 \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma, \pi^+ \pi^- \pi^0, \omega \rightarrow \pi^+ \pi^- \pi^0$

- Continuum background $e^+ e^- \rightarrow q\bar{q}$ suppressed by Neural Networks

- Signal extracted from $m_{ES} = M_{bc} = \sqrt{(\sqrt{s}/2)^2 - (p_B^*)^2}$ by unbinned maximum Likelihood fits

\[\begin{align*}
 \text{(a) BABAR} & \\
 \text{(b) Belle} &
\end{align*}\]
Results

different cross-checks have been performed:

- splitting data by experiment
- splitting data by decay mode
- use $D^0 \rightarrow K^+\pi^-$ as null control sample
- measure τ_{B^0}
Results

different cross-checks have been performed:

• splitting data by experiment
• splitting data by decay mode
• use $D^0 \rightarrow K^+\pi^-$ as null control sample
• measure τ_{B^0}

$C = -0.02 \pm 0.07 \pm 0.03$

$-\eta_f S = 0.66 \pm 0.10 \pm 0.06$

good agreement with $\sin(2\beta)$ from $b \rightarrow c\bar{c} s$

$(\sin(2\beta) = 0.69 \pm 0.02)$

no evidence for direct CP violation

no mixing-induced CP violation excluded at 5.4σ

First observation of CP violation in $\bar{B}^0 \rightarrow D_{CP}^{(*)}h^0!$
Results

Different cross-checks have been performed:

- splitting data by experiment
- splitting data by decay mode
- use $D^0 \rightarrow K^+ \pi^-$ as null control sample
- measure τ_{B^0}

$$C = -0.02 \pm 0.07 \pm 0.03$$
$$-\eta_f S = 0.66 \pm 0.10 \pm 0.06$$

good agreement with $\sin(2\beta)$ from $b \rightarrow c\bar{c} \, s$

$$\sin(2\beta) = 0.69 \pm 0.02$$

no evidence for direct CP violation

no mixing-induced CP violation excluded at 5.4σ

First observation of CP violation

in $\bar{B}^0 \rightarrow D_{CP}^{(*)}h^0$!

First measurement performed on more than 1ab^{-1} collected at the $\Upsilon(4S)$!
Summary

- Searches for physics beyond the SM
- Significant limits in dark-forces and light-Higgs searches
- First observation of CP violation in $B^0 \rightarrow D_{CP}^{(*)} h^0$
Summary

• Searches for physics beyond the SM

• Significant limits in dark-forces and light-Higgs searches

• First observation of CP violation in $\bar{B}^0 \rightarrow D^{(*)}_{CP} h^0$

 – Only possible by combining B\(\)ABAR and Belle data

 – While waiting for Belle-II, more analyses could benefit from a collaboration with Belle.
Summary

• Searches for physics beyond the SM

• Significant limits in dark-forces and light-Higgs searches

• First observation of CP violation in $\bar{B}^0 \rightarrow D^{(*)}_CP h^0$

 – Only possible by combining $BABAR$ and Belle data

 – While waiting for Belle-II, more analyses could benefit from a collaboration with Belle.

Many years after data-taking, $BABAR$ still has a rich physics program producing first-class results.

(≈220 papers published since data taking stopped, 12 papers in 2015 so far published/submitted)
Summary

• Searches for physics beyond the SM

• Significant limits in dark-forces and light-Higgs searches

• First observation of CP violation in $B^0 \rightarrow D_{CP}^{(*)} h^0$

 – Only possible by combining BABAR and Belle data

 – While waiting for Belle-II, more analyses could benefit from a collaboration with Belle.

Many years after data-taking, BABAR still has a rich physics program producing first-class results.
(≈220 papers published since data taking stopped, 12 papers in 2015 so far published/submitted)

Many more analyses are in the pipeline, some also in collaboration with Belle.
Other \textbf{BABAR} Presentations

• Studies of Charmonium Production in e+e- Annihilation and B decays at \textbf{BABAR}
 by Isabella Garzia, Monday 2:30pm

• The Time-like Electromagnetic Form Factors of Proton and Charged Kaon at high energies
 by Fabio Anulli, Monday 4:35pm

• XYZ States: Experimental Overview, by Valentina Santoro, Tuesday 8:30am

• Low Energy Hadronic Cross Section Measurements at \textbf{BABAR} and Implications for the g-2 of
 the Muon, by Evgeny Solodov, Tuesday 4:15pm

• Charmonium decays in \textbf{BABAR}, by Antimo Palano, Thursday 8:30am

• Measurement of the Collins Asymmetries with the \textbf{BABAR} Detector
 by David Norvil Brown, Thursday 11:05am
Other BABAR Presentations

• Studies of Charmonium Production in e+e- Annihilation and B decays at BABAR
 by Isabella Garzia, Monday 2:30pm

• The Time-like Electromagnetic Form Factors of Proton and Charged Kaon at high energies
 by Fabio Anulli, Monday 4:35pm

• XYZ States: Experimental Overview, by Valentina Santoro, Tuesday 8:30am

• Low Energy Hadronic Cross Section Measurements at BABAR and Implications for the g-2 of
 the Muon, by Evgeny Solodov, Tuesday 4:15pm

• Charmonium decays in BABAR, by Antimo Palano, Thursday 8:30am

• Measurement of the Collins Asymmetries with the BABAR Detector
 by David Norvil Brown, Thursday 11:05am

Thank you for your attention!