Recent Results on Spectroscopy from COMPASS

Boris Grube

Physik-Department E18
Technische Universität München,
Garching, Germany

Hadron 2015
16. September 2015, Newport News, VA
Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

The COMPASS Experiment at the CERN SPS

Experimental Setup

Boris Grube, TU München

Recent Results on Spectroscopy from COMPASS
Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

Hadron spectroscopy

- 190 GeV/\(c \) secondary hadron beams
 - \(h^- \) beam: 97% \(\pi^- \), 2% \(K^- \), 1% \(\bar{p} \)
 - \(h^+ \) beam: 75% \(p \), 24% \(\pi^+ \), 1% \(K^+ \)
- Various targets: \(\ell \)H\(_2\), Ni, Pb, W

2008-09, 2012
The COMPASS Experiment at the CERN SPS

Experimental Setup

Fixed-target experiment
- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

Hadron spectroscopy
- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH_2, Ni, Pb, W

2008-09, 2012
The COMPASS Experiment at the CERN SPS

Experimental Setup

Spectroscopy program

- Explore light-meson spectrum for $m \gtrsim 2$ GeV/c^2
- Search for states beyond the constituent quark model
- Precision measurement of known resonances

Hadron spectroscopy 2008-09, 2012

- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH$_2$, Ni, Pb, W

Recent Results on Spectroscopy from COMPASS
1. Introduction
- Meson production in diffractive dissociation
- Partial-wave analysis method

2. PWA of diffractively produced $\pi^-\eta$ and $\pi^-\eta'$ final states

3. PWA of diffractively produced 3π final states
- Observation of a new narrow axial-vector meson $a_1(1420)$
- $J^{PC} = 1^{++}$ spin-exotic partial wave

4. Conclusions and outlook
Introduction
- Meson production in diffractive dissociation
- Partial-wave analysis method

PWA of diffractively produced $\pi^{-}\eta$ and $\pi^{-}\eta'$ final states

PWA of diffractively produced 3π final states
- Observation of a new narrow axial-vector meson $a_1(1420)$
- $J^{PC} = 1^{-+}$ spin-exotic partial wave

Conclusions and outlook
Meson Production in Diffractive Dissociation

- **Soft scattering** of beam particle off target
 - Production of n forward-going hadrons
 - Target particle stays intact
- At **190 GeV/c**, interaction dominated by space-like pomeron exchange
- All final-state particles are measured
Meson Production in Diffractive Dissociation

- Exclusive measurement
 - Clean data sample
 - Reduced four-momentum transfer squared $t' \equiv |t| - |t|_{\text{min}}$
 - Analyzed range: $0.1 < t' < 1.0 \text{ (GeV}/\text{c})^2$

Example: $\pi^- \pi^+ \pi^-$ final state

Events / (50 MeV)
Meson Production in Diffractive Dissociation

- **Exclusive measurement**
 - Clean data sample
 - Reduced four-momentum transfer squared $t' \equiv |t| - |t|_{\text{min}}$
 - Analyzed range: $0.1 < t' < 1.0 \text{ (GeV/c)}^2$

Example: $\pi^- \pi^+ \pi^- \text{ final state}$

![Graph showing the distribution of events vs. t'](#)
Meson Production in Diffractive Dissociation

- Beam particle gets excited into intermediate resonances X
- X dissociate into n-body final state
- Rich spectrum of intermediate states X

Disentanglement of all contributing X by partial-wave analysis (PWA)
Beam particle gets excited into intermediate resonances X

X dissociate into n-body final state

Rich spectrum of intermediate states X

Disentanglement of all contributing X by partial-wave analysis (PWA)
Meson Production in Diffractive Dissociation

- Beam particle gets excited into intermediate resonances X
- X dissociate into n-body final state
- Rich spectrum of intermediate states X

Disentanglement of all contributing X by partial-wave analysis (PWA)
Ansatz: Factorization of production and decay

\[
\sigma(\tau; m_X) \propto \sum_{\epsilon = \pm 1} \left| \sum_{i} \text{waves} T^\epsilon_i(m_X) A^\epsilon_i(\tau; m_X) \right|^2
\]

- **Transition amplitudes** \(T^\epsilon_i(m_X) \) contain interesting physics
- **Decay amplitudes** \(A^\epsilon_i(\tau; m_X) \)
 - Describe kinematic \(\tau \) distribution of partial waves
 - Calculable using isobar model (for \(n > 2 \)) and helicity formalism (Wigner \(D \)-functions)
- \(\epsilon = \pm 1 \): naturalities of exchange particle
 - 190 GeV/c beam momentum \(\Rightarrow \) pomeron (\(\epsilon = +1 \)) dominates
Partial-Wave Analysis Method

Ansatz: Factorization of production and decay

\[
\sigma(\tau; m_X) \propto \sum_{\epsilon=\pm1} \left| \sum_{\text{waves}} T_{\epsilon}^i(m_X) A_{\epsilon}^i(\tau; m_X) \right|^2
\]

- Transition amplitudes \(T_{\epsilon}^i(m_X) \) contain interesting physics
- Decay amplitudes \(A_{\epsilon}^i(\tau; m_X) \)
 - Describe kinematic \(\tau \) distribution of partial waves
 - Calculable using isobar model (for \(n > 2 \)) and helicity formalism (Wigner \(D \)-functions)

For \(\epsilon = \pm1 \): naturalities of exchange particle
- \(190 \text{ GeV}/c \) beam momentum \(\implies \) pomeron (\(\epsilon = +1 \)) dominates

Boris Grube, TU München
Recent Results on Spectroscopy from COMPASS
Partial-Wave Analysis Method

\[\pi_{\text{beam}} \rightarrow X^- \rightarrow h_1 \rightarrow \cdots \rightarrow h_n \]

\(p_{\text{target}} \rightarrow P \rightarrow p_{\text{recoil}} \)

Ansatz: Factorization of production and decay

\[\sigma(\tau; m_X) \propto \sum_{\epsilon=\pm 1} \left| \sum_{i}^{\text{waves}} T_{i}^{\epsilon}(m_X) A_{i}^{\epsilon}(\tau; m_X) \right|^2 \]

- **Transition amplitudes** \(T_{i}^{\epsilon}(m_X) \) contain interesting physics
- **Decay amplitudes** \(A_{i}^{\epsilon}(\tau; m_X) \)
 - Describe **kinematic** \(\tau \) distribution of partial waves
 - **Calculable** using isobar model (for \(n > 2 \)) and **helicity formalism** (Wigner \(D \)-functions)
- \(\epsilon = \pm 1 \): **naturalities** of exchange particle
 - 190 GeV/c beam momentum \(\Rightarrow \) **pomeron** (\(\epsilon = +1 \)) dominates
Two-stage analysis

\[\sigma(\tau; m_X) \propto \sum_{\epsilon=\pm 1} \left| \sum_{i}^{\text{waves}} T^\epsilon_i(m_X) A^\epsilon_i(\tau; m_X) \right|^2 \]

1. Determination of \(m_X \) dependence of spin-density matrix
 \[\varrho^\epsilon_{ij}(m_X) = T^\epsilon_i(m_X) T_j^{\epsilon*}(m_X) \]
 - Independent maximum likelihood fits to \(\tau \) distributions in narrow \(m_X \) bins
 - Take into account detection efficiency
 - No assumptions about resonance content of \(X \)

2. Extraction of resonances
 - \(\chi^2 \) fit of resonance model to spin-density (sub)matrix
Partial-Wave Analysis Method

Two-stage analysis

\[\sigma(\tau; m_X) \propto \sum_{e=\pm 1} \left| \sum_{i}^{\text{waves}} T_i^e(m_X) A_i^e(\tau; m_X) \right|^2 \]

1. Determination of \(m_X \) dependence of spin-density matrix
\[q_{ij}^e(m_X) = T_i^e(m_X) T_j^e(\ast)(m_X) \]
 - Independent maximum likelihood fits to \(\tau \) distributions in narrow \(m_X \) bins
 - Take into account detection efficiency
 - No assumptions about resonance content of \(X \)

2. Extraction of resonances
 - \(\chi^2 \) fit of resonance model to spin-density (sub)matrix
Outline

1 Introduction
 • Meson production in diffractive dissociation
 • Partial-wave analysis method

2 PWA of diffractively produced $\pi^- \eta$ and $\pi^- \eta'$ final states

3 PWA of diffractively produced 3π final states
 • Observation of a new narrow axial-vector meson $a_1(1420)$
 • $J^{PC} = 1^{--}$ spin-exotic partial wave

4 Conclusions and outlook
Odd-spin waves: spin-exotic quantum numbers

- Disputed $J^{PC} = 1^{-+}$ resonance signals
 - $\pi_1(1400)$ in $\pi\eta$ and $\pi_1(1600)$ in $\pi\eta'$

Comparison of $\pi\eta$ and $\pi\eta'$: information about flavor structure

Reconstruction from exclusive $\pi^-\pi^+\pi^-\gamma\gamma$ final state

- $\eta \rightarrow \pi^+\pi^-\pi^0$ with $\pi^0 \rightarrow \gamma\gamma$
- $\eta' \rightarrow \pi^+\pi^-\eta$ with $\eta \rightarrow \gamma\gamma$
PWA of $\pi^- p \rightarrow \pi^- \eta^{(1)} p_{\text{recoil}}$

- Odd-spin waves: spin-exotic quantum numbers
 - Disputed $J^{PC} = 1^{--}$ resonance signals
 - $\pi_1(1400)$ in $\pi\eta$ and $\pi_1(1600)$ in $\pi\eta'$
- Comparison of $\pi\eta$ and $\pi\eta'$: information about flavor structure

Reconstruction from exclusive $\pi^- \pi^+ \pi^- \gamma\gamma$ final state

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ with $\pi^0 \rightarrow \gamma\gamma$
- $\eta' \rightarrow \pi^+ \pi^- \eta$ with $\eta \rightarrow \gamma\gamma$

$\pi^- \eta$ invariant mass

![Graph showing entries versus invariant mass](image-url)
PWA of $\pi^- p \rightarrow \pi^- \eta(\prime) p_{\text{recoil}}$

- Odd-spin waves: spin-exotic quantum numbers
 - Disputed $J^{PC} = 1^{-+}$ resonance signals
 - $\pi_1(1400)$ in $\pi\eta$ and $\pi_1(1600)$ in $\pi\eta'$
 - Comparison of $\pi\eta$ and $\pi\eta'$: information about flavor structure

Reconstruction from exclusive $\pi^−\pi^+\pi^-\gamma\gamma$ final state

- $\eta \rightarrow \pi^+\pi^-\pi^0$ with $\pi^0 \rightarrow \gamma\gamma$
- $\eta' \rightarrow \pi^+\pi^-\eta$ with $\eta \rightarrow \gamma\gamma$

\[m(\eta\pi^-) \text{ [GeV}/c^2] \]

\[m(\eta'\pi^-) \text{ [GeV}/c^2] \]
Quark-line picture for $n = (u, d)$ and pointlike resonances

- $\pi^-\eta$ and $\pi^-\eta'$ partial-wave intensities for spin J related by
 - Different phase space and barrier factors
 - Branching fraction ratio b of η and η' into $\pi^-\pi^+\gamma\gamma$

$$N_j^{\pi\eta'}(m) \propto b \left[\frac{q^{\pi\eta'}(m)}{q^{\pi\eta}(m)} \right]^{2J+1} N_j^{\pi\eta}(m)$$

- $q =$ breakup momentum
Comparison of $J^{PC} = 2^{++}$ Partial Waves

Quark-line picture for $n = (u,d)$ and pointlike resonances

- $\pi^-\eta$ and $\pi^-\eta'$ partial-wave intensities for spin J related by
 - Different phase space and barrier factors
 - Branching fraction ratio b of η and η' into $\pi^-\pi^+\gamma\gamma$

$$N_J^{\pi\eta'}(m) \propto b \left[\frac{q^{\pi\eta'}(m)}{q^{\pi\eta}(m)} \right]^{2J+1} N_J^{\pi\eta}(m)$$

- $q = $ breakup momentum

Plots

$\pi^-\eta$ final state

- Events / 40 MeV/c² vs $m(\eta\pi^-)$ [GeV/c²]

$\pi^-\eta'$ final state

- Events / 40 MeV/c² vs $m(\eta'\pi^-)$ [GeV/c²]
Comparison of $J^{PC} = 2^{++}$ Partial Waves

Quark-line picture for $n = (u, d)$ and pointlike resonances

- $\pi^{-}\eta$ and $\pi^{-}\eta'$ partial-wave intensities for spin J related by
 - Different phase space and barrier factors
 - Branching fraction ratio b of η and η' into $\pi^{-}\pi^{+}\gamma\gamma$

$$N_{J}^{\pi\eta'}(m) \propto b \left[\frac{q^{\pi\eta'}(m)}{q^{\pi\eta}(m)} \right]^{2J+1} N_{J}^{\pi\eta}(m)$$

- $q =$ breakup momentum

\[\text{\large $\pi^{-}\eta$ final state} \quad \text{\large $\pi^{-}\eta'$ final state; $\pi^{-}\eta$ scaled}$
Even-Spin Waves

\[J^{PC} = 4^{++} \]

Phase: \(4^{++} - 2^{++} \)

- Similar even-spin waves
- Intermediate states couple to same final-state flavour content
- Similar physical content also in nonresonant high-mass region

\[\pi^- \eta' \text{ final state; } \pi^- \eta \text{ scaled} \]
Even-Spin Waves

\[J^{PC} = 4^{++} \]

- **Resonance-model fit**
 - (Breit-Wigner)
 \[
 \frac{N(a_2 \to \pi\eta')} {N(a_2 \to \pi\eta)} = (5 \pm 2) \%
 \]

- **First-time measurement of**
 \[
 \frac{N(a_4 \to \pi\eta')} {N(a_4 \to \pi\eta)} = (23 \pm 7) \%
 \]

\(\pi^- \eta' \) final state; \(\pi^- \eta \) scaled

Phase: 4^{++} − 2^{++}

Recent Results on Spectroscopy from COMPASS
$J^{PC} = 1^{-+}$ Spin-Exotic Wave

Spin-exotic $J^{PC} = 1^{-+}$

Phase: $1^{-+} - 2^{++}$

- 1^{-+} intensities very different
- Suppression in $\pi\eta$ channel predicted for intermediate $|q\bar{q}g\rangle$ state
- Different phase motion in $1.6\text{ GeV}/c^2$ region

$\pi^-\eta'$ final state; $\pi^-\eta$ scaled
Spin-exotic $J^{PC} = 1^{--}$

Phase: $1^{--} - 2^{++}$

- 1^{--} resonance interpretation requires better understanding of
 - 2^{++} wave
 - Nonresonant contributions

π^--η' final state; π^--η scaled
$J^{PC} = 1^{-+}$ Spin-Exotic Wave

Spin-exotic $J^{PC} = 1^{-+}$

Phase: $1^{-+} - 2^{++}$

$\pi_{\text{beam}}^- \rightarrow \eta \pi^-$

Multi-Regge exchange, e.g.

$\rho_{\text{target}} \rightarrow a_2 \rightarrow P \rightarrow \eta \pi^-$

ρ_{recoil}
1 Introduction
 - Meson production in diffractive dissociation
 - Partial-wave analysis method

2 PWA of diffractively produced $\pi^-\eta$ and $\pi^-\eta'$ final states

3 PWA of diffractively produced 3π final states
 - Observation of a new narrow axial-vector meson $a_1(1420)$
 - $J^{PC} = 1^{-+}$ spin-exotic partial wave

4 Conclusions and outlook
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

π^-_{beam}

X^-

π^-

π^+

π^-

p_{target}

p_{recoil}

π^-

π^-

Strong $\pi^+ \pi^-$ correlations in $X^- \rightarrow \pi^- \pi^+ \pi^-$ decay
Partial-Wave Analysis: $\pi^- \pi^+ \pi^- \pi^-$ Final State

[arXiv:1509.00992]

Strong $\pi^+ \pi^-$ correlations in $X^- \rightarrow \pi^- \pi^+ \pi^- \pi^-$ decay
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

$\pi^-_{\text{beam}} \rightarrow X^- \rightarrow \pi^- \pi^+ \pi^-$

$\pi^-_{\text{beam}} \rightarrow p_{\text{target}} \rightarrow p_{\text{recoil}}$

Strong $\pi^+ \pi^-$ correlations in $X^- \rightarrow \pi^- \pi^+ \pi^-$ decay
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

Strong $\pi^+ \pi^-$ correlations in $X^- \rightarrow \pi^- \pi^+ \pi^-$ decay
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

Isobar model

- X^- decays via intermediate $\pi^+ \pi^-$ resonance = "isobar"
 - $[\pi\pi]_S$ \hspace{1cm} $J^{PC} = 0^{++}$
 - $\rho(770)$ \hspace{1cm} 1^{--}
 - $f_0(980)$ \hspace{1cm} 0^{++}
 - $f_2(1270)$ \hspace{1cm} 2^{++}
 - $f_0(1500)$ \hspace{1cm} 0^{++}
 - $\rho_3(1690)$ \hspace{1cm} 3^{--}
- PWA requires precise knowledge of isobar $\rightarrow \pi^+ \pi^-$ amplitude
Partial-Wave Analysis: \(\pi^- \pi^+ \pi^- \) Final State

Isobar model

- \(X^- \) decays via intermediate \(\pi^+ \pi^- \) resonance = “isobar”
 - \([\pi\pi]_S \) \(J^{PC} = 0^{++} \)
 - \(\rho(770) \) \(1^{--} \)
 - \(f_0(980) \) \(0^{++} \)
 - \(f_2(1270) \) \(2^{++} \)
 - \(f_0(1500) \) \(0^{++} \)
 - \(\rho_3(1690) \) \(3^{--} \)
- PWA requires precise knowledge of isobar \(\rightarrow \pi^+ \pi^- \) amplitude

[arXiv:1509.00992]
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

Isobar model

- X^- decays via intermediate $\pi^+ \pi^-$ resonance = "isobar"
 - $[\pi \pi]_S$ $J^{PC} = 0^{++}$
 - $\rho(770)$ 1^{--}
 - $f_0(980)$ 0^{++}
 - $f_2(1270)$ 2^{++}
 - $f_0(1500)$ 0^{++}
 - $\rho_3(1690)$ 3^{--}
- PWA requires precise knowledge of isobar $\rightarrow \pi^+ \pi^-$ amplitude

Entries / (5 MeV/@c^2)
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets

1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars: $\pi^- \pi^0$
 - $I = 0$ isobars: $\pi^0 \pi^0$

Complex correlation of $m_{3\pi}$ and t'

- Two-dimensional PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins

- Better disentanglement of resonant and nonresonant contributions
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets

1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars: $\pi^- \pi^0$
 - $I = 0$ isobars: $\pi^0 \pi^0$

Complex correlation of $m_{3\pi}$ and t'

- Two-dimensional PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins
- Better disentanglement of resonant and nonresonant contributions

800 < $m_{3\pi}$ < 850 MeV/$c^2*

![Graph 1](image1.png)

1600 < $m_{3\pi}$ < 1650 MeV/$c^2*

![Graph 2](image2.png)
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets

1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars: $\pi^- \pi^0$
 - $I = 0$ isobars: $\pi^0 \pi^0$

Complex correlation of $m_{3\pi}$ and t'

- Two-dimensional PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins
- Better disentanglement of resonant and nonresonant contributions
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
 - $1^{++} 0^+ \rho(770) \pi S$: $a_2(1260)$
 - $2^{++} 1^+ \rho(770) \pi D$: $a_2(1320)$
 - $2^{-+} 0^+ f_2(1270) \pi S$: $\pi_2(1670)$

Events / (5 MeV/c2) vs $m_{3\pi}$ [GeV/c2]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770)\pi S$: $a_1(1260)$
- $2^{++} 1^+ \rho(770)\pi D$: $a_2(1320)$
- $2^{-+} 0^+ f_2(1270)\pi S$: $\pi_2(1670)$
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770) \pi S$: $a_1(1260)$
- $2^{++} 1^+ \rho(770) \pi D$: $a_2(1320)$
- $2^{-+} 0^+ f_2(1270) \pi S$: $\pi_2(1670)$
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770) \pi S$: $a_1(1260)$
- $2^{++} 1^+ \rho(770) \pi D$: $a_2(1320)$
- $2^{-+} 0^+ f_2(1270) \pi S$: $\pi_2(1670)$

[arXiv:1509.00992]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$:

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770)\pi S$: $a_1(1260)$
- $2^{++} 1^+ \rho(770)\pi D$: $a_2(1320)$
- $2^{-+} 0^+ f_2(1270)\pi S$: $\pi_2(1670)$

In total 88 partial waves

- Largest wave set used so far for $\pi^- \pi^+ \pi^-$
- Spin J up to 6
- Orbital angular momentum L up to 6
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

4$^{++}$ 1$^+$ $\rho(770) \pi G$
- $a_4(2040)$

0$^{-+}$ 0$^+$ $f_0(980) \pi S$
- $\pi(1800)$

1$^{++}$ 0$^+$ $f_0(980) \pi P$
- Unexpected peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.3\%$
- Similar signal in $\pi^- \pi^0 \pi^0$

[arXiv:1509.00992]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

[arXiv:1509.00992]

$4^{++} 1^+ \rho(770) \pi G$
- $a_4(2040)$

$0^{-+} 0^+ f_0(980) \pi S$
- $\pi(1800)$

$1^{++} 0^+ f_0(980) \pi P$
- Unexpected peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.3\%$
- Similar signal in $\pi^- \pi^0 \pi^0$

Boris Grube, TU München
Recent Results on Spectroscopy from COMPASS
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

$4^{++} 1^+ \rho(770) \pi G$

- $a_4(2040)$

$0^{-+} 0^+ f_0(980) \pi S$

- $\pi(1800)$

$1^{++} 0^+ f_0(980) \pi P$

- Unexpected peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.3\%$
- Similar signal in $\pi^- \pi^0 \pi^0$

$1^{++} 0^+ f_0(980) \pi P$

- 0.3%
- $0.100 < t' < 1.000$ (GeV/$c)^2$

Intensity / (20 MeV/c^2) vs $m_{3\pi}$ [GeV/c^2]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

$4^{++} 1^+ \rho(770) \pi G$
- $a_4(2040)$

$0^- 0^+ f_0(980) \pi S$
- $\pi(1800)$

$1^{++} 0^+ f_0(980) \pi P$
- Unexpected peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.3\%$
- Similar signal in $\pi^- \pi^0 \pi^0$

COMPASS 2008 ($\pi^- p \rightarrow (3\pi^-) p$)

$1^{++} 0^+ f_0(980) \pi P$
- $\pi^- \pi^0 \pi^0, \pi^- \pi^- \pi^+(\text{scaled})$
- $0.100 < t' < 1.000$ GeV/c^2
- (incoherent sum)

Preliminary

Boris Grube, TU München
Recent Results on Spectroscopy from COMPASS
Novel analysis method (inspired by E791 analysis, PRD 73 (2006) 032204)

- Replace $J^{PC} = 0^{++}$ isobar parametrizations by piece-wise constant amplitudes in $m_{\pi^+\pi^-}$ bins
- Extract $m_{3\pi}$ dependence of $J^{PC} = 0^{++}$ isobar amplitude from data
 - Drastic reduction of model bias
 - **Caveat**: significant increase in number of fit parameters
Is Peak in $1^{++} 0^+ f_0(980) \pi P$ Wave a Model Artifact?

Novel analysis method *(inspired by E791 analysis, PRD 73 (2006) 032204)*

- Replace $J^{PC} = 0^{++}$ isobar parametrizations by piece-wise constant amplitudes in $m_{\pi^+\pi^-}$ bins
- Extract $m_{3\pi}$ dependence of $J^{PC} = 0^{++}$ isobar amplitude from data
- Drastic reduction of model bias
- **Caveat:** significant increase in number of fit parameters
\[\pi\pi \; S\text{-Wave Amplitude in} \; J^{PC} = 1^{++} \; 3\pi \text{ Wave} \]

- Correlation of 3\(\pi\) intensity around 1.4 GeV/\(c^2\) with \(f_0(980)\)
- \(f_0(980)\) semicircle in Argand diagram
- Confirms that \(f_0(980)\pi\) signal is \textit{not} an artifact of isobar parametrization
Correlation of 3π intensity around 1.4 GeV/c^2 with $f_0(980)$

- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)$ π signal is not an artifact of isobar parametrization
Correlation of 3π intensity around $1.4 \text{ GeV}/c^2$ with $f_0(980)$

- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)$ signal is not an artifact of isobar parametrization
\(\pi \pi \) S-Wave Amplitude in \(J^{PC} = 1^{++} \) 3\(\pi \) Wave

- Correlation of 3\(\pi \) intensity around 1.4 GeV/\(c^2 \) with \(f_0(980) \)
- \(f_0(980) \) semicircle in Argand diagram
- Confirms that \(f_0(980) \pi \) signal is not an artifact of isobar parametrization
$\pi\pi$ S-Wave Amplitude in $J^{PC} = 1^{++} 3\pi$ Wave

Correlation of 3π intensity around 1.4 GeV/c^2 with $f_0(980)$

$f_0(980)$ semicircle in Argand diagram

Confirms that $f_0(980)\pi$ signal is not an artifact of isobar parametrization
Coupling of $\pi(1800)$ to $f_0(980)\pi$ and $f_0(1500)\pi$ decay modes

See talk 1E2 by F. Krinner (Thu, 8:55)
Coherent sum of resonant (Breit-Wigner) and nonresonant terms
Coherent sum of resonant (Breit-Wigner) and nonresonant terms
1++ peak consistent with Breit-Wigner resonance

\[a_1(1420): \]

\[M_0 = 1414^{+15}_{-13} \text{ MeV}/c^2 \]

\[\Gamma_0 = 153^{+8}_{-23} \text{ MeV}/c^2 \]
- 1^{++} peak consistent with Breit-Wigner resonance
- $a_1(1420)$:
 $M_0 = 1414^{+15}_{-13}$ MeV/c^2
 $\Gamma_0 = 153^{+8}_{-23}$ MeV/c^2
1$^{++}$ peak consistent with Breit-Wigner resonance

- $a_1(1420)$:
 - $M_0 = 1414^{+15}_{-13}$ MeV/c^2
 - $\Gamma_0 = 153^{+8}_{-23}$ MeV/c^2
Nature unclear

- No quark-model states expected at 1.4 GeV / c^2
- Ground state a_1(1260) very close and wider
- Seen only in f_0(980)π decay mode
- Isospin partner of narrow f_1(1420)?
-Suspiciously close to K\bar{K}^* threshold
Several proposed explanations

- **Two-quark-tetraquark** mixed state

- **Tetraquark** with mixed flavor symmetry
 [Chen *et al.*, PRD **91** (2015) 094022]

- Two-channel **unitarized Deck amplitude** + direct \(a_1(1260)\) production

 See talk 1B4 by E. Berger (Mon, 5:30)

- **Singularity** (branching point) in **triangle diagram**

 See talk 5A1 by B. Ketzer (Thu, 8:30)
Several proposed explanations

- **Two-quark-tetraquark mixed state**

- **Tetraquark with mixed flavor symmetry**
 [Chen *et al.*, PRD 91 (2015) 094022]

- **Two-channel unitarized Deck amplitude + direct $a_1(1260)$ production**

 See talk 1B4 by E. Berger (Mon, 5:30)

- **Singularity (branching point) in triangle diagram**
 [Mikhasenko *et al.*, PRD 91 (2015) 094015]

 See talk 5A1 by B. Ketzer (Thu, 8:30)
Several proposed explanations

- **Two-quark-tetraquark** mixed state

- **Tetraquark with mixed flavor symmetry**

 [Chen et al., PRD 91 (2015) 094022]

- **Two-channel unitarized Deck amplitude + direct** $a_1(1260)$ production

 See talk 1B4 by E. Berger (Mon, 5:30)

- **Singularity (branching point) in triangle diagram**

 [Mikhasenko et al., PRD 91 (2015) 094015]

 See talk 5A1 by B. Ketzer (Thu, 8:30)
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $(3\pi)^-$ PWA

- Broad intensity bump
- Similar in both channels

$\pi^-\pi^0\pi^0$

$\pi^-\pi^+\pi^-$ scaled

COMPASS 2008 ($\pi^-p\rightarrow(3\pi)^-p$)

$1^{+1+} \rho(770) \pi P$

$\pi^-\pi^0\pi^0, \pi^-\pi^-\pi^+$ (scaled)

$0.100 < t' < 1.000$ GeV2/c2

(incoherent sum)

Preliminary
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $\pi^- \pi^+ \pi^-$ PWA

Drastic Change of Mass Spectrum with t'

“Low” $t' \approx 0.1 \text{ (GeV/c)}^2$

- Dominant nonresonant contribution
- Needs to be better understood in order to extract resonance content

“High” $t' \approx 0.8 \text{ (GeV/c)}^2$

$1^+1^+ \rho(770) \pi P$
$0.100 \leq t' \leq 0.113 \text{ GeV}^2/c^2$

$1^+1^+ \rho(770) \pi P$
$0.724 \leq t' \leq 1.000 \text{ GeV}^2/c^2$
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $\pi^- \pi^+ \pi^-$ PWA

Model for Nonresonant Component

Deck effect

- MC pseudodata generated according to model of Deck amplitude based on ACCMOR, NPB 182 (1981) 269
- Analyzed like real data
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $\pi^{-}\pi^{+}\pi^{-}$ PWA

Deck-Model for Nonresonant Component

“Low” $t' \approx 0.1 \,(\text{GeV}/c)^2$

$1^{+}1^{+} \rho(770) \, \pi \, P$

0.66%

$0.100 \leq t' \leq 0.113 \,(\text{GeV}/c)^2$

“High” $t' \approx 0.8 \,(\text{GeV}/c)^2$

0.96%

$1^{+}1^{+} \rho(770) \, \pi \, P$

$0.724 \leq t' \leq 1.000 \,(\text{GeV}/c)^2$

- Deck MC scaled to t'-summed intensity
 - Similar mass spectrum at low t'
 - Different shape at high t'
Spin-Exotic $J^{PC} = 1^{--}$ Signal in $\pi^-\pi^+\pi^-$ PWA

Relative Phase w.r.t. $1^{++} 0^+ \rho(770)\pi S$ Wave

$\pi p \rightarrow \pi\pi\pi p$ (COMPASS 2008)

$1^{++} 0^+ \rho(770)\pi P - 1^{++} 0^+ \rho(770)\pi S$

$0.113 \leq t' \leq 0.128 \text{ GeV}^2/c^2$
$0.262 \leq t' \leq 0.326 \text{ GeV}^2/c^2$
$0.189 \leq t' \leq 0.220 \text{ GeV}^2/c^2$
$0.449 \leq t' \leq 0.724 \text{ GeV}^2/c^2$

- Slow phase 60° motion in 1.6 GeV/c^2 region independent of t'
1 Introduction
 - Meson production in diffractive dissociation
 - Partial-wave analysis method

2 PWA of diffractively produced π^--η and π^--η' final states

3 PWA of diffractively produced 3π final states
 - Observation of a new narrow axial-vector meson $a_1(1420)$
 - $J^{PC} = 1^{-+}$ spin-exotic partial wave

4 Conclusions and outlook
Conclusions and Outlook

Precise data on pion diffraction

- PWA reliably extracts even very small signals
 - New axial-vector state $a_1(1420)$ in $(3\pi^-)$ final states

- Novel analysis schemes:
 - PWA in bins of t'
 - Better separation of resonant and nonresonant contribution
 - Extraction of $\pi\pi$ S-wave amplitude from $\pi^-\pi^+\pi^-$ system
 - Study dependence on 3π source
 - Study rescattering effects
 - Extension to higher $\pi\pi$ waves

Boris Grube, TU München

Recent Results on Spectroscopy from COMPASS
Conclusions and Outlook

Nonresonant contributions play important role

- Limit extraction of resonance parameters
- First studies using Deck models
- Extraction of nonresonant contributions from data
 - Collaboration with JPAC: Veneziano amplitudes + finite-energy sum rules

Other ongoing analyses

- Pion diffraction into $\pi^- \eta \eta$, $\pi^- \pi^0 \omega$, $K \bar{K} \pi$, $K \bar{K} \pi \pi$, ...
- Kaon diffraction into $K^- \pi^+ \pi^-$
- Central-production reactions See talk 1E1 by A. Austregesilo (Thu, 8:30)
- $\pi \gamma$ scattering using Primakoff reactions on heavy targets See talk 6C4 by M. Krämer (Thu, 11:45)
Conclusions and Outlook

Nonresonant contributions play important role

- Limit extraction of resonance parameters
- First studies using Deck models
- Extraction of nonresonant contributions from data
 - Collaboration with JPAC: Veneziano amplitudes + finite-energy sum rules

Other ongoing analyses

- Pion diffraction into $\pi^- \eta \eta$, $\pi^- \pi^0 \omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- Kaon diffraction into $K^- \pi^+ \pi^-$
- Central-production reactions
 - See talk 1E1 by A. Austregesilo (Thu, 8:30)
- $\pi\gamma$ scattering using Primakoff reactions on heavy targets
 - See talk 6C4 by M. Krämer (Thu, 11:45)