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QCD: The Unifying Challenge
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Understanding QCD means to chart and compute this
distribution of matter and energy within hadrons
and nuclei – together with the complementary
process of fragmentation functions

a priori have no idea what QCD can produce – but
gives raise to ∼98% of mass in the visible universe
must understand the emergent phenomena of
confinement and dynamical chiral symmetry breaking
best promise for progress is a strong interplay
between experiment and theory

Key pathways are provided by new data on pion & nucleon
elastic form factors, TMDs, etc =⇒ diquarks, OAM, etc

In the DSEs an understanding of QCD is gained by exposing the properties
of its dressed propagators, dressed vertices and interaction kernels – and the
relations between them
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QCD’s Dyson-Schwinger Equations
The equations of motion of QCD⇐⇒ QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral equations
tractability =⇒ must implement a symmetry preserving truncation

The most important DSE is QCD’s gap equation =⇒ quark propagator

−1
=

−1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p+M(p2)

S(p) has correct perturbative limit

mass function, M(p2), exhibits
dynamical mass generation

complex conjugate poles
no real mass shell =⇒ confinement

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]
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The Pion
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The Pion in QCD
Today the pion is understood as both a bound state of a
dressed-quark and a dressed-antiquark in QFT and the
Goldstone mode associated with DCSB in QCD

In QFT the pion’s wave function is given by the solution
to a Bethe-Salpeter equation

A related quantity is the pion’s parton distribution amplitude
ϕπ(x, ξ): is a light-front probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

P
D
A

P
D
A

P
D
A

PDAs enter numerous hard exclusive scattering processes

Q2 Fπ(Q2)→ 16π f2
π αs(Q

2) Q2 Fγ∗γπ(Q2)→ 2 fπ
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

The pion’s PDA is defined by

fπ ϕπ(x) = Z2

∫
d4k

(2π)2
δ
(
k+ − x p+

)
Tr
[
γ+γ5 S(k) Γπ(k, p)S(k − p)

]

S(k) Γπ(k, p)S(k − p) is the pion’s Bethe-Salpeter wave function
in the non-relativistic limit it corresponds to the Schrodinger wave function

ϕπ(x): is the axial-vector projection of the pion’s Bethe-Salpeter wave
function onto the light-front [at twist-2 also pseudoscalar projection]

Pion PDA is an essentially nonperturbative quantity whose asymptotic form
is known; in this regime governs, e.g., Q2 dependence of pion form factor

Q2 Fπ(Q2)
Q2→∞−→ 16π f2

π αs(Q
2) ⇐⇒ ϕasy

π (x) = 6x (1− x)
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Pion PDA from the DSEs

asymptotic

rainbow-ladder

DCSB improved
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Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a
pronounced broadening compared with the asymptotic pion PDA

scale of calculation is given by renormalization point ζ = 2 GeV

A realization of DCSB on the light-front

As we shall see the dilation of pion’s PDA will influence the Q2 evolution of
the pion’s electromagnetic form factor

[L. Chang, ICC, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]
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Pion PDA from lattice QCD

Lattice QCD can only determine one
non-trivial moment
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

scale is Q2 = 4 GeV2

asymptotic

typical of standard analysis
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Standard practice to fit first coefficient of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
this procedure results in a double-humped pion PDA

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α(1− x)α

[
1 +

∑
n=2, 4,...

aα+1/2
n (Q2)Cα+1/2

n (2x− 1)
]

Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ∼ 0.52
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Updated Pion PDA from lattice QCD

Generalized expansion

ϕπ(x) = Nα x
α(1− x)α

[
1 +

∑
aα+
n (Q2)Cα+

n (2x− 1)
]

asymptotic lattice QCD

DCSB improved
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Updated lattice QCD moment: [V. Braun et al., arXiv:1503.03656 [hep-lat]]
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39) (?)

DSE prediction:
∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.251
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Pion Elastic Form Factor
Direct, symmetry-preserving
computation of pion form factor
predicts maximum in Q2 Fπ(Q2)

at Q2 ≈ 6 GeV2

magnitude of this product is
determined by strength of DCSB at
all accessible scales

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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Q2The QCD prediction can be expressed as

Q2Fπ(Q2)
Q2�Λ2

QCD∼ 16π f2
π αs(Q

2) w2
π ; wπ =

1

3

∫ 1

0

dx
1

x
ϕπ(x)

Within DSEs there is consistency between the direct pion form factor
calculation and that obtained using the DSE pion PDA

15% disagreement explained by higher order/higher-twist corrections

We predict that QCD power law behaviour – with QCD’s scaling law
violations – sets in at Q2 ∼ 8 GeV2

[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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Measuring onset of Perturbative scaling

forthcoming JLab data

differentiate from monopole
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Amendolia fit

To observe onset of perturbative power law behaviour – to differentiate from
a monopole – optimistically need data at 8 GeV2 but likely also at 10 GeV2

this is a very challenging task experimentally

Scaling predictions are valid for both spacelike and timelike momenta
timelike data show promise as the means of verifying modern predictions
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The Nucleon
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Nucleon Electromagnetic Form Factors

〈Jµ〉 = ū(p′)

[
γµ F1(Q2) +

iσµνqν
2M

F2(Q2)

]
u(p)

Dirac Pauli

ℓ

q

k

k′

pN
p′

N

θ
Nucleon electromagnetic current

Provide vital information on the distribution of
charge and magnetization within hadrons and nuclei

form factors also directly probe confinement at all energy scales

Today accurate form factor measurements are creating a paradigm shift in
our understanding of nucleon structure:

proton radius puzzle

µpGEp/GMp ratio and a possible zero-crossing

flavour decomposition and evidence for diquark correlations

meson-cloud effects

seeking verification of perturbative QCD scaling predictions & scaling violations
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Form Factors in Conformal Limit (Q2 →∞)
At asymptotic energies hadron form factors factorize into parton distribution
amplitudes & a hard scattering kernel [Farrar, Jackson; Lepage, Brodsky]

only the valence Fock state (q̄q or qqq) can contribute as Q2 →∞
both confinement and asymptotic freedom in QCD are important in this limit

Most is known about q̄q bound states, e.g., for the pion:

P
D
A

P
D
A

P
D
A

For the nucleon, normalization is not known

GE,M (Q2 →∞) ∝ α2
s(Q

2)/Q4

orbital angular momentum effects approach

P
D
A

P
D
A

Gluons play a critical role – formalism must reflex this!

Q2 Fπ(Q2)

→ 16π f2
π αs(Q

2)

Q2 Fγ∗γπ(Q2)→ 2 fπ
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Nucleon Structure

image from
Gernot Eichmann

A robust description of the nucleon as a bound state of 3 dressed-quarks can
only be obtained within an approach that respects Poincaré covariance

Such a framework is provided by the Poincaré covariant Faddeev equation

sums all possible interactions between three dressed-quarks
much of 3-body interaction can be absorbed into effecive 2-body interactions
Faddeev eq. has solutions at discrete values of p2 (= M2) =⇒ baryon spectrum

A prediction of these approaches is that owing to DCSB in QCD – strong
diquark correlations exist within baryons

any interaction that describes colour-singlet mesons also generates non-pointlike
diquark correlations in the colour-3̄ channel
where scalar (0+) & axial-vector (1+) diquarks most important for the nucleon
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Diquarks

P
pd

pq

Ψa =
P

pq

pd

Ψb
Γ

a

Γb

[I. Wetzorke and F. Karsch, hep-lat/0008008]

Diquarks are dynamically
generated correlations
between quarks inside baryons

typically diquark sizes are similar to analogous mesons: r0+ ∼ rπ , r1+ ∼ rρ
These dynamic qq correlations are not the static diquarks of old

all quarks participate in all diquark correlations
in a given baryon the Faddeev equation predicts a probability for each diquark
cluster
for the nucleon: scalar (0+) ∼ 70%

axial-vector (1+) ∼ 30%

Faddeev equation spectrum has
significant overlap with constituent
quark model and limited relation to
Lichtenberg’s quark+diquark model

Mounting evidence from hadron structure
(e.g. PDFs, form factors) and lattice

scalar diquark

axial-vector diquark
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Nucleon EM Form Factors from DSEs
A robust description of form factors is only possible if electromagnetic
gauge invariance is respected; equivalently all relevant Ward-Takahashi
identities (WTIs) must be satisfied

For quark-photon vertex WTI implies:

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

transverse structure unconstrained

Diagrams needed for a gauge invariant nucleon EM current in (our) DSEs

p p′

q

p p′q

p p′

q

p p′

q

p p′q

Feedback with experiment can shed light on elements of QCD via DSEs

q

p

p′

=
q

p

p′

+
q

p

p′

−1
=

−1
+
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Beyond Rainbow Ladder Truncation
Include “anomalous chromomagnetic” term in quark-gluon vertex

1
4π g

2Dµν(`) Γν(p′, p) → αeff(`)D
free
µν (`) [γν + iσµνqν τ5(p′, p) + . . .]

In chiral limit anomalous chromomagnetic term can only appear through
DCSB – not chirally symmetric and flips quark helicity

EM properties of a spin- 1
2 point particle are characterized by two quantities:

charge: e & magnetic moment: µ

Expect strong gluon dressing to produce
non-trivial electromagnetic structure
for a dressed quark

recall dressing produces – from massless
quark – a M ∼ 400 MeV dressed quark

Large anomalous chromomagnetic
moment in the quark-gluon vertex –
produces a large quark anomalous
electromagnetic moment

dressed quarks are not point particles!

[L. Chang, Y. -X. Liu, C. D. Roberts, PRL 106, 072001 (2011)]
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Nucleon Dirac & Pauli form factors
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quark aem term has important influence on Pauli form factors at low Q2

[ICC, G. Eichmann, B. El-Bennich, T. Klahn and C. D. Roberts„ Few Body Syst. 46, 1 (2009)]
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Proton GE/GM Ratio
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Quark anomalous magnetic moment required for good agreement with data
important for low to moderate Q2

power law suppressed at large Q2

Illustrates how feedback with EM form factor measurements can help
constrain the quark–photon vertex and therefore the quark–gluon vertex
within the DSE framework

knowledge of quark–gluon vertex provides αs(Q2) within DSEs⇔ confinement

[L. Chang, Y. -X. Liu, C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)] [I. C. Cloët, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)]
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Neutron GE/GM Ratio
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Quark anomalous chromomagnetic moment – which drives the large
anomalous electromagnetic moment – has only a minor impact on neutron
Sachs form factor ratio

Predict a zero-crossing in GEn/GMn at Q2 ∼ 11 GeV2

Turn over in GEn/GMn will be tested at Jefferson Lab

DSE predictions were confirmed on domain 1.5 . Q2 . 3.5 GeV2

[ICC, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)] [S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010)]
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Proton GE form factor and DCSB
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Find that slight changes in M(p2) on the domain 1 . p . 3 GeV have a
striking effect on the GE/GM proton form factor ratio

strong indication that position of a zero is very sensitive to underlying dynamics
and the nature of the transition from nonperturbative to perturbative QCD

Zero in GE = F1 − Q2

4M2
N
F2 largely determined by evolution of Q2 F2

F2 is sensitive to DCSB through the dynamically generated quark anomalous
electromagnetic moment – vanishes in perturbative limit
the quicker the perturbative regime is reached the quicker F2 → 0

[I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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Flavour separated proton form factors
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Prima facie, these experimental results are remarkable
u and d quark sector form factors have very different scaling behaviour

However, when viewed in context of diquark correlations
results are straightforward to understand

in proton (uud) the d quark is “bound” inside a scalar
diquark [ud] 70% of the time; u[ud] diquark =⇒ 1/Q2

Zero in F d1p a result of interference between scalar and axial-vector diquarks
location of zero indicates relative strengths – correlated with d/u ratio as x→ 1

[I. C. Cloët, W. Bentz, A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]
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Probing Transverse Momentum with SIDIS
quark polarizationleading

twist unpolarized [U] longitudinal [L] transverse [T]
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The new frontier in hadron physics is the 3D imaging of the quarks & gluons

SIDIS cross-section on nucleon has 18 structure functions – factorize as:

F (x, z, P 2
h⊥, Q

2) ∝
∑

fq(x, k 2
T )⊗Dh

q (z, p 2
T )⊗H(Q2)

reveals correlations between parton transverse momentum, its spin & nucleon spin

Parametrization of these functions is not sufficient – must calculate in a
framework with a well defined connection to QCD

Fragmentation functions are particularly challenging & therefore interesting
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Nucleon quark distributions
Nucleon = quark+diquark
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PDFs given by Feynman diagrams: 〈γ+〉
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Covariant, correct support; satisfies sum rules, Soffer bound & positivity

〈q(x)− q̄(x)〉 = Nq, 〈xu(x) + x d(x) + . . .〉 = 1, |∆q(x)| , |∆T q(x)| 6 q(x)
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[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 621, 246 (2005)]
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Nucleon transversity quark distributions

−∆Tq(x) =

quarks in eigenstates of γ⊥ γ5

Tensor charge given by

gT =

∫
dx [∆Tu(x)−∆T d(x)]

Non-relativistically: ∆T q(x) = ∆q(x) – a measure of relativistic effects

Helicity conservation: no mixing bet’n ∆T q & ∆T g: J 6 1
2 ⇒ ∆T g(x) = 0

Therefore for the nucleon ∆T q(x) is valence quark dominated

At model scale we find: gT = 1.28 compare gA = 1.267 (input)

Q2 = 2.4 GeV2

x∆T uv(x)

x∆T dv(x)
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[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 659, 214 (2008)] [Gao et al., The Universe, vol. 3, n. 2, April 2015]
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Transverse Momentum Dependent PDFs
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Gaussian Fit 〈k2
T 〉 = 0.18

q(x, k2
T ) = q(x)

e−k2T /〈k2T 〉
π 〈k2

T 〉

So far only considered the simplest spin-averaged TMDs – q(x, k2
T )

Rigorously included transverse momentum of diquark correlations in TMDs

qD/N (x, k2
T ) =

∫ 1

0

dy

∫ 1

0

dz

∫
d2~q⊥

∫
d2~̀⊥

δ(x− yz) δ(~̀⊥ − ~k⊥ − z~q⊥) fD/N (y, ~q⊥) fq/D(z, ~̀⊥)

Scalar diquark correlations greatly increase
〈
k2
T

〉

〈
k2
T

〉Q2=Q2
0

u
= 0.43 GeV2 〈

k2
T

〉
= 0.31 GeV2

[HERMES], 0.41 GeV2
[EMC]
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Flavour Dependence & Diquarks
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[ICC, Bentz, Thomas, PRC 90, 045202 (2014)]

P P
+

P P

Scalar diquark correlations give
sizable flavour dependence in

〈
k2
T

〉

70% of proton (uud) WF contains a
scalar diquark [ud]; Ms ' 650 MeV,
with M ' 400 MeV difficult for d-quark
to be at large x

Scalar diquark correlations also explain
the very different scaling behaviour
of the quark sector form factors
u[ud] diquark =⇒ extra 1/Q2 for d

Zero in F d1p a result of interference
between scalar and axial-vector diquarks

location of zero indicates relative strengths
– correlated with d/u ratio as x→ 1
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Nucleon
in Medium
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Quasi-elastic scattering

ℓ

q

k

k′

A

A − 1

θ

Quasi-elastic scattering is used to study
nucleon properties in a nucleus: q2 = ω2 − |q|2

The cross-section for this process reads

d2σ

dΩ dω
= σMott

[
q4

|q|4
RL(ω, |q|) +

(
q2

2 |q|2
+ tan2 θ

2

)
RT (ω, |q|)

]

response functions are accessed via Rosenbluth separation

In the DIS regime – Q2, ω →∞ x = Q2/(2MN ω) = constant – response
functions are proportional to the structure functions F1(x,Q2) and F2(x,Q2)

table of contents Jefferson Lab 23–24 June 2016 31 / 37



Coulomb Sum Rule
The “Coulomb Sum Rule” reads

SL(|q|) =

∫ |q|

ω+

dω
RL(ω, |q|)
G̃2
E(Q2)

G̃2
E = Z G2

Ep(Q
2) +N G2

En(Q2)

Non-relativistic expectation – as |q|
becomes large – SL(|q| � pF )→ 1

CSR counts number of charge carriers

The CSR was first measured at MIT
Bates in 1980 then at Saclay in 1984

both experiments observed significant quenching of the CSR

Two plausible explanations: 1) nucleon structure is modified in the nuclear
medium; 2) experiment/analysis is flawed e.g. Coulomb corrections

A number of influential physicists have argued very strongly for the latter
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Coulomb Sum Rule Today

[A. Lovato et al., PRL 111, no. 9, 092501 (2013)]

No new data on the CSR since
SLAC data from early 1990s

The quenching of the CSR has
become one of the most contentious
observations in all of nuclear physics

Experiment E05-110 was performed
at Jefferson Lab in 2005 – should
settle controversy of CSR
quenching once and for all

publication of results expected
soon

State-of-the-art traditional nuclear
physics (GFMC) calculations find
no quenching in 12C
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Longitudinal Response Function

=

+
σ, ω, ρ
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In nuclear matter response
function given by

RL(ω, q) = − 2Z

π ρB
Im ΠL (ω, q)

Longitudinal polarization – ΠL – is obtained by solving a Dyson equation

We consider two cases: (1) the electromagnetic current is that if a free
nucleon; (2) the current is modified by the nuclear medium

The in-medium nucleon current
causes a sizeable quenching of the
longitudinal response

driver of this effect is modification
of the proton Dirac form factor

Nucleon RPA correlations play
almost no role for |q| & 0.7 GeV

table of contents Jefferson Lab 23–24 June 2016 34 / 37



Coulomb Sum Rule

SL(|q|) =

∫ |q|

ω+
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Recall that the non-relativistic
expectation is unity for |q| � pF

GFMC 12C results are consistent
with this expectation

For a free nucleon current find relativistic corrections of 20% at |q| ' 1 GeV
in the non-relativistic limit our CSR result does saturate at unity

An in-medium nucleon current induces a further 20% correction to the CSR
good agreement with exisiting 208Pb data – although this data is contested

Our 12C result is in stark contrast to the corresponding GFMC prediction
forthcoming Jefferson Lab should break this impasse

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 116 032701 (2016)]

table of contents Jefferson Lab 23–24 June 2016 35 / 37



Understanding the EMC effect
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I. Sick and D. Day, Phys. Lett. B 274, 16 (1992).

EMC effect
Polarized EMC effect

Q2 = 5GeV2

Z/N = 82/126 (lead)
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Puzzle posed by the EMC effect will
only be solved by conducting new
experiments that expose novel aspects
of the EMC effect

Measurements should help distinguish
between explanations of EMC effect
e.g. whether all nucleons are modified
by the medium or only those in SRCs

Examples: Polarized and flavour dependence, spectator tagging, etc
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Conclusion

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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Using the DSEs we find that DCSB
drives numerous effects in QCD, e.g.,
hadron masses, confinement and
many aspects of hadron structure

Q2 Fπ(Q2) peaks at 6 GeV2

predict that QCD power law behaviour
sets in at Q2 ∼ 8 GeV2

e.g. location of zero’s in form factors
– GEp, F d1p, etc – provide
tight constraints on QCD dynamics

predict zero in GEn/GMn independent
rate of change of DCSB with scale

Progress toward nucleon TMD results
diquark correlations result
in a dramatic increase in

〈
k2
T

〉

and a significant flavour dependence
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Proton GE form factor and DCSB
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Recall: GE = F1 − Q2

4M2
N
F2

Only GE is senitive to these small
changes in the mass function

Accurate determination of zero
crossing would put important
contraints on quark-gluon
dynamics within DSE framework

[I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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Nambu–Jona-Lasinio model

Continuum QCD ➞
“integrate out gluons” 1

m2
G

Θ(Λ2−k2)

this is just a modern interpretation of the Nambu–Jona-Lasinio (NJL) model

model is a Lagrangian based covariant QFT which exhibits dynamical chiral
symmetry breaking & it elements can be QCD motivated via the DSEs

S. x. Qin et al., Phys. Rev. C 84, 042202 (2011)
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The NJL model is very successful - provides a good description of numerous
hadron properties: form factors, PDFs, in-medium properties, etc

however the NJL model has no direct link to QCD
in general NJL has no confinement – but can be implemented with proper-time RS
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