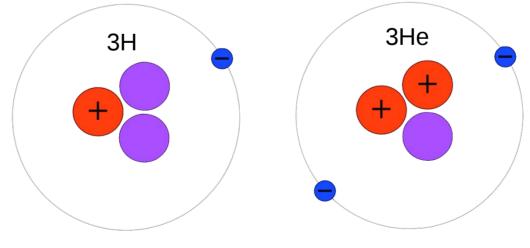

The Hall A Tritium Target Physics Program Overview

<u>Using A=3 Mirror Nuclei to Probe the Nucleon Structure</u>

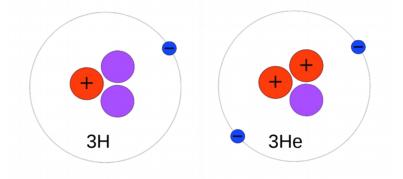
Buddhini Waidyawansa (Argonne National Lab)


Hall A & C Summer Collaboration Meeting June 23, 2016

Why Mirror Nuclei?

In the absence of Coulomb interactions between the protons, a perfectly charge-symmetric and chargeindependent nuclear force would result in the binding energies of all the mirror nuclei being identical

- The are structurally identical.
 - Studying the differences in their properties reveals information about protons and neutrons


Why A=3 Mirror Nuclei?

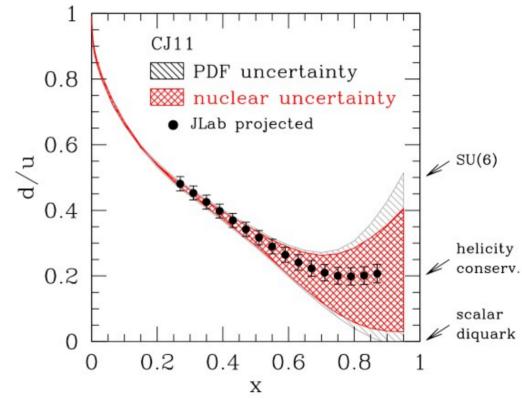
- Lightest and the simplest mirror system
- Differences in the nuclear effects are small
 - Binding energy
 - EMC effect

Nuclear effects cancel in the cross-section ratios

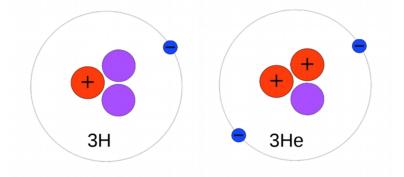
- FSI contributions
- Radiative effects
 - Cleaner measurements

Reaction	Cmpare 3He vs 3H	Access	Experiment
DIS e scattering	n+2H vs p+2H	F2p/F2n and d/u	MARATHON

Measurement of deep inelastic ratios from 3H an 3He nuclei (MARATHON)

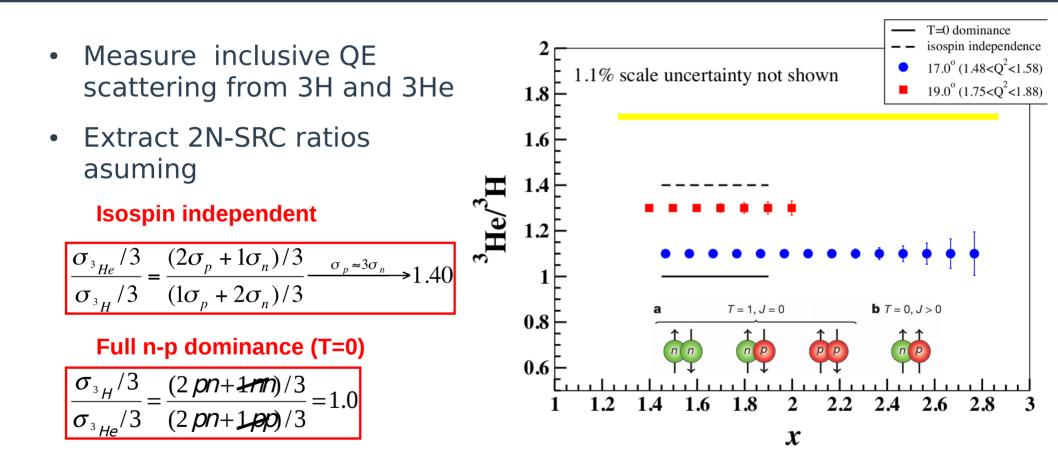

spokespersons: G. Petatos, R. Holt R. Ransome, J. Gomez

- Measure DIS from 3H, 3He and 2H
- Construct EMC cross-section ratios

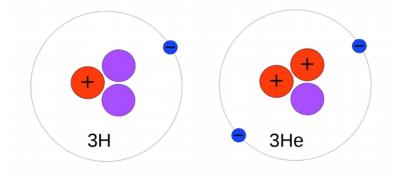

$$R(^{3}\mathrm{H}) = \frac{F_{2}^{^{3}\mathrm{H}}}{F_{2}^{^{p}} + 2F_{2}^{^{n}}} R(^{3}\mathrm{He}) = \frac{F_{2}^{^{3}\mathrm{He}}}{2F_{2}^{^{p}} + F_{2}^{^{n}}}$$

- Extract
 - F2n/F2p and d/u ratios
- Mirror symmetry makes ratios independent of nuclear effects

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}} \qquad \frac{F_2^n}{F_2^p} = \frac{1 + 4(d/u)}{4 + (d/u)}$$



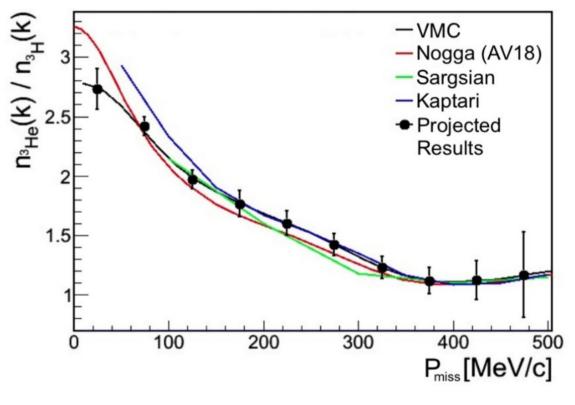
Precise extraction of F2n/F2p, d/u ratio independent of nuclear effects

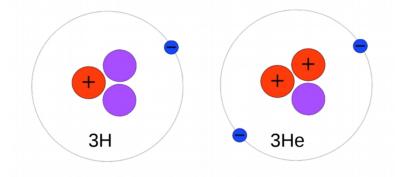


Reaction	Cmpare 3He vs 3H	Access	Experiment
DIS e scattering	n+2H vs p+2H	F2p/F2n and d/u	MARATHON
QE e scattering	2(pn)+(nn) vs 2(pn)+(pp)	Isospin structure of 2N-SRC	SRC @ x>1

Isospin dependance of 2N-SRC (E12-11-112) spokespersons: P. Solvignon, J. Arrington, D. Day, D. Higinbotham

Precision measurement of the isospin dependance in the 2N-SRC region (x>1)


Reaction	Cmpare 3He vs 3H	Access	Experiment
DIS e scattering	n+2H vs p+2H	F2p/F2n and d/u	MARATHON
QEe	2(pn)+(nn) vs 2(pn)+(pp)	Isospin structure of 2N-SRC	SRC @ x>1
scattering	(p+2n) vs (2p+n)	n(k) of protons	(e,e'p)


Proton and Neutron Momentum Distributions in 3H and 3He (E12-13-012)

spokespersons: O. Hen, L. Weinstein, S. Gilad, W.Boeglin

- Measure the quasi elastic (e,e'p) reaction on 3H and 3He
 - First measurement of 3H(e,e`p)
 - First measurement of 3He(e,e`p) with minimized effects from FSI
- Measure cross-section sensitive to ground state momentum distributions
- Will show kinetic energy of minority (p in 3H_ > kinetic energy of majority (p in 3He)

First high precision model independent extraction of nuclear momentum distribution ratio

Reaction	Cmpare 3He vs 3H	Access	Experiment
DIS e scattering	n+2H vs p+2H	F2p/F2n and d/u	MARATHON
QE e scattering	2(pn)+(nn) vs 2(pn)+(pp)	Isospin structure of 2N-SRC	SRC @ x>1
	(p+2n) vs (2p+n)	n(k) of protons and neutrons	(e,e'p)
Elastic e scattering	2(pn)+(nn) vs 2(pn)+(pp)	Difference in charge radii Form factors	Elastic

Charge Radii of 3H and 3He (E12-14-009)

spokespersons: J. Arringtone, L. Myers, D. Higinbotham

- Measure elastic scattering cross-section ratio of 3H to 3He
 - Extract the relative charge radius
- One time opportunity for 3H at JLab

•	< <i>r²_{rms}</i> > _{3H} (fm)	< <i>r²_{rms}</i> > _{3He} (fm)	ΔR _{rms} (fm)	
GFMC	1.77(1)	1.97(1)	0.20 (1)	Precise (~1%) theoretical
χEFT	1.756(6)	1.962(4)	0.21 (7)	calculations
SACLAY	1.76(9)	1.96(3)	0.20 (10)	Large uncertainties and
BATES	1.68(3)	1.97(3)	0.30(3)	discrepancy in measurements
Atomic		1.959(4)		medsurements

Improve precision of ΔR_{rms} by factor of 3-5 over SACLAY to check existing theory and experimental results

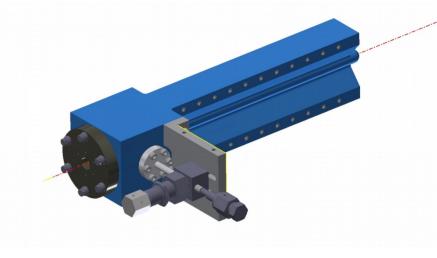
Experiment Lineup

- **E12-06-118** : Measurement of deep inelastic ratios from 3H/3He (MARTHON)
- E12-11-112 : isospin dependance of short range correlations in x>1 region
- E12-14-011 : Proton neutron momentum distributions in A=3 nuclei
- **E12-14-009** : 3H 3He charge radius difference from elastic scattering

Require the Jlab Tritium target

Tritium Gas Targets @ electron accelerators

Lab	Year	Quantity (kCi)	Thickness (g/cm²)	Current (μΑ)	Power loss (mW/mm)
Stanford	1963	25	0.8	0.5	3.2
MIT-Bates	1982	180	0.3	20	47.7
SAL	1985	3	0.02	30	4.8
JLab	(2016)	1	0.08	20	12.7

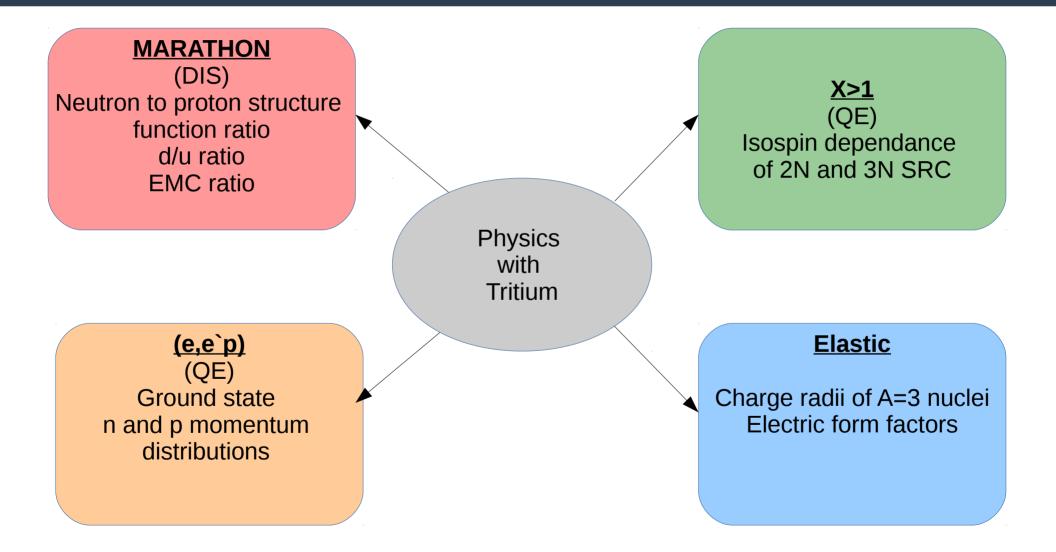

- Jlab radioactivity very low
- JLab luminosity ~ 2.0 x 10³⁶ tritons/cm²/s

Jlab Tritium Target

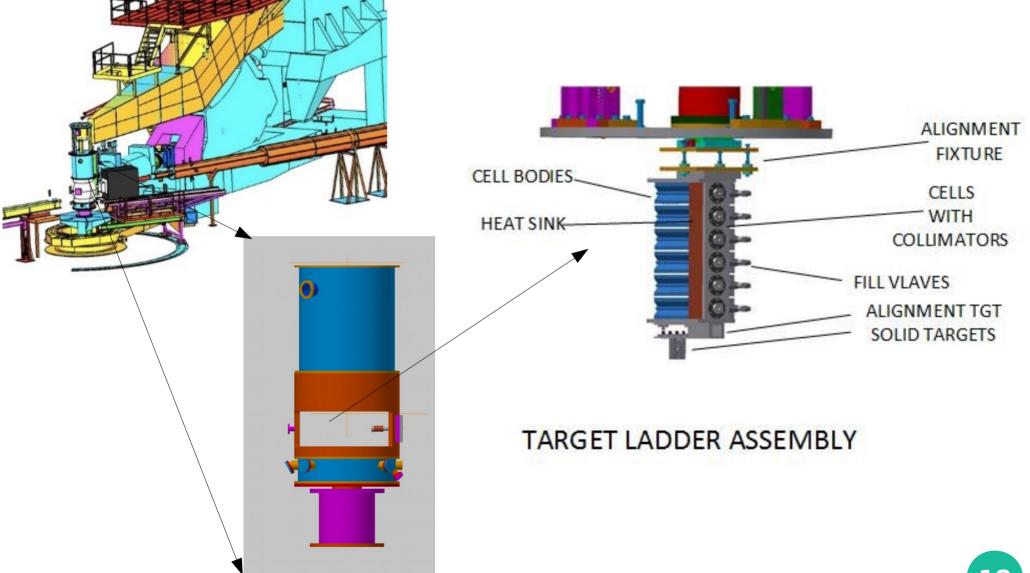
First tritium target @ JLab

Thin Al windows

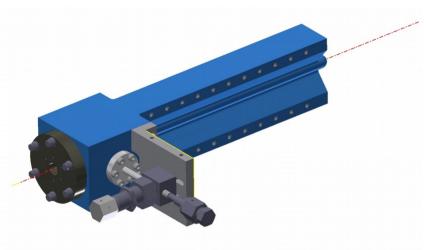
- Beam entrance: 0.010"
- Beam exit: 0.011"
- Side windows: 0.018"
- 25 cm long cell at ~200 psi T_2 gas


Tritium cell filled and sealed at Savannah River National Lab

- Purity: 99.9% T₂ gas, main contaminant is D₂
- 12.32 y half-life: after 1 year \sim 5% of ³H decayed to ³He
- Administrative current limit: 25 μ A

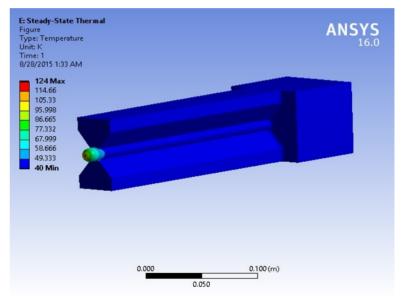

- Four experiments to study the nucleon structure using 3H and 3He mirror symmetry
 - Elastic to Deep inelastic kinematics
 - Nucleon structure functions, charge radii, momentum distributions and SRC
 - Excellent candidates to test theory calculations
- The collaboration is eagerly waiting to take data in the Spring of 2017!

Coming to Hall A in spring of 2017!


Backup Slides

Tritium Target Ladder

JLab Tritium Target


• Design

Main Body and Entrance Window made of ASTM B209 AL 7075-T651

090 Ci of T2 (0.1 g) ~ 200 psi @295 K L = 25 cm and ID = 12.7 mm Volume = 34 cc

• Beam Heating

 $I_{beam} = 20\mu A$ Max beam current $A_{raster} = 2x2mm^2$ min raster

3W in Entrance 3.3 W in Exit $T_{max} = 125K$ on exit $T_{max} = 120K$ on entrance