The Color Transparency Experiment

The Search for the Onset of Color Transparency at 12 GeV

Latif Kabir

Mississippi State University

January 22, 2018

STATE

Latif Kabir

The Color Transparency Experiment

January 22, 2018 1 / 23

Outline

- Color Transparency (CT)
- OT at High Energies
- O CT for Intermediate Energies
- Previous Measurements
- Section 2018 Experimental Setup and Requirements
- 6 LH₂ Data
- Coincidence Time
- Summary and Current Status

3

イロト イポト イヨト イヨト

Color Transparency (CT)

- The final/initial state interaction of hadrons with the nuclear medium must vanish for exclusive processes at high momentum transfer ⇒ QCD
- Color transparency is the reduction in interaction due to "squeezing and freezing" at high momentum transfer.
- At large Q^2 , a very special configuration of the hadron wave function is suitable, where all connected quarks are close together, forming a small size color neutral configuration called a Point Like Configuration (PLC).
- The hadron remains small while it propagates out of nucleus.

Signature for CT

- Nuclear transparency is the ration of cross-sections for exclusive processes from nuclei to nucleons.
- The signature of CT is an increase in the nuclear transparency.

$$T = \frac{\sigma_N}{A\sigma_0}$$

 σ_0 = free (nucleon) cross-section $\sigma_N = \sigma_0 A^{\alpha}$

$$\begin{aligned} \overline{T = A^{\alpha - 1}} \\ \frac{d\sigma}{dt} \propto e^{-bt} \\ b = \frac{1}{3}(R_h^2 + R_p^2) \\ \sigma_{\text{PLC}} \approx \sigma_{hN} \frac{b^2}{B^2 h} \end{aligned}$$

- CT onset searches:
 - 1) Baryon (proton) transparency
 - 2) Meson (pions and ρ^0 -meson)

Latif Kabir

Color Transparency at High Energies

- CT is a robust prediction of QCD.
- Color transparency is well established at high energies. The onset of CT is of primary interest.

CT for Intermediate Energies: Motivation

- The onset of CT has been observed in mesons, but is unconfirmed for baryons.
- CT is required to explain DIS data.
- Onset of CT would be a signature of the onset of QCD degrees of freedom in nuclei.
- The onset of CT is related to the onset of factorization, which is an important requirement for accessing GPDs in deep exclusive meson production.
- Understanding hadron propagation through nuclear matter.

・ロト ・ 同ト ・ ヨト ・ ヨト

Previous Measurements: CT experiment at JLab

Previous Measurements: BNL Result

- (p, 2p) experiment at BNL found an enhancement in the transparency.
- Decreases at higher momentum.
- Result inconsistent with CT only
- Can be explained by including additional mechanisms such as nuclear filtering or charm resonance.

Previous Measurements: CT onset search at JLab

 Hall-C experiment E01-107 (Pion electroproduction) and CLAS experiment E02-110 (ρ electroproduction) consistent with prediction of CT

Latif Kabir

The Color Transparency Experiment

Color Transparency Experiment at JLab in 12 GeV Era

CT Experimental Setup and Requirements

- Trigger: Coincidence mode.
- Spectrometers: SHMS for proton and HMS for electron.

Detectors:

Standard detector packages from SHMS and HMS for PID.

• Target:

10 cm LH₂ (Heep check) Al dummy (Background) 6% ¹²C (Production)

- Q² Values:
 - 8.01, 10.02, 12.43, 14.76 GeV²
- Angles: HMS: 24⁰ 45⁰ SHMS: 12⁰ 24⁰
- Momentum: p_{HMS} = 2.131 5.259 GeV/c p_{SHMS} = 5.122 - 8.753 GeV/c
- Beam current: 65 μA

< ロト < 同ト < ヨト < ヨト

LH₂ Data

• HMS *y*_{tar} and SHMS *y*_{tar}: Data vs SIMC

э.

LH₂ Data

_8 06 _0.04 _0.02

• HMS y'_{tar} and SHMS y'_{tar} : Data vs SIMC

Latif Kabir

The Color Transparency Experiment

0.02 0.04 0.06

0

-0.06 -0.04 -0.02

LH₂ Data

• Missing momentum and cointime

ъ

Coincidence Time

• Coincidence time \rightarrow The relative time when electron and proton scatter off the target.

$$t_{\rm coin} = t_{\rm electron}^{\rm tar} - t_{\rm proton}^{\rm tar}$$
(1)

t^{tar}_{electron} and t^{tar}_{proton} can be projected back from the t_{trigger-1} and t_{trigger-4} by correcting for over estimated time due to path length and other contributions.

$$t_{\text{proton}}^{\text{tar}} = (t_{\text{trigger}-1} - \Delta t^{P})$$
(2)

$$t_{
m electron}^{
m tar} = (t_{
m trigger-4} - \Delta t^{H})$$
 (3)

Corrected Coin Time
$$t_{\text{corrected}}^{\text{coin}} = (t_{\text{trigger}-1} - \Delta t^{P}) - (t_{\text{trigger}-4} - \Delta t^{H})$$
 (4)

$$\Delta t^{H(P)} = \Delta t_{(1)}^{H(P)} + \Delta t_{(2)}^{H(P)} + \Delta t_{(3)}^{H(P)}$$
(5)

-

イロト イポト イヨト イヨト

Coincidence Time: Contributions to the correction term

● The TOF correction if the particle would arrive at the focal plane following the central path. → leading order correction

$$\Delta t_{(1)}^{H} = rac{L_{ ext{central}}^{H}}{V_{e}}$$

-

・ロト ・ 同ト ・ ヨト ・ ヨト

(6)

Coincidence Time: Contributions to the correction term

 The particle not necessarily follow central path → time taken to travel this additional path (difference between track length and central path)

$$\Delta t_{(2)}^{H} = \frac{\Delta L_{\text{central}}^{H}}{V_{e}}$$

Latif Kabir

イロト イポト イヨト イヨト

(7)

Coincidence Time: Contributions to the correction term

● The trigger is initiated by the hodoscope planes → The time difference between central time (hodo start time) and focal plane time.

$$\Delta t^{H}_{(3)} = (\langle t^{H}_{\text{hodostart}} \rangle - t^{H}_{l\rho}) \tag{8}$$

• Signal propagation time through the hodoscope, wires and other effects $\rightarrow \delta_{offset}$

-

Coincidence Time

SHMS Coin Time Correction
$$\Delta t^{P} = \frac{L_{central}^{P}}{V_{\theta}} + \frac{\Delta L^{P}}{V_{\theta}} + (< t_{hodostart}^{P} > -t_{fp}^{P})$$
 (9)

HMS Coin Time Correction
$$\Delta t^{H} = \frac{L_{\text{central}}^{H}}{v_{\rho}} + \frac{\Delta L^{H}}{v_{\rho}} + (\langle t_{\text{hodostart}}^{H} \rangle - t_{\rho}^{H})$$
 (10)

Coin Time
$$t_{\text{corrected}}^{\text{coin}} = (t_{\text{trigger}-1} - \Delta t^{\mathcal{P}}) - (t_{\text{trigger}-4} - \Delta t^{\mathcal{H}}) - \delta_{\text{offset}}$$
 (11)

$$\beta = \frac{p}{\sqrt{p^2 + m^2}} \tag{12}$$

$$L_{\text{central}}^P = 18.1 \text{ m} \text{ and } L_{\text{central}}^H = 22 \text{ m}$$
 (13)

$$\Delta L^{H} = 12.462 \times x'_{hs\ fp} + 0.1138 \times x'_{hs\ fp} x_{hs\ fp} - 0.0154 \times x_{hs\ fp} - 72.292 \times x'_{hs\ fp}^{2} - 0.0000544 \times x_{hs\ fp}^{2} - 116.52 \times y'_{hs\ fp}^{2}$$
(14)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Coincidence Time

Coincidence Time

Coincidence Time

Coincidence Time

Coincidence Time

Summary and Current Status

- The experiment aims to search for the onset of CT for protons and help understand hadron propagation through nuclear matter.
- The proton momentum range covered in the experiment overlaps with the region where the enhancement was observed at BNL ⇒ Will help verify the origins of the enhancement.
- The experiment has collected the full planned statistics on the LH₂ target at 6.4 GeV.
- The preliminary analysis shows that data to be of good quality.
- The data taking will resume as soon as production (6% ¹²C) target is restored.