E12-10-002: F₂ Structure Functions at Large x Abel Sun

Outline

- > Physics motivation
- ≻ Run plan
 - Running conditions
 - SHMS kinematics
 - HMS kinematics
 - Run time estimation
 - Backgrounds

E12-10-002 Schedule

75	12/12/17	Tuesday
76	12/13/17	Wednesday
124	01/30/18	Tuesday
125	01/31/18	Wednesday
126	02/01/18	Thursday
127	02/02/18	Friday
128	02/03/18	Saturday
129	02/04/18	Sunday
130	02/05/18	Monday
131	02/06/18	Tuesday
132	02/07/18	Wednesday
133	02/08/18	Thursday
134	02/09/18	Friday
135	02/10/18	Saturday
136	02/11/18	Sunday
137	02/12/18	Monday
138	02/13/18	Tuesday
139	02/14/18	Wednesday
140	02/15/18	Thursday
141	02/16/18	Friday
142	02/17/18	Saturday
143	02/18/18	Sunday
144	02/19/18	Monday
145	02/20/18	Tuesday
146	02/21/18	Wednesday
147	02/22/18	Thursday
148	02/23/18	Friday

SHMS Comm	./E12-10-002
SHMS Comm	./E12-10-002
E12-10-002/E12-10-008	10.6/65/-/250

E12-10-002 2-day run on Dec.12, 13 at 6.4 GeV for R measurement

E12-10-002/008 starts on Jan.30,2017 and runs for 25 days

Constrain PDFs at Large x

> Typical PDFs extraction still lacking in the required precision at low x and large x

Why It's Important to Know PDFs at Large x?

Relevant for studies of the non-perturbative dynamics of nucleons: d/u ratio at x=1 can give hints of how quarks are confined

> Poor knowledge of PDFs at large x propagates to low x

- Perturbative QCD evolution moves strength from large x, low Q² to low x, high Q²
- The x-dependence of PDFs is parametrized at low Q^2 where most of their strength is at large x

$$\boldsymbol{x} = \frac{M}{\sqrt{s}} e^{\boldsymbol{y}}$$

F₂ Structure Functions at Large x

Experiments:

- -> Hall C E12-10-002 (2017): accesses F₂^p and F₂^d via IS off proton and deuteron
- DIS: constrain nucleon's PDFs within CTEQ-JLab framework

F₂ Structure Functions at Large x

Experiments:

- -> Hall C E12-10-002 (2017): accesses F₂^P and F₂^d via IS off proton and deuteron
- DIS: constrain nucleon's PDFs within CTEQ-JLab framework
- Resonance region: study confinement and transition from confinement to asymptotic freedom, quark-hadron duality
- Resonance region: possibly include averaged resonance region data in the CJ fits

How do we practically run E12-10-002?

E12-10-002 Running Conditions

> Unpolarized Beam

energy: 10.6 and 6.4 for R measurement

current: 30 μ A or larger

➤ Targets

10 cm hydrogen - production

10 cm Deuterium - production

Al foils - background measurement

> SHMS is used to take most of the production data

> HMS is used to measure highest Q² point and for cross-calibration with SHMS

E12-10-002 Run Plan

> SHMS is used to take most of the production data

cover a wide kinematic range because of large momentum acceptance

E12-10-002 Run Plan

> HMS is used to measure highest Q² point and for cross-calibration with SHMS

During the SHMS production running at 25, 29, 33, 39 deg the HMS will take production data at 59 deg

Production Rate, SHMS

Production Rates on H/D target, SHMS

 \succ Rate plots

Production Time Estimation, SHMS

> Input parameters:

Target length: 10 cm

Beam current: 30 µA

W² bin size:

- 0.1 GeV² in resonance region
- 0.2 GeV² in DIS
- \succ Shape due to

detector acceptance effect

 Shown are times corresponding to different statistical precisions

H Production Time Estimation, SHMS

 \succ Time estimations for all kinematics

D Production Time Estimation, SHMS

 \succ Time estimations for all kinematics

Production Time Estimation

> 1.5% statistics

Angle(deg)	Time(h) H target	Time(h) D target	1.5% stat. for W ² >?
21	5	3	1.6
25	15	8	1.9
29	26	14	2.4
33	50	27	2.7
39	100	54	2.9

statistical precision will be less than 1.5 % below the W^2 cuts

- \succ Total time for H running: 196 h
- > Total time for D running: 106 h
- > Dummy run time: 15% of D target

Production Rates on H target, HMS

> Rate at large angle is low

> HMS will stay at 59 deg after taking data at 21 deg

Pion Contamination

> Maximum π/e ratio estimation: SHMS: $\pi/e<250$ HMS: $\pi/e < 150$

> SHMS simulation

For momenta between 1.4 and 4 GeV, $\pi/e < 250$ • Cherenkov rejection: HGC - 25:1 & LGC (Ar) - 25:1 π contamination 0.3%Calorimeter rejection: 150-200 (99.5 efficient) For momenta > 4 GeV, $\pi/e < 2.5$ • Cherenkov rejection: LGC (Ar) - 25:1

Calorimeter rejection: 200 (99.5 efficient)

 π contamination 0.1%

Charge Symmetric Background

Secondary electrons from π⁰->γ+e⁻+e⁺ will pass PID cuts and be detected e⁻total=e⁻DIS+e⁻bg

≻ e+/e- ratio

Target length: 10 cm

 e^+ cross section: P. Bosted's code based on Wiser's fit to π^+ and π^- production on H

We will measure charge symmetric background with the same spectrometer that detects the scattered electrons.

SHMS Priority list

Polarity	Angle	Momentum(GeV/c)
neg	21	5.1, 4.0, 3.3, 2.7
neg	39	2.5, 2.0, 1.6, 1.3
neg	33	3.2, 2.6, 2.1, 1.7
pos	21	3.3, 2.7
pos	39	2.5, 2.0, 1.6, 1.3
pos	33	3.2, 2.6, 2.1, 1.7
neg	29	3.7, 3.0, 2.4, 2.0
neg	25	4.4, 3.5, 3.0, 2.5

> eliminate some momentum settings for positron running

Going from Cross sections to F₂: Determination of R

 \succ Cannot claim a precise extraction of F_2 from cross section without a precise knowledge of R

Measurements at different beam energies than 10.6 GeV to extract R, especially in the region of large x and large Q²

Determination of R

\in vs x : for 7.0 $\leq Q^2 \leq 9.0$

Thank you.

Groups involved in preparation for running:

≻ E12-10-002

Students: Abel Sun (CMU), Deb Biswas (HU)

Spokespeople: Eric Christy, Thia Keppel, Simona Malace (contact), Ioana Niculescu

≻ E12-10-008

Students: Kayla Craycraft (UT), Abishek Karki (MSU)

Spokespeople: John Arrington, Aji Daniel, Dave Gaskell (contact), Nadia Fomin