

The Qweak Experiment

A Search for New PV Physics at the TeV Scale via High Precision Measurement of the Proton's Weak Charge

Jie Pan University of Manitoba

(for the Qweak Collaboration)

Overview

• Qweak determines Q_W^p and $\sin^2\theta_W$ to high precision via measuring parity-violation asymmetry (~300 ppb) in e-p elastic scattering at low Q² (0.0248 GeV²)

Deviations from Standard Model predictions would be sensitive to PV semi-leptonic physics beyond the SM

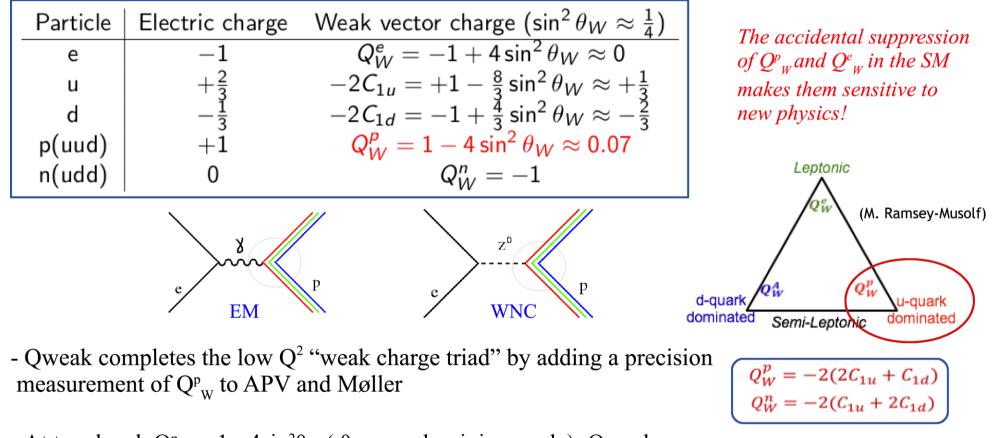
- Qweak Ran in Hall C with two run periods during 2010 2012
 - Commissioning data (~4% of total dataset) was published in PRL 111, 141803 (2013)
 - Data were unblinded last March
 - Results out of full analysis were released last September

This will lead to a publication soon!

Search for Physics beyond the Standard Model

• <u>The Standard Model (SM)</u>

- A successful low energy effective theory of more fundamental physics, yet incomplete

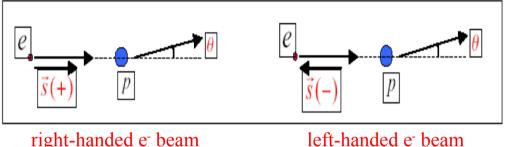

- <u>Two complimentary approaches</u> in testing SM and searching for new physics
 - Direct searches for new particles at high energy (e.g. LHC)
 - Indirect searches to test the SM via precision measurements at low energy (e.g. PVES, including Qweak)

The Qweak Experiment

- Elastic scattering of electron beam from proton target $(\vec{e}+p \rightarrow \vec{e}+p)$
- Measure significantly suppressed SM observable $(Q_w(p))$ to high precision
- Sensitive search for new physics at TeV mass scale

Proton's Weak Charge in the Standard Model

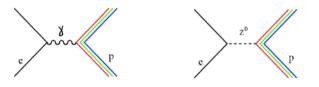
Weak charges - neutral current analog to the electric charges



- At tree level, $Q_W^p = 1 - 4\sin^2\theta_W (\theta_W - \text{weak mixing angle})$; Qweak can lead to a high precision test of $\sin^2\theta_W$ at low energy

JLab Hall-C User Meeting

Parity Violating Electron Scattering


- Scatter electrons of opposite helicity from an unpolarized target

right-handed e⁻ beam

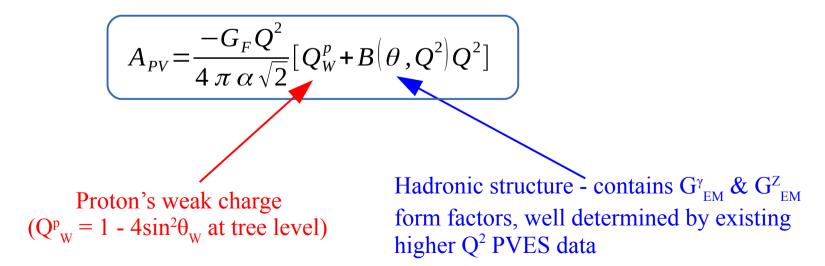
- The scattering process: EM + WNC

$$\sigma \propto |\mathcal{M}^{EM}|^2 + 2 \mathcal{M}^{EM} \mathcal{M}_{PV}^{NC} + |\mathcal{M}_{PV}^{NC}|^2$$

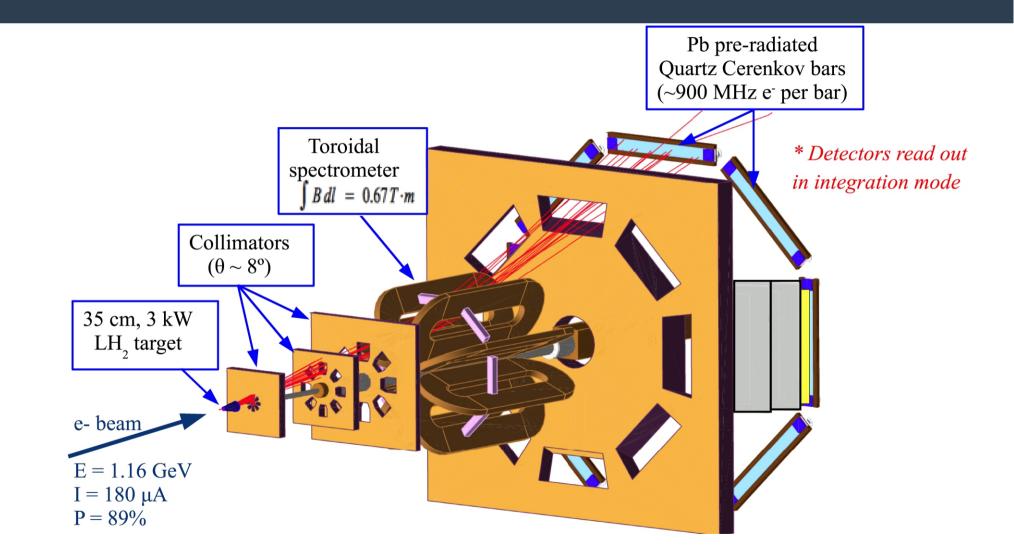
Electromagnetic (PC) + Neutral-weak (PV)

- The interference term gives rise to a parity-violating asymmetry

$$A_{PV}(p) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto rac{\mathcal{M}_{PV}^{NC}}{\mathcal{M}^{EM}} \propto rac{Q^2}{M_Z^2} \quad ext{when } Q^2 \ll M_Z^2 \quad ext{~~-200 ppb}$$

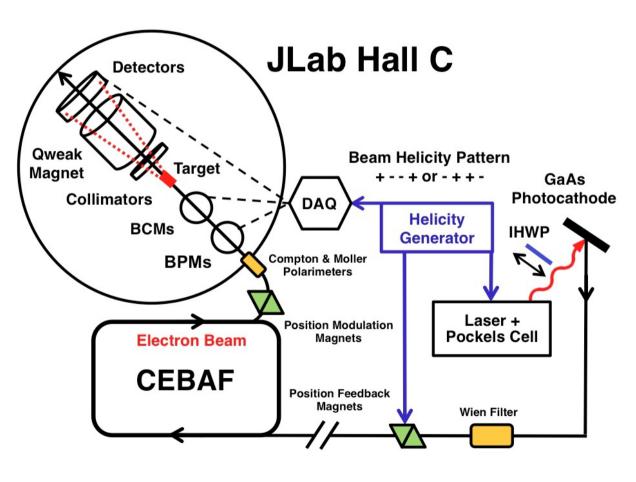

Extraction of the Proton's Weak Charge

The PV asymmetry in e-p elastic scattering:


$$A^{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{\pi \alpha \sqrt{2}}\right] \frac{\varepsilon G_E^{p\gamma} G_E^{pZ} + \tau G_M^{p\gamma} G_M^{pZ} - \frac{1}{2}(1 - 4\sin^2\theta_W)\varepsilon' G_M^{p\gamma} \tilde{G}_A^p}{\varepsilon (G_E^{p\gamma})^2 + \tau (G_M^{p\gamma})^2}$$

At Qweak kinematics $(Q^2 \rightarrow 0 \text{ and } \theta \rightarrow 0)$:

The Q_{W}^{p} term dominates the total asymmetry (~2/3)


Qweak Apparatus

[T. Allison et al. Nuclear Instruments and Methods in Physics Research A 781 (2015) 105-133]

JLab Hall-C User Meeting

Multiple Helicity Reversals

Three independent techniques for helicity reversal of e⁻ beam:

Rapid pseudo-random reversal (960/sec): Rejects LH_2 target "boiling noise".

IHWP at ~8 hour intervals:

Mechanical action unable to induce electrical or magnetic induced false asymmetries.

Wien filter at monthly intervals:

Rejection of beam size (or focus) modulation induced false asymmetry and suppression of slow drifts in apparatus linearity.

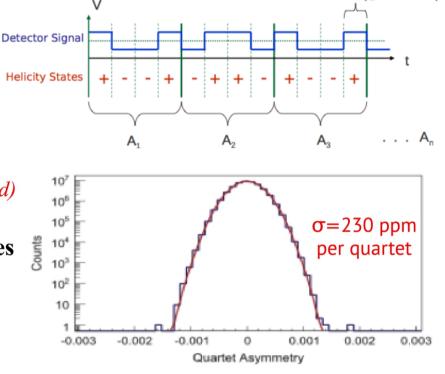
Also as check construct NULL:

"out-of-phase" quantity from the two slow reversal techniques to bound unaccounted for false asymmetries.

From Raw Asymmetry to Physics Asymmetry

STEP 1: Measure A

- Integrate detector signal (S) over each helicity state and normalized to beam charge (Q)


$$\mathbf{Y} = \mathbf{S} / \mathbf{Q}$$

- Calculate asymmetries for each quartet pattern

$$A_{raw} = \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-}} \qquad (Blinding analysis applied)$$

STEP 2: Correct A_{raw} for measured false asymmetries

$$A_{\rm msr} = A_{\rm raw} + A_T + A_L + A_{\rm BCM} + A_{\rm BB} + A_{\rm beam} + A_{\rm bias}$$

STEP 3: Correct A_{msr} for polarization, backgrounds, acceptance, etc

$$A_{ep} = R_{tot} \frac{A_{msr}/P - \sum_{i=1,3,4} f_i A_i}{1 - \sum_{i=1}^4 f_i} - Largest correction is from Al target windows - A_{bias} contribute large error to A_{ep}$$
where $R_{tot} = R_{RC}R_{Det}R_{Acc}R_{Q^2}$.

J.Pan (University of Manitoba): Qweak

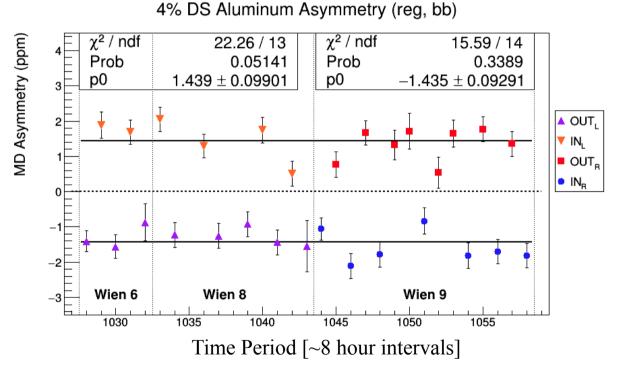
JLab Hall-C User Meeting

9

1ms(@1KHz sampling)

Aluminum Target Window Backgrounds

Dilution fraction (f_{Al})

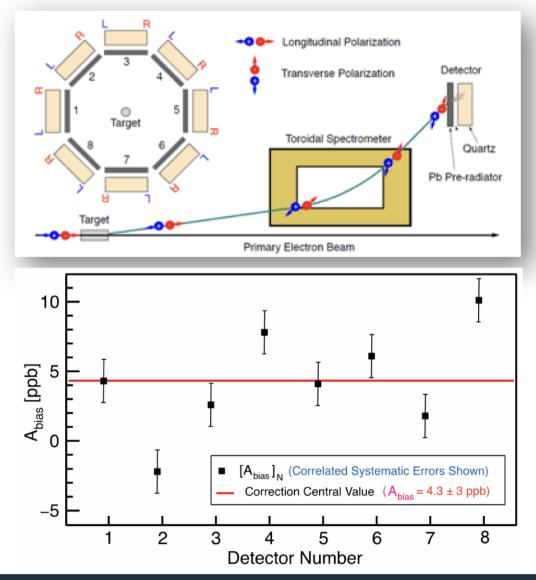

- Directly measured with empty target

Asymmetry (A_{Al})

- Directly measured from thick Al "dummy" target

(Corrections for effects of H_2 made using simulation and data driven models of elastic and quasi-elastic scattering)

IHWP – IN or OUT Wien Filter – L or R Sign correction for slow reversals and further systematic corrections are needed to extract physics asymmetry for Al

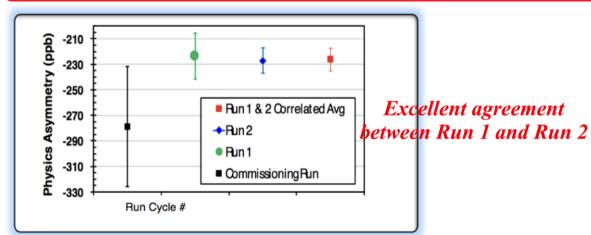


 $f_{AI} \sim 2.5\%$ $A_{AI} = 1515 \pm 77 \text{ ppb}$ Resulting in a -38 ppb correction to the hydrogen asymmetry (20%)

J.Pan (University of Manitoba): Qweak

JLab Hall-C User Meeting

Detector Optical Imperfections: A_{bias} Systematic


- Small residual non-cancellation of L/R transverse scattering from Pb pre-radiators in front of quartz bars
- The effect is dominated by optical & mechanical imperfection of the as-built apparatus, not details of the Pb analyzing power
- GEANT simulations and models tied to our asymmetry and light yield data were used to determine A_{bias}

Contributions to A	bias Uncertainty
Optical Model:	± 2.7 ppb
Simulation cross checks: Glue Joints Effects:	± 2.3 ppb ± 1.5 ppb
Effective Model:	±1.5 ppb
A _{bias} Correction	4.3 ± 3.0 ppb

J.Pan (University of Manitoba): Qweak

Final A_{ep} & Uncertainty Contributions

Period	Asymmetry (ppb)	Stat. Unc. (ppb)	Syst. Unc. (ppb)	Tot. Uncertainty (ppb)
Run 1	-223.5	15.0	10.1	18.0
Run 2	-227.2	8.3	5.6	10.0
Run 1 and 2 combined				
with correlations	-226.5	7.3	5.8	9.3

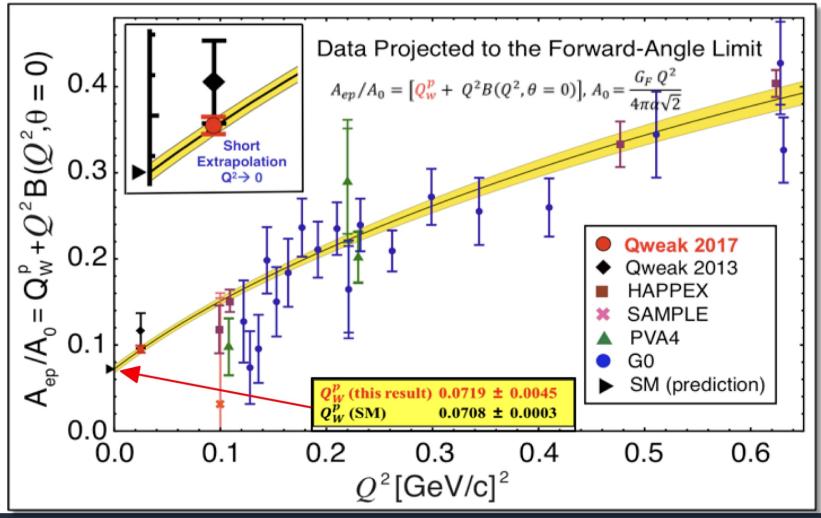
Quantity	Run 1	Run 1	Run 2	Run 2
	error (ppb)	fractional	error (ppb)	fractional
BCM Normalization: A_{BCM}	5.1	25%	2.3	17%
Beamline Background: A_{BB}	5.1	25%	1.2	5%
Beam Asymmetries: A _{beam}	4.7	22%	1.2	5%
Rescattering bias: A_{bias}	3.4	11%	3.4	37%
Beam Polarization: P	2.2	5%	1.2	4%
Target windows: A_{b1}	1.9	4%	1.9	12%
Kinematics: R_{Q^2}	1.2	2%	1.3	5%
Total of others	2.5	6%	2.2	15%
Combined in quadrature	10.1		5.6	

- Run 1 & Run 2 are both statistics limited

Systematic contributions for Run 1 & Run 2
are different due to different run conditions; Run 2 shows much better systematics

- All significant systematic effects are accounted for and corrected

Experiment NULL Asymmetry (slow helicity reversals out-of-phase)


Weighted Avg = -1.75 ± 6.51 ppb

J.Pan (University of Manitoba): Qweak

1 /23/ 2018

Q^p_w Determination

Method - global fit of PVES data extrapolated to $Q^2 = 0$ [R.D. Young et al. PRL 99, 122003]

J.Pan (University of Manitoba): Qweak

JLab Hall-C User Meeting

Results Determined from Qweak A

Provide data-driven	Quantity	Value	Error	Method
constraint on B(Q ²) term	$ \begin{array}{c} $	0.0719 0.2382 0.19 -0.18 -0.67	0.0045 0.0011 0.11 0.15 0.33	$\left\{ \begin{matrix} \text{Qweak A}_{ep} \\ + \\ \text{PVES data base} \end{matrix} \right\}$

- Use world PVES data up to $Q^2 = 0.63 (GeV/c)^2$
- Use five free parameters: C_{1u} , C_{1d} , ρ_s , $\mu_s \& G_A^{Z(T=1)}$
 - EM form factors from [Arrington & Sick, PRC 76, 035201 (2007)]
 - G_{E}^{S} , G_{M}^{S} and $G_{A}^{Z(T=1)}$ use a dipole form: $(1-Q^{2}/\lambda^{2})^{-2}$, with $\lambda = 1$ GeV/c
 - $G_{A}^{Z(T=0)}$ is small, constrained by theory [Zhu, et al., PRD 62, 033008 (2000)]
- All e-p data points were corrected for E & Q^2 dependence of γZ -box contributions
 - $\Box_{\gamma Z}^{v}$: Hall et al., PLB753, 221 (2016); $\Box_{\gamma Z}(Q)$: Gorchtein et al., PRC84, 015502 (2011);
 - $\Box_{\gamma Z}^{A}$: Blunden et al., PRL107, 081801 (2011); $\Delta \Box_{\gamma Z}^{A}$: Blunden et al., PRL109, 262301 (2012).
 - The $\Box_{\gamma Z}$ RC for Qweak is 6.4% \pm 0.6%.

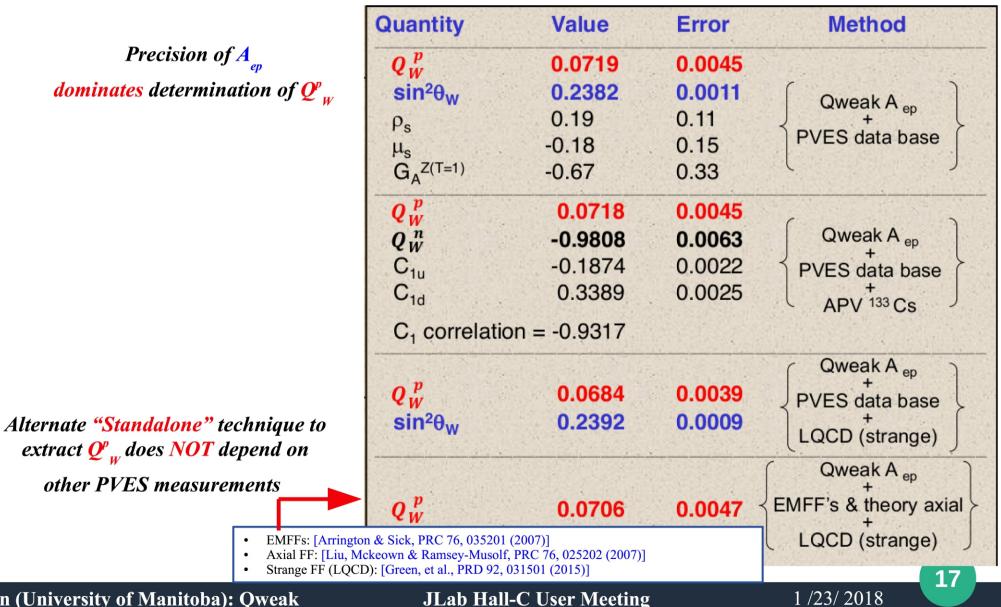
Results Determined from Qweak A_{ep}

	Quantity	Value	Error	Method
Including ¹³³ Cs APV result allows extraction of neutron weak charge & separation of C_{1u} , C_{1d} quark coupling constants	$ \begin{array}{c} \boldsymbol{Q}_{W}^{p} \\ \boldsymbol{sin}^{2} \boldsymbol{\theta}_{W} \\ \rho_{s} \\ \mu_{s} \\ \boldsymbol{G}_{A}^{Z(T=1)} \end{array} $	0.0719 0.2382 0.19 -0.18 -0.67	0.0045 0.0011 0.11 0.15 0.33	$\left\{\begin{matrix} \text{Qweak A}_{ep} \\ + \\ \text{PVES data base} \end{matrix}\right\}$
$Q_{w}(\mathbf{p}) = -2(2C_{1u} + C_{1d})$ $Q_{w}(^{133}Cs) = -2(188C_{1u} + 211C_{1d})$	$ \begin{array}{c} Q_{W}^{p} \\ Q_{W}^{n} \\ C_{1u} \\ C_{1d} \\ C_{1} \text{ correlation} \end{array} $	0.0718 -0.9808 -0.1874 0.3389 on = -0.9317	0.0045 0.0063 0.0022 0.0025	$\left\{ \begin{matrix} \text{Qweak A}_{ep} \\ + \\ \text{PVES data base} \\ + \\ \text{APV}^{133} \text{Cs} \end{matrix} \right\}$

 $Q_w(^{133}Cs) = -72.62 \pm 0.43$ [PDG2016 EW Review]

- ¹³³Cs experiment: [Wood, et al., Science **275**, 1759 (1997)]
- ¹³³Cs atomic corrections: [Ginges & Flambaum, Phys. Rep. **397**, 63 (2004)]

Results Determined from Qweak A_{ep}

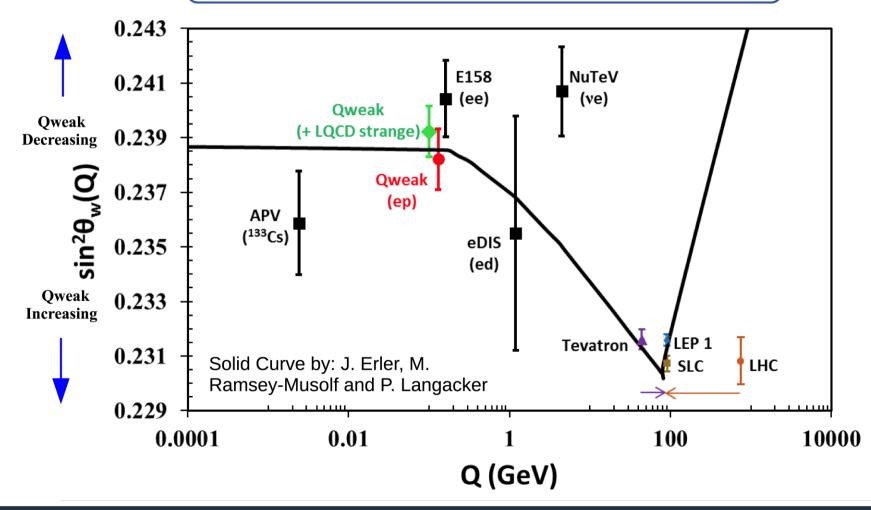

	Quantity	Value	Error	Method
	$ \begin{array}{c} Q_{W}^{p} \\ sin^{2} \Theta_{W} \\ \rho_{s} \\ \mu_{s} \\ G_{A}^{Z(T=1)} \end{array} $	0.0719 0.2382 0.19 -0.18 -0.67	0.0045 0.0011 0.11 0.15 0.33	Qweak A _{ep} + PVES data base
Addition of Lattice QCD constraint on strange quarks further improves precision of Q^{p}_{W} & Sin ² θ_{W}	$ \begin{array}{c} Q_{W}^{p} \\ Q_{W}^{n} \\ C_{1u} \\ C_{1d} \\ C_{1} \text{ correlation} \end{array} $	0.0718 -0.9808 -0.1874 0.3389 on = -0.9317	0.0045 0.0063 0.0022 0.0025	$\left\{ \begin{matrix} \text{Qweak A}_{ep} \\ + \\ \text{PVES data base} \\ + \\ \text{APV}^{133} \text{Cs} \end{matrix} \right\}$
	Q_W^p $\sin^2\theta_W$	0.0684 0.2392	0.0039 0.0009	Qweak A ep + PVES data base + LQCD (strange)

• High-precision calculation of strange form factors using LQCD: [Green, et al., PRD 92, 031501 (2015)]

JLab Hall-C User Meeting

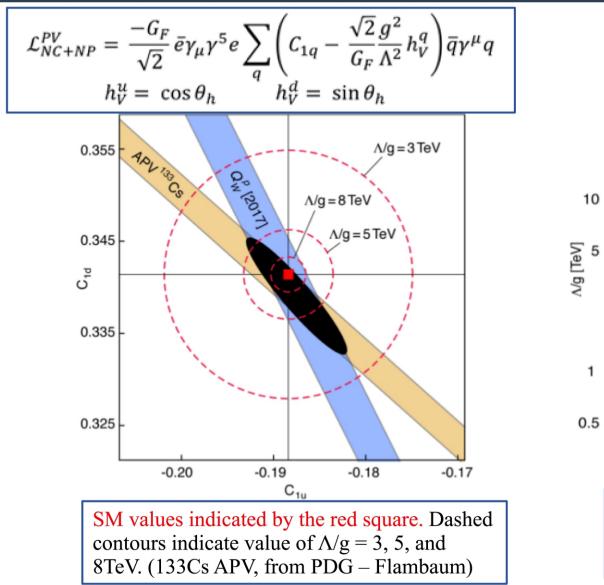
Results Determined from Qweak A ep

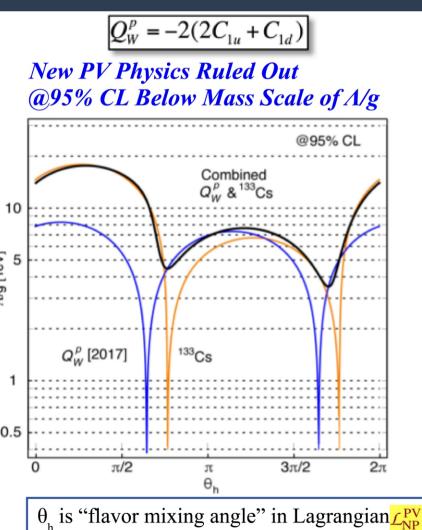
Precision of A dominates determination of Q^{P}_{W}



J.Pan (University of Manitoba): Qweak

other PVES measurements


Running of $\sin^2\theta_{W}$


$$\left(Q_{W}^{p} = \left[\rho_{NC} + \Delta_{e}\right]\left[1 - 4\sin^{2}\hat{\theta}_{W}(0) + \Delta'_{e}\right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}\right)$$

J.Pan (University of Manitoba): Qweak

Sensitivity to New Physics

for new physics at value Λ /g mapped around boundary of experimental limits.

J.Pan (University of Manitoba): Qweak

JLab Hall-C User Meeting

1 /23/ 2018

Leptoquarks

Impact of Q^p_w on leptoquarks:

[Erler, Kurylov, Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003)]

Included HERA, LEP and APV data in analysis [Aaron, et al. Phys. Lett. B 705, 52 (2011)]

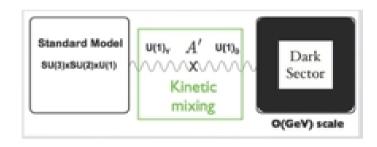
Leptoquarks

New Qweak data has sensitivity to distinguish among LQ types @ 95% CL

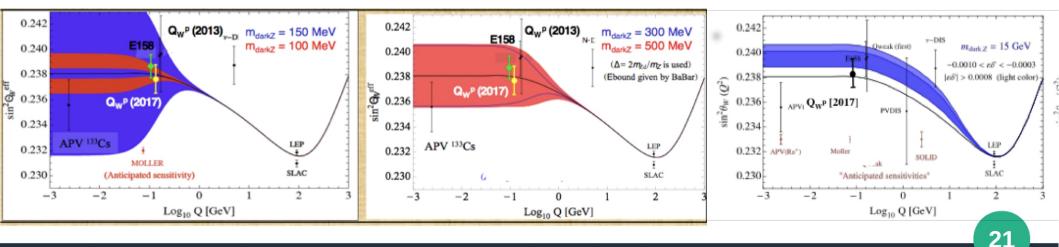
Scalar	r Leptoquarks		Vecto	or Leptoquark	(\$	_	
LQ	Consistency	$\Delta Q_W(p)/Q_W(p)$	LQ	Consistency	$\Delta Q_W(p)/Q_W(p)$	_	
S_1^L	0.57	9%	$U_{1\mu}^L$	0.26	-8%	_	
$S_1^{\hat{R}}$	0.01	-6%	$U_{1\mu}^{\hat{R}}$	0.56	6%	LQ1(ej) x2 LQ1(ej)+LQ1(vj) β=0.5	PDG 2017
<i>R</i>	0.44	-6%	$\tilde{U}_{1\mu}^{R}$	0.99	25%	LQ2(µj) x2 LQ2(µj)+LQ2(vj) β=0.5 LQ3(rb) x2	Leptoquarks
3	0.76	10%	$U_{3\mu}$	0.31	-4%	LQ3(vb) x2 LQ3(rt) x2 LQ3(vt) x2	Lepioquaiks
r_2^L	0.44	-13%		0.87	9%	Single LQ1 (λ =1) Single LQ2 (λ =1)	
2	0.89	15%	$V^L_{2\mu} V^R_{2\mu}$	0.11	-7%	0 1	2 3 4 TeV
$\tilde{\xi}_2^L$	0.13	-4%	$\tilde{V}_{2\mu}^{L}$	0.56	14%		

New Qweak data rule out leptoquark masses limit ~ 2.3 TeV for $g^2 = 4\pi\alpha$ (The current LHC limits at ~1 TeV)

J.Pan (University of Manitoba): Qweak


JLab Hall-C User Meeting

Implications for "Dark Parity Violation"


"Dark Photon" - possible portal for new force to communicate with SM?

"Dark parity violation" [Davoudiasl, Lee, Marciano, Phys. Rev. D**89**, 095006 (2014)] [Davoudiasl, Lee, Marciano, Phys. Rev. D**92**, 055005 (2015)]

- New source of low energy PV through mass mixing between Z_0 and Z_d
- Complementary to direct searches for heavy dark photons

1 /23/ 2018

New Qweak point rules out some of the allowed region

J.Pan (University of Manitoba): Qweak

JLab Hall-C User Meeting

Summary

• Qweak precisely measured Q^{p}_{w} , in good agreement with SM

 $A_{ep} = -226.5 \pm 7.3 \text{ (stat)} \pm 5.8 \text{ (syst) ppb}$ $Q_{W}^{-p} \text{ (this exp.)} = 0.0719 \pm 0.0045 \qquad [Q_{W}^{-p} \text{ (SM)} = 0.0708 \pm 0.0003]$

- Lead to a very sensitive measurement of $\sin^2\theta_W$ at low Q for BSM test ~ 0.46% in precision
- Mass reach for new neutral current semi-leptonic PV physics ruled out @ 95% CL:
 Λ/g < 7.4 TeV (<3.5 TeV for arbitrary flavor ratios)
 - Quark flavor dependent mass reach limit $\Lambda \sim 26$ TeV (assume $g^2 = 4\pi$)
- Will play a role in future analyses of bounds (or discoveries) of a variety of new physics
- Builds scientific and technical foundation for next generation of measurements

The Qweak Collaboration

101 collaborators26 grad students11 post docs27 institutions

Institutions:

1 University of Zagreb 2 College of William and Marv 3 A. I. Alikhanyan National Science Laboratory 4 Massachusetts Institute of Technology **5 Thomas Jefferson National Accelerator Facility** 6 Ohio University 7 Christopher Newport University 8 University of Manitoba. 9 University of Virginia **10 TRIUMF 11 Hampton University** 12 Mississippi State University 13 Virginia Polytechnic Institute & State Univ **14 Southern University at New Orleans 15 Idaho State University 16 Louisiana Tech University 17 University of Connecticut 18 University of Northern British Columbia 19 University of Winnipeg** 20 George Washington University **21** University of New Hampshire 22 Hendrix College, Conway 23 University of Adelaide 24 Syracuse University **25 Duquesne University**

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ K. Bartlett,² J. Beaufait,⁶ R.S. Beminiwattha,⁶ J. Benesch,⁶ F. Benmokhtar,⁷/₂ J. Birchall,⁸ R.D. Carlini,⁵/₂ G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk^{*},⁶ J.M. Finn^{*},² T. Forest,^{15,16}, C. Gal,⁹ D. Gaskell,⁶ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16,2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁰ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,² A.R. Lee,¹⁰ J.H. Lee,^{6,2} L. Lee,¹⁰ S. MacEwan,⁹ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁹ J. Mammei,¹⁵ J.W. Martin,¹⁰ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ H. Nuhait,¹⁶ Nuruzzaman,^{11,12} W.T.H van Oers,^{10,6} A.K. Opper,²⁰ S.A. Page,⁶ J. Pan,⁶ K.D. Paschke,⁶ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10,8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁶ N. Simicevic,¹⁶ G.R. Smith,⁶ P. Solvignon^{*},⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19,8} B. Waidyawansa,⁶ P. Wang,⁶ S.P. Wells,¹⁵ S.A. Wood,⁵ S. Yang,² R.D. Young,²⁰ P. Zang,²⁴ and S. Zhamkochyan ³

Thank you!