Offline Software & Processing

Matt Graham, SLAC HPS DAQ & Offline Readiness Review June 18, 2014

Things I will touch on...

- offline reconstruction
- throughput
- resource requirements
- offline data quality
- data handling and transport
- rapid data analysis

Offline software overview

- Raw data in evio format, well known here
- at reconstruction time, converted to Icio ("linear collider I/O")
 - common event model for LC community
 - c++ & *java* implementations, with python bindings and ROOT dictionaries available
- hps-java—the HPS reconstruction package
 - · depends heavily on Icsim, the SiD simulation & recon code
- DSTBuilder—slimmed down ROOT TTree for low(-ish) level analysis

HPS DAQ/Offline Readiness Review

Offline software path: evio to reconstructed lcio

- All of this exists; improvements planned but we are good-to-go for data taking
- There will likely be numerous reconstruction passes over the data as we improve calibrations, alignments, reconstruction code
 - all official recon passes will be based on tagged releases;
 - data will be reconstructed promptly after it's collected in order to check it's quality; hopefully within a day

Track finding and fitting

SLAC

Track finding inherited from linear collider simulation (Icsim "seed tracker")

- Seed-confirm-extend philosophy: fast
- Tightly coupled to track fitting

Fit track in two independent views (const. magnetic field)

- Circle fit in the "bend plane"
- Straight line fit in non-bend plane
- Both are fast non-iterative fit algorithms
- Simplified handling of multiple scattering

Generalized Broken Lines (GBL)

 Track refit with improved handling of multiple scattering

Future major developments

- Straight line track fit (for B=0 runs)
- Include hit time in track fit
- Move GBL to Java framework

Vertexing

- currently, use fast vertexing described by Billoir & Qian
 - works quite well...good enough for proposal
- future developments
 - use GBL tracks/errors
 - incorporate recoil tracks (3track vertexing)

ECal reconstruction

S. Fagan

- Implementation of clustering algorithms in <u>hps</u> java: Done
- Testing of cluster algorithms: Done
- Cluster positioning corrections: in progress

- Existing reconstruction modules being brought into line with conditions system
- Looking good to have the reconstruction fully in place on schedule

HPS DSTs: recon Icio to DST

- DSTs are ROOT TTrees...simple enough to quickly make plots with "Draw" (this figure proves it), but complete enough to do some sophisticated analysis
- Why did we decide to create this layer?
 - ROOT is nice; everyone knows it, lots of tools exist (RooFit, TMVA, etc)
- not a complete rehash of recon Icio file; not all of the information is in DST
 - makes them slim and quick to make
- DSTs are made for each run; each event is written out; roughly same size as raw data (evio)
- Whereas everything (raw, reco lcio, DSTs) will be available @ JLAB, only the DSTs will be copied to SLAC
- the DSTWriter is a good example on how to use the LCIO C++ API with ROOT; this will likely be used extensively in the future (user skims?)

HPS DAQ/Offline Readiness Review

Simulation production...a few more steps

- Two generators: MadGraph (tridents, A's etc) and EGS (beam-target interactions)
- events run through SLIC == GEANT4 front end; gives Icio file with energy deposits & position on active elements
- hps-java based readout and trigger simulation gives "almost-just-like-data" events (except in Icio format)
- path from there is as in data

Data & simulation production management

- data production: evio(raw hits)→lcio (clusters,tracks,vertices..etc)
 - automated scripts for submitting jobs to batch & (some) bookkeeping exist; exercised for test run
- simulation production: multi-step process
 - event generation (MadGraph), beam overlay (EGS), detector simulation (slic/GEANT4), readout simulation (hps-java), reconstruction (hps-java...just like data)
 - all of the above steps are well established; automation & monitoring scripts have been written (but still being refined as well)
- dstMaker & data quality are run as a part of this process
- all of the data & sim production will take place at JLAB; use "clashps" account
- all official production will be based on tagged releases
- Data Production Manager: overseer of data and simulation production
 - currently: Sho Uemura

Offline data quality checks & procedures

- Maurik talked about online monitoring; we also want to monitor run-byrun offline as well..for a few reasons:
 - document on the quality of the data
 - facilitate observation of long-term trends in the data
 - keep a record of data attributes for posterity and reference
- Here are some requirements for "data quality monitoring":
 - automatic, for every run (MC sample) and reconstruction pass
 - run during official reconstruction production; needs to be in hps-java
 - comprehensive
 - all systems & reco: SVT, ECAL, Trigger, Tracking, Vertexing
 - distributions (plots) & quantities (numbers)
 - easy to keep track of & access
 - for plots: root files with appropriate naming conventions; include in data catalog?
 - for numbers: dqm database indexed by run and reconstruction version
 - official dqm plots and numbers must be based on tagged reconstruction code only

DQM, continued

- the hps-java DQM framework exists for both making plots and writing to database
- can be run either at reconstruction time or after (on the reco Icio file)
- currently writing to a local database; will migrate to JLAB in the next ~ month
- need to write some scripts to standardize ways of looking at plots & quantities
- as mentioned, this will be run for every data run; we will have dedicated sub-system expert who will look at the information for every run and report at the daily run meetings

Offline computing requirements: Data storage

Standard assumptions: 1 week, 200 nA @ 2.2 GeV; trigger rate = 8.6 kHz

HPS DAQ/Offline Readiness Review

SLAC

# events/week	5.2 E 9	
reco time/event	55 ms	expected, with 8 ns cut
total cpu time/week	3.3k cpu-days	
recon evt/job	~570k	2.2 GB files
# of batch jobs	9.1k	
cpu time/job	8.7 hours	
total wall time	~7 days	assume 500 batch slots

Standard assumptions: 1 week, 200 nA @ 2.2 GeV; trigger rate = 8.6 kHz DST & data quality are very fast...add ε to the total SLAC

Offline computing requirements: Simulation production & processing

- We have various sets of MC that are useful for us (A' signal events, pure beam-on-target events, etc) but the set that takes the bulk of computing are generic, fully-triggered trident events (GFTTE)
- The rate for this (2.2GeV, 200nA) is ~850 Hz; expect 514M of these in a week

	cpu-time	storage
trident generation (MadGraph)/10k triggered	19 hours	4.5 MB
beam electron generation (egs)/10k triggered tridents	1100 s	51 MB
<i>detector simulation (slic)</i> /10k triggered tridents	17 hours	not archived
<i>Total for 1 week beam time equivalent for 500 slots</i>	154 days	2.7 TB

SLAC

Data transport

- raw data from Hall B to permanent tape storage
 - mechanisms for this are well established; at full steam, expect ~ 1TB of raw data a day so throughput should not be a major issue
- data back&forth between tape storage and cache disks for processing
 - ditto
- DSTs from JLAB to SLAC
 - right now, use globus to transfer data from JLAB to SLAC
 - at JLAB: clashps account; scigw machines
 - at SLAC: hpdatsrv account; use bbr-xfer machines
 - DSTs at SLAC will be saved to tape (available through xrootd) and be available on disk (we have ~30 TB now, no-backup)
 - automated scripts almost exist...will exercise them soon
 - this is not time critical

Physics Analysis: Mock Data Challenge

- Getting the A' search analysis work going before first data is a priority for us:
 - help identify potential issues we can address "on-the-floor" (e.g. special runs for calibrations, etc)
 - quick turnaround from data taking to publication
- at DOE reviewer's suggestion, we're having a mock data challenge
 - beginning-to-end analysis on a data-sized chunk (1 week, 2.2 GeV) of MC, with MC samples available for tuning
 - first large scale production
 - include some realistic conditions (some sample of noisy, dead SVT channels) but assume detector is aligned/calibrated
 - simulation production is ~ done; reconstruction is ongoing (files are available now)
 - expect this will get many new collaborators involved with analysis

Physics Analysis: From Proposal to Publication...

- The reach calculation in proposal was based on a primitive analysis/ calculation...
- rates from MadGraph
- resolutions from simulations with detailed (but likely still sub-optimal) cuts
- signal extracted via simple cut-andcount

Good enough for a proposal, but there is work to be done to make a publishable analysis:

- track/event selection optimization
- cross-checks
- systematics
- cross-checks
- signal extraction/limit setting procedures

HPS DAQ/Offline Readiness Review

Summary & Aspirations

- The offline is in good shape for data taking
 - everything that needs to be there (hit-making/clustering, tracking, vertexing) is there
 - expect for reconstruction to be continually improved through the life of the experiment
- We have plans in place for prompt offline production & data quality determination
 - phase-0 of mock data challenge
- Moving rapidly from data-on-tape to publication-in-PRL is a priority for us
 - phase-1 of the mock data challenge
 - my goal: 1 year from data to first publication
 - this will likely be a bump-hunt analysis of ~ 1 week of 2.2 GeV data