Why we need to search for Dark Photons

Rouven Essig

Yang Institute for Theoretical Physics

* Stony Brook University

HPS Collaboration Meeting, JLab 10/26/2015

What is Dark Matter?

Suggestive of a *dark sector*, neutral under all Standard Model forces

Portals to a dark sector?

only a few important interactions exist that are allowed by Standard Model symmetries

HPS built to probe the dark photon portal

Dark Photons

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu}$$

"Kinetic Mixing" Holdom Galison, Manohar

a special portal: not suppressed by a mass scale!

Dark Photons

$$\Delta \mathcal{L} = \frac{\epsilon}{2} F^{Y,\mu\nu} F'_{\mu\nu} \qquad \text{``Kinetic Mixing'}_{Galiso}$$

simplest Dark Sector consists of just an A', but dark sector could be much richer Holdom

Galison, Manohar

A' couples to quarks & charged leptons

Examples of A' Production

A' Decays

 $(A' \rightarrow \text{other states also possible})$

A' Status Today

from Curtin, RE, Gori, Shelton

A' Status Today

not shown: e.g. SeaQuest

Comment on SeaQuest

plot from Gardner, Holt, Tadepalli (1509.00050)

Some old plots shown by SeaQuest are "optimistic"... so please keep thinking about how to probe high mass region

(TBC)

Why search for Dark Photons?

 Simple and ubiquitous in Beyond SM scenarios; dark photon portal could easily be most accessible portal — theoretically, ε could be O(1)!

Why search for Dark Photons?

 Simple and ubiquitous in Beyond SM scenarios; dark photon portal could easily be most accessible portal — theoretically, ε could be O(1)!

Some scenarios give preferred values of $\boldsymbol{\epsilon}$

GUT: ϵ from one-loop versus two loop

if U(I)_Y embedded in a Grand Unified Theory (GUT), generate ε below GUT scale

Ymm)mm/

$$\label{eq:expansion} \begin{split} \epsilon &\sim \frac{g_Y g_D}{16\pi^2} \ln\left(\frac{M}{M'}\right) \\ &\sim 10^{-3} - 10^{-1} \end{split}$$

GUT: ϵ from one-loop versus two loop

if $U(I)_Y$ embedded in a Grand Unified Theory (GUT), generate ϵ below GUT scale

 $\gamma m() mA' \gamma m(\xi_X) mA'$

 $\epsilon \sim \frac{g_Y g_D}{16\pi^2} \ln\left(\frac{M}{M'}\right)$ $\sim 10^{-3} - 10^{-1}$

 $\epsilon\sim 10^{-5}-10^{-3}$

HPS, APEX etc can probe GUT & values

Why search for Dark Photons?

- Simple and ubiquitous in Beyond SM scenarios; dark photon portal could easily be most accessible portal — theoretically, ε could be O(1)!
- muon g-2

A' can explain muon g-2

Standard Model $(g_s - 2)_{\mu}$ versus Data

 $\sim 3.6 \sigma$ discrepancy

Boehm, Fayet Pospelov

independent of A' decay modes!

HPS, APEX... can probe g-2 for $Br(A' \rightarrow SM) \ll 100\%$

Why search for Dark Photons?

- Simple and ubiquitous in Beyond SM scenarios; dark photon portal could easily be most accessible portal — theoretically, ε could be O(1)!
- muon g-2
- A' could couple to dark matter, leading to an amazing variety of possible signatures:
 - data "anomalies" can guide specific scenarios

Dark Matter & Dark Photons

"Old" hints

- cosmic-rays e⁺ & e⁻ (PAMELA, ...)
- direct detection (DAMA, ...)

(now unlikely to be DM)

"Old" hint from cosmic-rays

Arkani-Hamed et.al.; Cholis et.al.; Pospelov & Ritz

Strong constraints from CMB, Fermi, ...

"Old" hint from direction detection

hard for SM mediators, easier for light mediators

Severe constraints from other experiments

"Newer" hints, e.g.

- ~GeV gamma-ray excess near Galactic Center
- 3.5 keV "line"
- "small-scale crisis" of cold, collisionless DM

Galactic Center Gamma-ray Excess

 $m_{DM} = 10 \text{ GeV}$ $m_{A'} = 100 \text{ MeV}$

Hooper, Weiner, Xue

3.5 keV Y-ray line

observed in e.g. galaxy clusters by X-ray satellites

3.5 keV Y-ray line

observed in e.g. galaxy clusters by X-ray satellites

• "Cusp-core problem":

some galaxies have less DM in the center than predicted by simulations

• "Cusp-core problem":

some galaxies have less DM in the center than predicted by simulations

• "Missing satellites problem" & "Too big too fail problem": simulations predict too many low-mass subhalos & dozens of "dark" satellites more massive than the dwarf spheroidals

> e.g. Klypin et al. 1999; Moore et.al. 1999 Boylan-Kolchin et.al. 2011

• "Cusp-core problem":

some galaxies have less DM in the center than predicted by simulations

• "Missing satellites problem" & "Too big too fail problem": simulations predict too many low-mass subhalos & dozens of "dark" satellites more massive than the dwarf spheroidals

e.g. Klypin et al. 1999; Moore et.al. 1999

Boylan-Kolchin et.al. 2011

- Resolution? baryonic physics?
 - warm dark matter? (e.g. ~keV sterile neutrino?)
 - self-interacting dark matter?

Spergel, Steinhardt 1999

• ...

DM self-interactions through A'?

could resolve some of the "small-scale crises"

$$\frac{v_{\chi} t_{\text{Galaxy}}}{\ell_{\text{scatter}}} \gtrsim 1 \implies \frac{\sigma}{m_{\chi}} \gtrsim \frac{1}{\rho_{\chi} v_{\chi} t_{\text{Galaxy}}}$$
$$\frac{\sigma}{m_{\chi}} \gtrsim \frac{1}{(10 \times 10^9 \text{ yrs})(0.5 \frac{\text{GeV}}{\text{cm}^3})(500 \frac{\text{km}}{\text{s}})}$$
$$\sim 0.1 \frac{\text{barn}}{\text{GeV}}$$

$$\frac{v_{\chi} t_{\text{Galaxy}}}{\ell_{\text{scatter}}} \gtrsim 1 \implies \frac{\sigma}{m_{\chi}} \gtrsim \frac{1}{\rho_{\chi} v_{\chi} t_{\text{Galaxy}}}$$
$$\frac{\sigma}{m_{\chi}} \gtrsim \frac{1}{(10 \times 10^9 \text{ yrs})(0.5 \frac{\text{GeV}}{\text{cm}^3})(500 \frac{\text{km}}{\text{s}})}$$
$$\sim 0.1 \frac{\text{barn}}{\text{GeV}} \qquad \sim \text{QCD scale!}$$

Large O/m is easy w/ light mediators

$$\frac{\sigma}{m_{\chi}} \sim 0.1 \, \frac{\mathrm{barn}}{\mathrm{GeV}} \left(\frac{\alpha_D}{0.005}\right)^2 \left(\frac{m_{\chi}}{1 \, \mathrm{GeV}}\right) \left(\frac{10 \, \mathrm{MeV}}{m_{A'}}\right)^4 \qquad \mathrm{Born}_{\mathrm{approximation}}$$

Large O/m is easy w/ light mediators

Obtaining cores in dwarfs, galaxies, & clusters

Kaplinghat, Tulin, Yu

Why search for Dark Photons?

- Simple and ubiquitous in Beyond SM scenarios; dark photon portal could easily be most accessible portal — theoretically, ε could be O(1)!
- muon g-2
- A' could couple to dark matter, leading to an amazing variety of possible signatures:
 - data "anomalies" can guide specific scenarios
 - simple, well-motivated DM models (e.g. sub-GeV DM) motivate new searches/interpretations

Why search for Dark Photons?

- Simple and ubiquitous in Beyond SM scenarios; dark photon portal could easily be most accessible portal — theoretically, ε could be O(1)!
- muon g-2
- A' could couple to dark matter, leading to an amazing variety of possible signatures:
 - data "anomalies" can guide specific scenarios
 - simple, well-motivated DM models (e.g. sub-GeV DM) motivate new searches/interpretations

(only mention 3 examples)

Assume $A' \rightarrow Dark$ Matter is possible

Then many constraints here weaken/disappear!

But & value to explain muon g-2 is unchanged!

now fix ϵ to explain g-2...

Constraint on g-2 region

Batell, RE, Surujon

Izaguirre, Krnjaic, Schuster, Toro

New proton/electron beam dumps for sub-GeV DM

MiniBooNE, BDX, missing momentum, ...

e.g. Batell, Pospelov, Ritz Deniverville, Pospelov, Ritz Deniverville, McKeen, Ritz Aguilar-Arevalo et.al. Izaguirre, Krnjaic, Schuster, Toro (several) Diamond, Schuster Batell, RE, Surujon BDX Collaboration

BDX proposal (Battaglieri et.al.)

New Direct Detection Experiments for sub-GeV DM

RE, Mardon, Volansky

RE, Fernandez-Serra, Mardon, Soto, Volansky, Yu

Conclusions

- Dark photon portal is special: simple, ubiquitous, easily dominant over other portals
- HPS (and others) can probe e.g.:
 - muon g-2 for $Br(A' \rightarrow SM) \ll 1$
 - ε expected from GUT symmetry
 - mediator of DM interactions, motivated by e.g.:
 - small-scale crisis of cold, collisionless DM
 - 3.5 keV line
 - GC excess
 - simple sub-GeV DM models