Update on Ecal Code and Calibrations

Holly Szumila-Vance HPS Collaboration Meeting 25 Oct 2015, Jefferson Lab

<u>Outline:</u>

- Ecal Code
 - Cosmic calibration
 - Full energy electron (FEE) calibration
- Calibration Overview
 - Energy
 - Timing
- Energy Resolution and Edge Effects
 - FEE data from Pass 2
 - Simulation for edge corrections

Cosmic code

https://github.com/hszumila/HPS_Calibration

- 40 hours min. for gains
- Geometric cuts based on surrounding crystals
- Threshold in raw ADC spectra, integrated signal
- Sufficient for the trigger and first beam
- Future work:
 - Pulse fitting (reduce data-taking?)
 - Implement in hps-java (add PMTs)
 - Track fitting

FEE code

- Simulation first!
- FEE skim data
- Fit peaks offline: $c_i = \frac{MC_E peak}{data_E peak}$

- Run reconstruction on skim:
 - IterateGainFactorDriver reads in coefficients and multiplies hit energy

$$hit_{new} = c \times hit_{old}$$

- Cluster new hit energies
- FEEClusterPlotter plots FEE peak per crystal
- Fitting is done offline in ROOT

FEE code

- Each iteration, improve gain coefficient: $c = c_1 \times c_2 \times c_3$
- Re-run reconstruction until $c_i = 1 \pm 0.01$

Energy calibration (more details later in this talk)

HPS Analysis note coming soon!

Energy calibration

.

-0.2

-0.1

Diff rel to cosmic gains

0.1

0.2

Timing calibration

- HPS Note 2015-011
- Fit RF signal
- Hit time and RF time
- Time between two clusters
- Timing within a cluster

Timing calibration

- HPS Note 2015-011
- Fit RF signal
- Hit time and RF time
- Time between two clusters
- Timing within a cluster

Two cluster time resolution ~ 550 ps

FEE Track-Matched Clusters

- Pass 2 FEE skim
- FSParticles Collection
- e- tracks
- GBL Tracks

Fiducial Sampling Fraction from Simulation

We know the Sampling Fraction is energy dependent.

What happens at the edges?

FEE Track-Matched Clusters

Look at sampling fraction for regions of x as a function of y position:

Sampling Fraction of Elastics, Bottom, non-Central

Sampling Fraction of Elastics, Top, non-Central

(For 1 GeV electrons) MC Sampling Fraction (excludes region above e- hole)

1

Data Sampling Fraction (excludes region above e- hole)-Top

Data Sampling Fraction (excludes region above e- hole)-Bot

FEE Track-Matched Clusters

Sampling Fraction (region above e- hole)-Top

Sampling Fraction (region above e- hole)-Top

Sampling Fraction (region above e- hole)-Bottom

Edge Sampling Fraction Corrections

$$\frac{E_c}{E_{truth}} = \frac{P0}{E_c} + \frac{P1}{\sqrt{E_c}} + P2(y)$$

- Energy dependence P0 and P1 parameters change very little with respect to y
- Fit p2 parameter as a function of y

Edge Sampling Fraction Corrections

Energy dependence
$$\frac{E_c}{E_{truth}} = \frac{P0}{E_c} + \frac{P1}{\sqrt{E_c}} + P2(y)$$

- P0 and P1 parameters change very little with respect to y
- Fit P2 parameter as a function of y

Energy Resolution in Ecal

For FEE electrons, we expected 3.6%, but we measure 4.1% How does this scale with energy? How does the SVT scale with energy (MC scattering effects)?

Possible Resolution Effects

Conclusions and Future Work

- Sampling fraction corrections from simulation
 - Re-do with surveyed Ecal geometry
 - Check resolution with crystal gaps
- Ecal energy can supplement SVT momentum